Abstract

We present modeled and experimental results for an ytterbium-doped fiber amplifier seeded with a narrow-linewidth master oscillator. We include a simplified model used to generate input for a model that numerically solves the coupled differential equations. We find good agreement between the model and measured data.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Digonnet, “Closed-form expressions for the gain in three- and four-level laser fibers,” IEEE J. Quantum Electron. 26, 1788–1796 (1990).
    [CrossRef]
  2. D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, and A. C. Tropper, “An ytterbium-doped monomode fiber laser: broadly tunable operation from 1.010 µm to 1.162 µm and three-level operation at 974 nm,” J. Mod. Opt. 37, 517–525 (1990).
    [CrossRef]
  3. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
    [CrossRef]
  4. V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
    [CrossRef]
  5. J. M. Sousa, J. Nilsson, C. C. Renaud, J. A. Alvarez-Chavez, A. B. Grudinin, and J. D. Minelly, “Broadband diode-pumped ytterbium-doped fiber amplifier with 34-dBm output power,” IEEE Photonics Technol. Lett. 11, 39–41 (1999).
    [CrossRef]
  6. R. H. Page, R. J. Beach, C. A. Ebbers, R. B. Wilcox, S. A. Payne, W. F. Krupke, C. C. Mitchell, A. D. Drobshoff, and D. F. Browning, “High-resolution, near-diffraction-limited, tunable solid-state visible light source using sum frequency generation,” Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), paper CMD3.
  7. J. F. Marcerou, H. A. Fevrier, J. Ramos, J. C. Auge, and P. Bousselet, “General theoretical approach describing the complete behavior of the erbium-doped fiber amplifier,” Fiber Laser Sources and Amplifiers II, Proc. SPIE1373, 168–186 (1990).
    [CrossRef]
  8. C. R. Giles and D. di Giovanni, “Spectral dependence of gain and noise in erbium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 2, 797–800 (1990).
    [CrossRef]
  9. C. R. Giles and E. Dersurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
    [CrossRef]
  10. A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33, 307–313 (1997).
    [CrossRef]
  11. R. Oron and A. A. Hardy, “Rayleigh backscattering and amplified spontaneous emission in high-power ytterbium-doped fiber amplifiers,” J. Opt. Soc. Am. B 16, 695–701 (1999).
    [CrossRef]
  12. R. Beach, Lawrence Livermore National Laboratories, P.O. Box 808, L-482, Livermore, Calif. 94551 (personal communication, 2000).
  13. A. O. Neilson, J. H. Povlsen, A. Bjarklev, O. Lumholt, T. P. Rasmussen, and K. Rottwitt, “Fast method for accurate pre-diction of fibre laser oscillation wavelength,” Electron. Lett. 27, 1644–1645 (1991).
    [CrossRef]
  14. F. Patel, “Solid-state rare-earth doped media for applications in waveguide lasers,” Ph.D. dissertation (University of California, Davis, Calif., 2000).
  15. N. A. Brilliant, “Ytterbium-doped dual-clad fiber amplifiers,” Ph.D. dissertation (University of New Mexico, Albuquerque, N.M., 2001).
  16. G. C. Valley, “Modeling cladding-pumped Er/Yb fiber amplifiers,” Opt. Fiber Technol. Mater. Devices Syst. 7, 21–44 (2001).
    [CrossRef]
  17. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University, Cambridge, England1997).
  18. J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1996).
  19. E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium-doped single-mode fibers,” J. Lightwave Technol. 7, 835–845 (1989).
    [CrossRef]
  20. C. Vasallo, Optical Waveguide Concepts (Elsevier, New York, 1991).

