Abstract

Hyperfine structures of the R(87)33-0, R(145)37-0, and P(132)36-0 transitions of molecular iodine near 532 nm are measured by observing the heterodyne beat-note signal of two I2-stabilized lasers, whose frequencies are bridged by an optical frequency comb generator. The measured hyperfine splittings are fit to a four-term Hamiltonian, which includes the electric quadrupole, spin–rotation, tensor spin–spin, and scalar spin–spin interactions, with an accuracy of ∼720 Hz. High-accurate hyperfine constants are obtained from this fit. Vibration dependences of the tensor spin–spin and scalar spin–spin hyperfine constants are determined for molecular iodine, for the first time to our knowledge. The observed hyperfine transitions are good optical frequency references in the 532-nm region.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Quinn, “Practical realization of the definition of the metre (1997),” Metrologia 36, 211–244 (1999).
    [CrossRef]
  2. S. Gerstenkorn and P. Luc, Atlas Du Spectre D’Absorption de la Molecule D’Iode (Editions de CNRS, Paris, 1978).
  3. A. Arie, S. Schiller, E. K. Gustafson, and R. L. Byer, “Absolute frequency stabilization of diode-laser-pumped Nd:YAG lasers to hyperfine transitions in molecular iodine,” Opt. Lett. 17, 1204–1206 (1992).
    [CrossRef] [PubMed]
  4. A. Arie and R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm,” J. Opt. Soc. Am. B 10, 1990–1997 (1993).
    [CrossRef]
  5. A. Arie and R. L. Byer, “The hyperfine structure of the 127I2 P(119) 35–0 transition,” Opt. Commun. 111, 253–258 (1994).
    [CrossRef]
  6. J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
    [CrossRef]
  7. G. Camy, C. J. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturation beam,” Opt. Commun. 41, 325–330 (1982).
    [CrossRef]
  8. J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 7, 537–539 (1982).
    [CrossRef] [PubMed]
  9. M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
    [CrossRef]
  10. J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
    [CrossRef]
  11. F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, Ch. J. Bordé and J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18, 379–387 (2001).
    [CrossRef]
  12. F.-L. Hong, J. Ishikawa, T. H. Yoon, L.-S. Ma, J. Ye, and J. L. Hall, “A portable I2-stabilized Nd:YAG laser for wavelength standards at 532 nm and 1064 nm,” in Recent Developments in Optical Gauge Block Metrology, Proc. SPIE 3477, 2–10 (1998).
    [CrossRef]
  13. F.-L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
    [CrossRef]
  14. F.-L. Hong, Yun Zhang, J. Ishikawa, Y. Bitou, A. Onae, J. Yoda, and H. Matsumoto, “Frequency reproducibility of I2-stabilized Nd:YAG lasers,” in Laser Frequency Stabilization, Standards, Measurement, and Applications, Proc. SPIE 4269, 143–154 (2001).
    [CrossRef]
  15. F.-L. Hong, J. Ishikawa, Z.-Y. Bi, J. Zhang, A. Onae, and J. Yoda, “A portable I2-stabilized Nd:YAG laser for international comparisons,” IEEE Trans. Instrum. Meas. 50, 486–489 (2001).
    [CrossRef]
  16. F.-L. Hong and J. Ishikawa, “Hyperfine structures of the R(122)35–0 and P(84)33–0 transitions of 127I2 near 532 nm,” Opt. Commun. 183, 101–108 (2000).
    [CrossRef]
  17. F.-L. Hong, J. Ishikawa, A. Onae, and H. Matsumoto, “Rotation dependence of the excited-state electric quadrupole hyperfine interaction by high-resolution laser spectroscopy of 127I2,” J. Opt. Soc. Am. B 18, 1416–1422 (2001).
    [CrossRef]
  18. J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).
  19. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
    [CrossRef] [PubMed]
  20. Y. Zhang, J. Ishikawa, and F.-L. Hong, “Accurate frequency atlas of molecular iodine near 532 nm measured by an optical frequency comb generator,” Opt. Commun. 200, 209–215 (2001).
    [CrossRef]
  21. M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
    [CrossRef]
  22. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
    [CrossRef]
  23. Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å: I-Main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
    [CrossRef]