2001 (1)

G. C. Valley, “Modeling cladding-pumped Er/Yb fiber amplifiers,” Opt. Fiber Technol. Mater. Devices Syst. 7, 21–44 (2001).
[CrossRef]

1999 (3)

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

J. M. Sousa, J. Nilsson, C. C. Renaud, J. A. Alvarez-Chavez, A. B. Grudinin, and J. D. Minelly, “Broadband diode-pumped ytterbium-doped fiber amplifier with 34-dBm output power,” IEEE Photonics Technol. Lett. 11, 39–41 (1999).
[CrossRef]

R. Oron and A. A. Hardy, “Rayleigh backscattering and amplified spontaneous emission in high-power ytterbium-doped fiber amplifiers,” J. Opt. Soc. Am. B 16, 695–701 (1999).
[CrossRef]

1997 (2)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33, 307–313 (1997).
[CrossRef]

1991 (2)

C. R. Giles and E. Dersurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[CrossRef]

A. O. Neilson, J. H. Povlsen, A. Bjarklev, O. Lumholt, T. P. Rasmussen, and K. Rottwitt, “Fast method for accurate pre-diction of fibre laser oscillation wavelength,” Electron. Lett. 27, 1644–1645 (1991).
[CrossRef]

1990 (3)

C. R. Giles and D. di Giovanni, “Spectral dependence of gain and noise in erbium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 2, 797–800 (1990).
[CrossRef]

M. Digonnet, “Closed-form expressions for the gain in three- and four-level laser fibers,” IEEE J. Quantum Electron. 26, 1788–1796 (1990).
[CrossRef]

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, and A. C. Tropper, “An ytterbium-doped monomode fiber laser: broadly tunable operation from 1.010 µm to 1.162 µm and three-level operation at 974 nm,” J. Mod. Opt. 37, 517–525 (1990).
[CrossRef]

1989 (1)

E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium-doped single-mode fibers,” J. Lightwave Technol. 7, 835–845 (1989).
[CrossRef]

Alvarez-Chavez, J. A.

J. M. Sousa, J. Nilsson, C. C. Renaud, J. A. Alvarez-Chavez, A. B. Grudinin, and J. D. Minelly, “Broadband diode-pumped ytterbium-doped fiber amplifier with 34-dBm output power,” IEEE Photonics Technol. Lett. 11, 39–41 (1999).
[CrossRef]

Auge, J. C.

J. F. Marcerou, H. A. Fevrier, J. Ramos, J. C. Auge, and P. Bousselet, “General theoretical approach describing the complete behavior of the erbium-doped fiber amplifier,” Fiber Laser Sources and Amplifiers II, Proc. SPIE1373, 168–186 (1990).
[CrossRef]

Beach, R.

R. Beach, Lawrence Livermore National Laboratories, P.O. Box 808, L-482, Livermore, Calif. 94551 (personal communication, 2000).

Beach, R. J.

R. H. Page, R. J. Beach, C. A. Ebbers, R. B. Wilcox, S. A. Payne, W. F. Krupke, C. C. Mitchell, A. D. Drobshoff, and D. F. Browning, “High-resolution, near-diffraction-limited, tunable solid-state visible light source using sum frequency generation,” Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), paper CMD3.

Bicknese, S.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Bjarklev, A.

A. O. Neilson, J. H. Povlsen, A. Bjarklev, O. Lumholt, T. P. Rasmussen, and K. Rottwitt, “Fast method for accurate pre-diction of fibre laser oscillation wavelength,” Electron. Lett. 27, 1644–1645 (1991).
[CrossRef]

Bousselet, P.

J. F. Marcerou, H. A. Fevrier, J. Ramos, J. C. Auge, and P. Bousselet, “General theoretical approach describing the complete behavior of the erbium-doped fiber amplifier,” Fiber Laser Sources and Amplifiers II, Proc. SPIE1373, 168–186 (1990).
[CrossRef]

Brilliant, N. A.

N. A. Brilliant, “Ytterbium-doped dual-clad fiber amplifiers,” Ph.D. dissertation (University of New Mexico, Albuquerque, N.M., 2001).

Browning, D. F.

R. H. Page, R. J. Beach, C. A. Ebbers, R. B. Wilcox, S. A. Payne, W. F. Krupke, C. C. Mitchell, A. D. Drobshoff, and D. F. Browning, “High-resolution, near-diffraction-limited, tunable solid-state visible light source using sum frequency generation,” Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), paper CMD3.

Dennis, J. E.

J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1996).

Dersurvire, E.

C. R. Giles and E. Dersurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[CrossRef]

Desurvire, E.

E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium-doped single-mode fibers,” J. Lightwave Technol. 7, 835–845 (1989).
[CrossRef]

di Giovanni, D.

C. R. Giles and D. di Giovanni, “Spectral dependence of gain and noise in erbium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 2, 797–800 (1990).
[CrossRef]

Digonnet, M.

M. Digonnet, “Closed-form expressions for the gain in three- and four-level laser fibers,” IEEE J. Quantum Electron. 26, 1788–1796 (1990).
[CrossRef]

Dohle, R.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Dominic, V.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Drobshoff, A. D.

R. H. Page, R. J. Beach, C. A. Ebbers, R. B. Wilcox, S. A. Payne, W. F. Krupke, C. C. Mitchell, A. D. Drobshoff, and D. F. Browning, “High-resolution, near-diffraction-limited, tunable solid-state visible light source using sum frequency generation,” Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), paper CMD3.

Ebbers, C. A.

R. H. Page, R. J. Beach, C. A. Ebbers, R. B. Wilcox, S. A. Payne, W. F. Krupke, C. C. Mitchell, A. D. Drobshoff, and D. F. Browning, “High-resolution, near-diffraction-limited, tunable solid-state visible light source using sum frequency generation,” Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), paper CMD3.

Fevrier, H. A.

J. F. Marcerou, H. A. Fevrier, J. Ramos, J. C. Auge, and P. Bousselet, “General theoretical approach describing the complete behavior of the erbium-doped fiber amplifier,” Fiber Laser Sources and Amplifiers II, Proc. SPIE1373, 168–186 (1990).
[CrossRef]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University, Cambridge, England1997).

Giles, C. R.

C. R. Giles and E. Dersurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[CrossRef]

C. R. Giles and D. di Giovanni, “Spectral dependence of gain and noise in erbium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 2, 797–800 (1990).
[CrossRef]

Grudinin, A. B.

J. M. Sousa, J. Nilsson, C. C. Renaud, J. A. Alvarez-Chavez, A. B. Grudinin, and J. D. Minelly, “Broadband diode-pumped ytterbium-doped fiber amplifier with 34-dBm output power,” IEEE Photonics Technol. Lett. 11, 39–41 (1999).
[CrossRef]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, and A. C. Tropper, “An ytterbium-doped monomode fiber laser: broadly tunable operation from 1.010 µm to 1.162 µm and three-level operation at 974 nm,” J. Mod. Opt. 37, 517–525 (1990).
[CrossRef]

Hardy, A.

A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33, 307–313 (1997).
[CrossRef]

Hardy, A. A.

Krupke, W. F.

R. H. Page, R. J. Beach, C. A. Ebbers, R. B. Wilcox, S. A. Payne, W. F. Krupke, C. C. Mitchell, A. D. Drobshoff, and D. F. Browning, “High-resolution, near-diffraction-limited, tunable solid-state visible light source using sum frequency generation,” Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), paper CMD3.

Lumholt, O.

A. O. Neilson, J. H. Povlsen, A. Bjarklev, O. Lumholt, T. P. Rasmussen, and K. Rottwitt, “Fast method for accurate pre-diction of fibre laser oscillation wavelength,” Electron. Lett. 27, 1644–1645 (1991).
[CrossRef]

MacCormack, S.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Marcerou, J. F.

J. F. Marcerou, H. A. Fevrier, J. Ramos, J. C. Auge, and P. Bousselet, “General theoretical approach describing the complete behavior of the erbium-doped fiber amplifier,” Fiber Laser Sources and Amplifiers II, Proc. SPIE1373, 168–186 (1990).
[CrossRef]

Minelly, J. D.