2001 (5)

F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, Ch. J. Bordé and J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18, 379–387 (2001).
[CrossRef]

F.-L. Hong, Yun Zhang, J. Ishikawa, Y. Bitou, A. Onae, J. Yoda, and H. Matsumoto, “Frequency reproducibility of I2-stabilized Nd:YAG lasers,” in Laser Frequency Stabilization, Standards, Measurement, and Applications, Proc. SPIE 4269, 143–154 (2001).
[CrossRef]

F.-L. Hong, J. Ishikawa, Z.-Y. Bi, J. Zhang, A. Onae, and J. Yoda, “A portable I2-stabilized Nd:YAG laser for international comparisons,” IEEE Trans. Instrum. Meas. 50, 486–489 (2001).
[CrossRef]

F.-L. Hong, J. Ishikawa, A. Onae, and H. Matsumoto, “Rotation dependence of the excited-state electric quadrupole hyperfine interaction by high-resolution laser spectroscopy of 127I2,” J. Opt. Soc. Am. B 18, 1416–1422 (2001).
[CrossRef]

Y. Zhang, J. Ishikawa, and F.-L. Hong, “Accurate frequency atlas of molecular iodine near 532 nm measured by an optical frequency comb generator,” Opt. Commun. 200, 209–215 (2001).
[CrossRef]

2000 (2)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

F.-L. Hong and J. Ishikawa, “Hyperfine structures of the R(122)35–0 and P(84)33–0 transitions of 127I2 near 532 nm,” Opt. Commun. 183, 101–108 (2000).
[CrossRef]

1999 (5)

F.-L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[CrossRef]

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

T. J. Quinn, “Practical realization of the definition of the metre (1997),” Metrologia 36, 211–244 (1999).
[CrossRef]

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

1998 (1)

F.-L. Hong, J. Ishikawa, T. H. Yoon, L.-S. Ma, J. Ye, and J. L. Hall, “A portable I2-stabilized Nd:YAG laser for wavelength standards at 532 nm and 1064 nm,” in Recent Developments in Optical Gauge Block Metrology, Proc. SPIE 3477, 2–10 (1998).
[CrossRef]

1995 (1)

M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

1994 (1)

A. Arie and R. L. Byer, “The hyperfine structure of the 127I2 P(119) 35–0 transition,” Opt. Commun. 111, 253–258 (1994).
[CrossRef]

1993 (2)

A. Arie and R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm,” J. Opt. Soc. Am. B 10, 1990–1997 (1993).
[CrossRef]

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

1992 (1)

1982 (2)

G. Camy, C. J. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturation beam,” Opt. Commun. 41, 325–330 (1982).
[CrossRef]

J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 7, 537–539 (1982).
[CrossRef] [PubMed]

1981 (1)

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å: I-Main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

1966 (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

Allan, D. W.

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

Arie, A.

Bi, Z.-Y.

F.-L. Hong, J. Ishikawa, Z.-Y. Bi, J. Zhang, A. Onae, and J. Yoda, “A portable I2-stabilized Nd:YAG laser for international comparisons,” IEEE Trans. Instrum. Meas. 50, 486–489 (2001).
[CrossRef]

Bitou, Y.

F.-L. Hong, Yun Zhang, J. Ishikawa, Y. Bitou, A. Onae, J. Yoda, and H. Matsumoto, “Frequency reproducibility of I2-stabilized Nd:YAG lasers,” in Laser Frequency Stabilization, Standards, Measurement, and Applications, Proc. SPIE 4269, 143–154 (2001).
[CrossRef]

Bordé, C. J.

G. Camy, C. J. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturation beam,” Opt. Commun. 41, 325–330 (1982).
[CrossRef]

Bordé, Ch. J.

F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, Ch. J. Bordé and J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18, 379–387 (2001).
[CrossRef]

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å: I-Main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

Byer, R. L.

Camy, G.

G. Camy, C. J. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturation beam,” Opt. Commun. 41, 325–330 (1982).
[CrossRef]

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å: I-Main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

Cundiff, S. T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Decomps, B.

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å: I-Main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

Descoubes, J.-P.

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å: I-Main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

Diddams, S. A.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

du Burck, F.

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

Ducloy, M.

G. Camy, C. J. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturation beam,” Opt. Commun. 41, 325–330 (1982).
[CrossRef]

Eickhoff, M. L.

M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

Goncharov, A. N.

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

Gustafson, E. K.

Hall, J. L.

F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, Ch. J. Bordé and J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18, 379–387 (2001).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

F.-L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

F.-L. Hong, J. Ishikawa, T. H. Yoon, L.-S. Ma, J. Ye, and J. L. Hall, “A portable I2-stabilized Nd:YAG laser for wavelength standards at 532 nm and 1064 nm,” in Recent Developments in Optical Gauge Block Metrology, Proc. SPIE 3477, 2–10 (1998).
[CrossRef]

M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

Hänsch, T. W.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Himbert, M.

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

Holzwarth, R.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Hong, F.-L.

Y. Zhang, J. Ishikawa, and F.-L. Hong, “Accurate frequency atlas of molecular iodine near 532 nm measured by an optical frequency comb generator,” Opt. Commun. 200, 209–215 (2001).
[CrossRef]

F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, Ch. J. Bordé and J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18, 379–387 (2001).
[CrossRef]

F.-L. Hong, Yun Zhang, J. Ishikawa, Y. Bitou, A. Onae, J. Yoda, and H. Matsumoto, “Frequency reproducibility of I2-stabilized Nd:YAG lasers,” in Laser Frequency Stabilization, Standards, Measurement, and Applications, Proc. SPIE 4269, 143–154 (2001).
[CrossRef]

F.-L. Hong, J. Ishikawa, Z.-Y. Bi, J. Zhang, A. Onae, and J. Yoda, “A portable I2-stabilized Nd:YAG laser for international comparisons,” IEEE Trans. Instrum. Meas. 50, 486–489 (2001).
[CrossRef]

F.-L. Hong, J. Ishikawa, A. Onae, and H. Matsumoto, “Rotation dependence of the excited-state electric quadrupole hyperfine interaction by high-resolution laser spectroscopy of 127I2,” J. Opt. Soc. Am. B 18, 1416–1422 (2001).
[CrossRef]

F.-L. Hong and J. Ishikawa, “Hyperfine structures of the R(122)35–0 and P(84)33–0 transitions of 127I2 near 532 nm,” Opt. Commun. 183, 101–108 (2000).
[CrossRef]

F.-L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[CrossRef]

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

F.-L. Hong, J. Ishikawa, T. H. Yoon, L.-S. Ma, J. Ye, and J. L. Hall, “A portable I2-stabilized Nd:YAG laser for wavelength standards at 532 nm and 1064 nm,” in Recent Developments in Optical Gauge Block Metrology, Proc. SPIE 3477, 2–10 (1998).
[CrossRef]

Ishikawa, J.

F.-L. Hong, J. Ishikawa, A. Onae, and H. Matsumoto, “Rotation dependence of the excited-state electric quadrupole hyperfine interaction by high-resolution laser spectroscopy of 127I2,” J. Opt. Soc. Am. B 18, 1416–1422 (2001).
[CrossRef]

F.-L. Hong, J. Ishikawa, Z.-Y. Bi, J. Zhang, A. Onae, and J. Yoda, “A portable I2-stabilized Nd:YAG laser for international comparisons,” IEEE Trans. Instrum. Meas. 50, 486–489 (2001).
[CrossRef]