J. M. Sousa, J. Nilsson, C. C. Renaud, J. A. Alvarez-Chavez, A. B. Grudinin, and J. D. Minelly, “Broadband diode-pumped ytterbium-doped fiber amplifier with 34-dBm output power,” IEEE Photonics Technol. Lett. 11, 39–41 (1999).
[CrossRef]

Mitchell, C. C.

R. H. Page, R. J. Beach, C. A. Ebbers, R. B. Wilcox, S. A. Payne, W. F. Krupke, C. C. Mitchell, A. D. Drobshoff, and D. F. Browning, “High-resolution, near-diffraction-limited, tunable solid-state visible light source using sum frequency generation,” Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), paper CMD3.

Neilson, A. O.

A. O. Neilson, J. H. Povlsen, A. Bjarklev, O. Lumholt, T. P. Rasmussen, and K. Rottwitt, “Fast method for accurate pre-diction of fibre laser oscillation wavelength,” Electron. Lett. 27, 1644–1645 (1991).
[CrossRef]

Nilsson, J.

J. M. Sousa, J. Nilsson, C. C. Renaud, J. A. Alvarez-Chavez, A. B. Grudinin, and J. D. Minelly, “Broadband diode-pumped ytterbium-doped fiber amplifier with 34-dBm output power,” IEEE Photonics Technol. Lett. 11, 39–41 (1999).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

Oron, R.

R. Oron and A. A. Hardy, “Rayleigh backscattering and amplified spontaneous emission in high-power ytterbium-doped fiber amplifiers,” J. Opt. Soc. Am. B 16, 695–701 (1999).
[CrossRef]

A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33, 307–313 (1997).
[CrossRef]

Page, R. H.

R. H. Page, R. J. Beach, C. A. Ebbers, R. B. Wilcox, S. A. Payne, W. F. Krupke, C. C. Mitchell, A. D. Drobshoff, and D. F. Browning, “High-resolution, near-diffraction-limited, tunable solid-state visible light source using sum frequency generation,” Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), paper CMD3.

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

Patel, F.

F. Patel, “Solid-state rare-earth doped media for applications in waveguide lasers,” Ph.D. dissertation (University of California, Davis, Calif., 2000).

Payne, S. A.

R. H. Page, R. J. Beach, C. A. Ebbers, R. B. Wilcox, S. A. Payne, W. F. Krupke, C. C. Mitchell, A. D. Drobshoff, and D. F. Browning, “High-resolution, near-diffraction-limited, tunable solid-state visible light source using sum frequency generation,” Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), paper CMD3.

Percival, R. M.

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, and A. C. Tropper, “An ytterbium-doped monomode fiber laser: broadly tunable operation from 1.010 µm to 1.162 µm and three-level operation at 974 nm,” J. Mod. Opt. 37, 517–525 (1990).
[CrossRef]

Perry, I. R.

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, and A. C. Tropper, “An ytterbium-doped monomode fiber laser: broadly tunable operation from 1.010 µm to 1.162 µm and three-level operation at 974 nm,” J. Mod. Opt. 37, 517–525 (1990).
[CrossRef]

Povlsen, J. H.

A. O. Neilson, J. H. Povlsen, A. Bjarklev, O. Lumholt, T. P. Rasmussen, and K. Rottwitt, “Fast method for accurate pre-diction of fibre laser oscillation wavelength,” Electron. Lett. 27, 1644–1645 (1991).
[CrossRef]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University, Cambridge, England1997).

Ramos, J.

J. F. Marcerou, H. A. Fevrier, J. Ramos, J. C. Auge, and P. Bousselet, “General theoretical approach describing the complete behavior of the erbium-doped fiber amplifier,” Fiber Laser Sources and Amplifiers II, Proc. SPIE1373, 168–186 (1990).
[CrossRef]

Rasmussen, T. P.

A. O. Neilson, J. H. Povlsen, A. Bjarklev, O. Lumholt, T. P. Rasmussen, and K. Rottwitt, “Fast method for accurate pre-diction of fibre laser oscillation wavelength,” Electron. Lett. 27, 1644–1645 (1991).
[CrossRef]

Renaud, C. C.