F.-L. Hong, Yun Zhang, J. Ishikawa, Y. Bitou, A. Onae, J. Yoda, and H. Matsumoto, “Frequency reproducibility of I2-stabilized Nd:YAG lasers,” in Laser Frequency Stabilization, Standards, Measurement, and Applications, Proc. SPIE 4269, 143–154 (2001).
[CrossRef]

Y. Zhang, J. Ishikawa, and F.-L. Hong, “Accurate frequency atlas of molecular iodine near 532 nm measured by an optical frequency comb generator,” Opt. Commun. 200, 209–215 (2001).
[CrossRef]

F.-L. Hong and J. Ishikawa, “Hyperfine structures of the R(122)35–0 and P(84)33–0 transitions of 127I2 near 532 nm,” Opt. Commun. 183, 101–108 (2000).
[CrossRef]

F.-L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[CrossRef]

F.-L. Hong, J. Ishikawa, T. H. Yoon, L.-S. Ma, J. Ye, and J. L. Hall, “A portable I2-stabilized Nd:YAG laser for wavelength standards at 532 nm and 1064 nm,” in Recent Developments in Optical Gauge Block Metrology, Proc. SPIE 3477, 2–10 (1998).
[CrossRef]

Jones, D. J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Kourogi, M.

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

Ma, L.-S.

F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, Ch. J. Bordé and J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18, 379–387 (2001).
[CrossRef]

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

F.-L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

F.-L. Hong, J. Ishikawa, T. H. Yoon, L.-S. Ma, J. Ye, and J. L. Hall, “A portable I2-stabilized Nd:YAG laser for wavelength standards at 532 nm and 1064 nm,” in Recent Developments in Optical Gauge Block Metrology, Proc. SPIE 3477, 2–10 (1998).
[CrossRef]

Matsumoto, H.

F.-L. Hong, J. Ishikawa, A. Onae, and H. Matsumoto, “Rotation dependence of the excited-state electric quadrupole hyperfine interaction by high-resolution laser spectroscopy of 127I2,” J. Opt. Soc. Am. B 18, 1416–1422 (2001).
[CrossRef]

F.-L. Hong, Yun Zhang, J. Ishikawa, Y. Bitou, A. Onae, J. Yoda, and H. Matsumoto, “Frequency reproducibility of I2-stabilized Nd:YAG lasers,” in Laser Frequency Stabilization, Standards, Measurement, and Applications, Proc. SPIE 4269, 143–154 (2001).
[CrossRef]

Mercier, B.

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

Nakagawa, K.

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

Ohtsu, M.

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

Onae, A.

F.-L. Hong, J. Ishikawa, A. Onae, and H. Matsumoto, “Rotation dependence of the excited-state electric quadrupole hyperfine interaction by high-resolution laser spectroscopy of 127I2,” J. Opt. Soc. Am. B 18, 1416–1422 (2001).
[CrossRef]

F.-L. Hong, Yun Zhang, J. Ishikawa, Y. Bitou, A. Onae, J. Yoda, and H. Matsumoto, “Frequency reproducibility of I2-stabilized Nd:YAG lasers,” in Laser Frequency Stabilization, Standards, Measurement, and Applications, Proc. SPIE 4269, 143–154 (2001).
[CrossRef]

F.-L. Hong, J. Ishikawa, Z.-Y. Bi, J. Zhang, A. Onae, and J. Yoda, “A portable I2-stabilized Nd:YAG laser for international comparisons,” IEEE Trans. Instrum. Meas. 50, 486–489 (2001).
[CrossRef]

Pfister, O.

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

Picard, S.

Quinn, T. J.

T. J. Quinn, “Practical realization of the definition of the metre (1997),” Metrologia 36, 211–244 (1999).
[CrossRef]

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Robertsson, L.

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

Schiller, S.

Shirley, J. H.

Taubman, M.

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

Tiemann, B.

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

Udem, T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Vigué, J.

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å: I-Main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

Wallerand, J.-P.

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

Windeler, R. S.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Ye, J.

F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, Ch. J. Bordé and J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18, 379–387 (2001).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

F.-L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

F.-L. Hong, J. Ishikawa, T. H. Yoon, L.-S. Ma, J. Ye, and J. L. Hall, “A portable I2-stabilized Nd:YAG laser for wavelength standards at 532 nm and 1064 nm,” in Recent Developments in Optical Gauge Block Metrology, Proc. SPIE 3477, 2–10 (1998).
[CrossRef]

Yoda, J.

F.-L. Hong, J. Ishikawa, Z.-Y. Bi, J. Zhang, A. Onae, and J. Yoda, “A portable I2-stabilized Nd:YAG laser for international comparisons,” IEEE Trans. Instrum. Meas. 50, 486–489 (2001).
[CrossRef]

F.-L. Hong, Yun Zhang, J. Ishikawa, Y. Bitou, A. Onae, J. Yoda, and H. Matsumoto, “Frequency reproducibility of I2-stabilized Nd:YAG lasers,” in Laser Frequency Stabilization, Standards, Measurement, and Applications, Proc. SPIE 4269, 143–154 (2001).
[CrossRef]

F.-L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[CrossRef]

Yoon, T. H.

F.-L. Hong, J. Ishikawa, T. H. Yoon, L.-S. Ma, J. Ye, and J. L. Hall, “A portable I2-stabilized Nd:YAG laser for wavelength standards at 532 nm and 1064 nm,” in Recent Developments in Optical Gauge Block Metrology, Proc. SPIE 3477, 2–10 (1998).
[CrossRef]

Zhang, J.

F.-L. Hong, J. Ishikawa, Z.-Y. Bi, J. Zhang, A. Onae, and J. Yoda, “A portable I2-stabilized Nd:YAG laser for international comparisons,” IEEE Trans. Instrum. Meas. 50, 486–489 (2001).
[CrossRef]

Zhang, Y.

Y. Zhang, J. Ishikawa, and F.-L. Hong, “Accurate frequency atlas of molecular iodine near 532 nm measured by an optical frequency comb generator,” Opt. Commun. 200, 209–215 (2001).
[CrossRef]

Zhang, Yun

F.-L. Hong, Yun Zhang, J. Ishikawa, Y. Bitou, A. Onae, J. Yoda, and H. Matsumoto, “Frequency reproducibility of I2-stabilized Nd:YAG lasers,” in Laser Frequency Stabilization, Standards, Measurement, and Applications, Proc. SPIE 4269, 143–154 (2001).
[CrossRef]

Eur. Phys. J. D (1)

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

IEEE J. Quantum Electron. (1)

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

IEEE Trans. Instrum. Meas. (5)

M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

F.-L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[CrossRef]

F.-L. Hong, J. Ishikawa, Z.-Y. Bi, J. Zhang, A. Onae, and J. Yoda, “A portable I2-stabilized Nd:YAG laser for international comparisons,” IEEE Trans. Instrum. Meas. 50, 486–489 (2001).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. (Paris) (1)

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å: I-Main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

Metrologia (1)

T. J. Quinn, “Practical realization of the definition of the metre (1997),” Metrologia 36, 211–244 (1999).
[CrossRef]

Opt. Commun. (4)

A. Arie and R. L. Byer, “The hyperfine structure of the 127I2 P(119) 35–0 transition,” Opt. Commun. 111, 253–258 (1994).
[CrossRef]

F.-L. Hong and J. Ishikawa, “Hyperfine structures of the R(122)35–0 and P(84)33–0 transitions of 127I2 near 532 nm,” Opt. Commun. 183, 101–108 (2000).
[CrossRef]

G. Camy, C. J. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturation beam,” Opt. Commun. 41, 325–330 (1982).
[CrossRef]

Y. Zhang, J. Ishikawa, and F.-L. Hong, “Accurate frequency atlas of molecular iodine near 532 nm measured by an optical frequency comb generator,” Opt. Commun. 200, 209–215 (2001).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Proc. IEEE (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