J. M. Sousa, J. Nilsson, C. C. Renaud, J. A. Alvarez-Chavez, A. B. Grudinin, and J. D. Minelly, “Broadband diode-pumped ytterbium-doped fiber amplifier with 34-dBm output power,” IEEE Photonics Technol. Lett. 11, 39–41 (1999).
[CrossRef]

Rottwitt, K.

A. O. Neilson, J. H. Povlsen, A. Bjarklev, O. Lumholt, T. P. Rasmussen, and K. Rottwitt, “Fast method for accurate pre-diction of fibre laser oscillation wavelength,” Electron. Lett. 27, 1644–1645 (1991).
[CrossRef]

Sanders, S.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Schnabel, R. B.

J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1996).

Simpson, J. R.

E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium-doped single-mode fibers,” J. Lightwave Technol. 7, 835–845 (1989).
[CrossRef]

Smart, R. G.

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, and A. C. Tropper, “An ytterbium-doped monomode fiber laser: broadly tunable operation from 1.010 µm to 1.162 µm and three-level operation at 974 nm,” J. Mod. Opt. 37, 517–525 (1990).
[CrossRef]

Sousa, J. M.

J. M. Sousa, J. Nilsson, C. C. Renaud, J. A. Alvarez-Chavez, A. B. Grudinin, and J. D. Minelly, “Broadband diode-pumped ytterbium-doped fiber amplifier with 34-dBm output power,” IEEE Photonics Technol. Lett. 11, 39–41 (1999).
[CrossRef]

Suni, P. J.

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, and A. C. Tropper, “An ytterbium-doped monomode fiber laser: broadly tunable operation from 1.010 µm to 1.162 µm and three-level operation at 974 nm,” J. Mod. Opt. 37, 517–525 (1990).
[CrossRef]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University, Cambridge, England1997).

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, and A. C. Tropper, “An ytterbium-doped monomode fiber laser: broadly tunable operation from 1.010 µm to 1.162 µm and three-level operation at 974 nm,” J. Mod. Opt. 37, 517–525 (1990).
[CrossRef]

Valley, G. C.

G. C. Valley, “Modeling cladding-pumped Er/Yb fiber amplifiers,” Opt. Fiber Technol. Mater. Devices Syst. 7, 21–44 (2001).
[CrossRef]

Vasallo, C.

C. Vasallo, Optical Waveguide Concepts (Elsevier, New York, 1991).

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University, Cambridge, England1997).

Waarts, R.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Wilcox, R. B.

R. H. Page, R. J. Beach, C. A. Ebbers, R. B. Wilcox, S. A. Payne, W. F. Krupke, C. C. Mitchell, A. D. Drobshoff, and D. F. Browning, “High-resolution, near-diffraction-limited, tunable solid-state visible light source using sum frequency generation,” Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), paper CMD3.

Wolak, E.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Yeh, P. S.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Zucker, E.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Electron. Lett. (2)

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

A. O. Neilson, J. H. Povlsen, A. Bjarklev, O. Lumholt, T. P. Rasmussen, and K. Rottwitt, “Fast method for accurate pre-diction of fibre laser oscillation wavelength,” Electron. Lett. 27, 1644–1645 (1991).
[CrossRef]

IEEE J. Quantum Electron. (3)

A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33, 307–313 (1997).
[CrossRef]

M. Digonnet, “Closed-form expressions for the gain in three- and four-level laser fibers,” IEEE J. Quantum Electron. 26, 1788–1796 (1990).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

C. R. Giles and D. di Giovanni, “Spectral dependence of gain and noise in erbium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 2, 797–800 (1990).
[CrossRef]

J. M. Sousa, J. Nilsson, C. C. Renaud, J. A. Alvarez-Chavez, A. B. Grudinin, and J. D. Minelly, “Broadband diode-pumped ytterbium-doped fiber amplifier with 34-dBm output power,” IEEE Photonics Technol. Lett. 11, 39–41 (1999).
[CrossRef]