Proc. SPIE (2)

F.-L. Hong, Yun Zhang, J. Ishikawa, Y. Bitou, A. Onae, J. Yoda, and H. Matsumoto, “Frequency reproducibility of I2-stabilized Nd:YAG lasers,” in Laser Frequency Stabilization, Standards, Measurement, and Applications, Proc. SPIE 4269, 143–154 (2001).
[CrossRef]

F.-L. Hong, J. Ishikawa, T. H. Yoon, L.-S. Ma, J. Ye, and J. L. Hall, “A portable I2-stabilized Nd:YAG laser for wavelength standards at 532 nm and 1064 nm,” in Recent Developments in Optical Gauge Block Metrology, Proc. SPIE 3477, 2–10 (1998).
[CrossRef]

Other (1)

S. Gerstenkorn and P. Luc, Atlas Du Spectre D’Absorption de la Molecule D’Iode (Editions de CNRS, Paris, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for the heterodyne beat measurement of two iodine-stabilized Nd:YAG lasers bridged by an OFCG. EOM is an electro-optic modulator, and APD is an avalanche photodiode.

Fig. 2
Fig. 2

Modulation-transfer signals of the R(87)330 transition. All the 21 components are isolated from each other. The S/N ratio of the a1 component is ∼900 in a 10-Hz bandwidth.

Fig. 3
Fig. 3

Modulation-transfer signals of the R(145)370 transition. The a8 and a9 components and the a11 and a12 components are very close to each other, respectively. Several very weak lines were observed in the spectra (example is expanded and indicated in the circle), which may belong to other rovibration transitions.

Fig. 4
Fig. 4

Modulation-transfer signals of the P(132)360 transition. All the 15 components are isolated from each other.

Fig. 5
Fig. 5

Root Allan variance calculated from the beat frequency measured between two lasers locked to the a1 component of the R(57)320 and R(87)330 transitions, respectively. The Allan variance was 1.1×10-13 for a 1.5-s averaging time, improving after an 100-s averaging time toward 2×10-14 (corresponding to a frequency deviation of ∼10 Hz).

Fig. 6
Fig. 6

(a) Hyperfine constant d as a function of the vibrational quantum number ν. Solid dots are calculated values, and the solid curve indicates the fitting result with (ν+1/2) and (ν+1/2)2 terms. (b) Hyperfine constants δ as a function of ν. Solid dots are calculated values, and the solid curve indicates the fitting result with the (ν+1/2) term.

Tables (7)

Tables Icon

Table 1 Rovibrational Transitions of Molecular Iodine Near 532 nm

Tables Icon

Table 2 Observed and Calculated Hyperfine Splittings of the R(87)330 Transitiona

Tables Icon

Table 3 Observed and Calculated Hyperfine Splittings of the R(145)370 Transitiona

Tables Icon

Table 4 Observed and Calculated Hyperfine Splittings of the P(132)360 Transitiona

Tables Icon

Table 5 Fitted Hyperfine Constants

Tables Icon

Table 6 Hyperfine Constants Δd and Δδ

Tables Icon

Table 7 Vibration Dependence of Hyperfine Constants Δd, d, Δδ, and δ

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

eQq(J)=-2452.556(2)-0.000164(5)J(J+1)-0.000000005(2)J2(J+1)2 MHz.
eQq(J)=-544.49(14)-0.0002110(43)J(J+1) MHz.
Hhfs=eQq×HEQ+C×HSR+d×HTSS+δ×HSSS,
d=1.52(2) kHz,
δ=3.70(2) kHz.
d(ν)=283.6(852)-13.43(450)(ν+1/2)+0.1057(588)(ν+1/2)2 kHz.
δ(ν)=-30.6(19)+0.713(52)(ν+1/2) kHz.
f=563 260 223 514(5) kHz+finterval+fHPS,

Metrics