J. Lightwave Technol. (2)

C. R. Giles and E. Dersurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[CrossRef]

E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium-doped single-mode fibers,” J. Lightwave Technol. 7, 835–845 (1989).
[CrossRef]

J. Mod. Opt. (1)

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, and A. C. Tropper, “An ytterbium-doped monomode fiber laser: broadly tunable operation from 1.010 µm to 1.162 µm and three-level operation at 974 nm,” J. Mod. Opt. 37, 517–525 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Fiber Technol. Mater. Devices Syst. (1)

G. C. Valley, “Modeling cladding-pumped Er/Yb fiber amplifiers,” Opt. Fiber Technol. Mater. Devices Syst. 7, 21–44 (2001).
[CrossRef]

Other (8)

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University, Cambridge, England1997).

J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1996).

C. Vasallo, Optical Waveguide Concepts (Elsevier, New York, 1991).

R. Beach, Lawrence Livermore National Laboratories, P.O. Box 808, L-482, Livermore, Calif. 94551 (personal communication, 2000).

F. Patel, “Solid-state rare-earth doped media for applications in waveguide lasers,” Ph.D. dissertation (University of California, Davis, Calif., 2000).

N. A. Brilliant, “Ytterbium-doped dual-clad fiber amplifiers,” Ph.D. dissertation (University of New Mexico, Albuquerque, N.M., 2001).

R. H. Page, R. J. Beach, C. A. Ebbers, R. B. Wilcox, S. A. Payne, W. F. Krupke, C. C. Mitchell, A. D. Drobshoff, and D. F. Browning, “High-resolution, near-diffraction-limited, tunable solid-state visible light source using sum frequency generation,” Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), paper CMD3.

J. F. Marcerou, H. A. Fevrier, J. Ramos, J. C. Auge, and P. Bousselet, “General theoretical approach describing the complete behavior of the erbium-doped fiber amplifier,” Fiber Laser Sources and Amplifiers II, Proc. SPIE1373, 168–186 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cross sections measured by Patel.14 Absorption cross section (solid curve) and emission cross section (dashed curve).

Fig. 2
Fig. 2

Master oscillator, preamplifier, and amplifier. WDM indicates a wavelength-division multiplexer. DFB indicates the distributed feedback laser. X’s are fusion splices.

Fig. 3
Fig. 3

Experimental and modeled performance as a function of incident pump power. Experimental data for 12.7-mW seed (triangles) and no seed (circles). Modeled data for Γ=0.35 (dashed curve) and Γ=0.58 (dotted curve).

Fig. 4
Fig. 4

Experimental and modeled saturation as a function of incident seed power. Experimental data for pump powers of 1.14 W (squares), 3.37 W (circles), and 6.92 W (triangles). Modeled data for Γ=0.35 (dashed curve) and Γ=0.58 (dotted curve).

Fig. 5
Fig. 5

Experimental and modeled amplifier ASE spectra. Experimental data (solid curve) and modeled data for Γ=0.35 (dashed curve) and Γ=0.58 (dotted curve).

Tables (2)

Tables Icon

Table 1 Normalized Model Parametersa

Tables Icon

Table 2 Model Parameters and Input Values

Equations (55)

Equations on this page are rendered with MathJax. Learn more.

±dpi±(z)dz=[n2(z)k2i-k3i]pi±(z)+n2k4i.
n2(z)=ik5i[pi+(z)+pi-(z)]k1+ik2i[pi+(z)+pi-(z)],
pp1(1)=pp1(0) exp(gp),
Δpp1(1)=pp1(0)(Gp-1).
Δn2p1(1)=-Δpp1(1).
Δsp1(1)=01αppp1(1)(z)dz=spΔpp1(1),
Δn2p1(1)=-(Δpp1(1)-Δsp1(1))=-Δpp1(1)(1-sp).
pp1(2m+1)=pp1(0)(R0R1)mGp2m+1.
Δpp1(2m+1)=pp1(0)(Gp-1)(R0R1)mGp2m.
pp1(2m+2)=pp1(0)R0(R0R1)mGp2m+2.
Δpp1(2m+2)=pp1(0)R0(Gp-1)(R0R1)mGp2m+1.
Δn2p1=-pp1(0)(1-sp)(Gp-1)(1+R0Gp)m=0(R0R1Gp2)m.
Δn2p1=-pp1(0)(1-sp)(Gp-1) 1+R0Gp1-R0R1Gp2.
Δn2s0=-pp0(0)(Gs-1)(1+ss) 1+R1Gs1-R0R1G22.
pi1(z)=(pi1(0)+ai)exp(giz)-ai,
pi1(z)=ai[exp(giz)-1].
Δpi1(1)=ai(Gi-1).
Δsi1(1)=01αipi1(z)dz=αiaiGi-1gi-1.
Δsi1(1)=aisi(Gi-1)-αiai.
Δn2i1(1)=-ai(1+si)(Gi-1)+αiai.
pi1(2m+3)=ai(Gi-1)(R0R1)m+1Gi2m+2.
Δpi1(2m+3)=ai(Gi-1)2(R0R1)m+1Gi2m+1.
Δn2i1(2m+3)=-(1+si)Δpi1(2m+3).
Δn2i1odd=-(1+si)aiR0R1Gi(Gi-1)2m=0(R0R1)mGi2m.
Δn2i1odd=-ai(1+si)(Gi-1) R0R1Gi(Gi-1)1-R0R1Gi2.
pi1(2m+2)=aiR0(Gi-1)(R0R1)mGi2m+1,
Δpi1(2m+2)=aiR0(Gi-1)2(R0R1)mGi2m.
Δn2ieven=-ai(1+si)(Gi-1) R0(Gi-1)1-R0R1Gi2.
Δn2i1=αiai-ai(1+si)(Gi-1)×1+R0(Gi-1)(1+R1Gi)1-R0R1Gi2.
δn2u=-k1+i2n2k4i.
Δn2=-k1+i[(Δn2i0+Δn2i1)+2n2k4i].
ηppp0inGpm=0(R0R1)mGp2m,
ηppp1inR0Gp2m=0(R0R1)mGp2m.
pp1out=T1ηpGp pp0in+pp1inR0Gp1-R0R1Gp2.
pi1out=T1ai(Gi-1) 1+R0Gp1-R0R1Gi2.
dIi+(r, ϕ, z)dz
=-αiIi+(r, ϕ, z)+[N2(r, ϕ, z)(σie+σia)-N0(r, ϕ, z)σia]Ii+(r, ϕ, z).
dPi+dz=-αiPi++[(σie+σia)N2-σiaN0]Pi+002πΦiΨrdrdϕ.
Γi=Acore002πΦiΨrdrdϕ.
n2(z)=N2(z)N0(z).
dPi+dz=[(σie+σia)n2-σia]N0ΓiPi+-αiPi+.
m g(νi)Δντ2hνiN2(r, ϕ, z)Ωi+(r, ϕ).
Ωi=NA24n2.
mhνi g(νi)Δντ2N0n2Acore NA24n2.
2πm Δλhc2nλ5σien2N0AcoreNA2.
Ωi(r, ϕ)=πa2V2 NA2n2Φi(r, ϕ).
m g(νi)Δντ2 πa2V2 NA2n2N2002πΦiψrdrdϕ.
mhνi g(νi)Δντ2N0n2 πa2V2 NA2n2Γi+.
Ωi=1V2 NA2n2Γi.
2mΔλhc2nλ3σieN0Γin2.
n2=iσiaΓi(Pi++Pi-)(Acorehνi)-11τ2+i(σie+σia)Γi(Pi++Pi-)(Acorehνi)-1.
pi+=Pi+τshνiN0AcoreL.
±dpi±dz=(n2k2i-k3i)pi±+n2k4i.
n2(z)=ik 5i(pi++pi-)k1+ik2i(pi++pi-),
F(x+p)=F(x)+pM(x)=0.

Metrics