After the submission of this manuscript, A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, reported the quantum reconstruction of a single photon Fock state, using a laser repetition rate of 800 kHz, in “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402-1–4 (2001).

[CrossRef]

M. Crispino, G. Di Giuseppe, F. De Martini, P. Mataloni, and H. Kanatsoulis, “Towards a Fock-states tomographic reconstruction,” Fortschr. Phys. 48, 589–598 (2000).

[CrossRef]

G. Breitenbach, S. Schiller, and J. Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471–475 (1997).

[CrossRef]

U. Leonhardt, M. Munroe, T. Kiss, Th. Richter, and M. G. Raymer, “Sampling of photon statistics and density matrix using homodyne detection,” Opt. Commun. 127, 144–160 (1996).

[CrossRef]

G. M. D’Ariano, C. Macchiavello, and M. G. A. Paris, “Detection of the density matrix through optical homodyne tomography without filtered back projection,” Phys. Rev. A 50, 4298–4302 (1994).

[CrossRef]
[PubMed]

D. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner function distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993).

[CrossRef]
[PubMed]

K. Vogel and H. Risken, “Determination of quasiprobability distribution in terms of probability distributions for rotated quadrature phase,” Phys. Rev. A 40, 2847–2849 (1989).

[CrossRef]
[PubMed]

D. W. Allan, “Statistics of atomic frequency standard,” Proc. IEEE 54, 221–230 (1966).

[CrossRef]

After the submission of this manuscript, A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, reported the quantum reconstruction of a single photon Fock state, using a laser repetition rate of 800 kHz, in “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402-1–4 (2001).

[CrossRef]

D. W. Allan, “Statistics of atomic frequency standard,” Proc. IEEE 54, 221–230 (1966).

[CrossRef]

A. Montina and F. T. Arecchi, “Toward an optical evidence of quantum interference between macroscopically different states,” Phys. Rev. A 58, 3472–3476 (1998).

[CrossRef]

D. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner function distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993).

[CrossRef]
[PubMed]

After the submission of this manuscript, A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, reported the quantum reconstruction of a single photon Fock state, using a laser repetition rate of 800 kHz, in “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402-1–4 (2001).

[CrossRef]

G. Breitenbach, S. Schiller, and J. Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471–475 (1997).

[CrossRef]

M. Crispino, G. Di Giuseppe, F. De Martini, P. Mataloni, and H. Kanatsoulis, “Towards a Fock-states tomographic reconstruction,” Fortschr. Phys. 48, 589–598 (2000).

[CrossRef]

M. Vasilyev, S.-K. Choi, P. Kumar, and G. M. D’Ariano, “Investigation of the photon statistics of parametric fluorescence in a traveling-wave parametric amplifier by means of self-homodyne tomography,” Opt. Lett. 23, 1393–1395 (1998).

[CrossRef]

G. M. D’Ariano, C. Macchiavello, and M. G. A. Paris, “Detection of the density matrix through optical homodyne tomography without filtered back projection,” Phys. Rev. A 50, 4298–4302 (1994).

[CrossRef]
[PubMed]

M. Crispino, G. Di Giuseppe, F. De Martini, P. Mataloni, and H. Kanatsoulis, “Towards a Fock-states tomographic reconstruction,” Fortschr. Phys. 48, 589–598 (2000).

[CrossRef]

M. Crispino, G. Di Giuseppe, F. De Martini, P. Mataloni, and H. Kanatsoulis, “Towards a Fock-states tomographic reconstruction,” Fortschr. Phys. 48, 589–598 (2000).

[CrossRef]

S. Reynaud, A. Heidmann, E. Giacobono, and C. Fabre, “Quantum fluctuations in optical systems,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1992), Vol. 30, pp. 1–85.

D. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner function distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993).

[CrossRef]
[PubMed]

S. Reynaud, A. Heidmann, E. Giacobono, and C. Fabre, “Quantum fluctuations in optical systems,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1992), Vol. 30, pp. 1–85.

After the submission of this manuscript, A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, reported the quantum reconstruction of a single photon Fock state, using a laser repetition rate of 800 kHz, in “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402-1–4 (2001).

[CrossRef]

S. Reynaud, A. Heidmann, E. Giacobono, and C. Fabre, “Quantum fluctuations in optical systems,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1992), Vol. 30, pp. 1–85.

M. Crispino, G. Di Giuseppe, F. De Martini, P. Mataloni, and H. Kanatsoulis, “Towards a Fock-states tomographic reconstruction,” Fortschr. Phys. 48, 589–598 (2000).

[CrossRef]

U. Leonhardt, M. Munroe, T. Kiss, Th. Richter, and M. G. Raymer, “Sampling of photon statistics and density matrix using homodyne detection,” Opt. Commun. 127, 144–160 (1996).

[CrossRef]

U. Leonhardt, M. Munroe, T. Kiss, Th. Richter, and M. G. Raymer, “Sampling of photon statistics and density matrix using homodyne detection,” Opt. Commun. 127, 144–160 (1996).

[CrossRef]

U. Leonhardt, Measuring the Quantum State of Light (Cambridge U. Press, Cambridge, 1997).

After the submission of this manuscript, A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, reported the quantum reconstruction of a single photon Fock state, using a laser repetition rate of 800 kHz, in “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402-1–4 (2001).

[CrossRef]

G. M. D’Ariano, C. Macchiavello, and M. G. A. Paris, “Detection of the density matrix through optical homodyne tomography without filtered back projection,” Phys. Rev. A 50, 4298–4302 (1994).

[CrossRef]
[PubMed]

M. Crispino, G. Di Giuseppe, F. De Martini, P. Mataloni, and H. Kanatsoulis, “Towards a Fock-states tomographic reconstruction,” Fortschr. Phys. 48, 589–598 (2000).

[CrossRef]

After the submission of this manuscript, A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, reported the quantum reconstruction of a single photon Fock state, using a laser repetition rate of 800 kHz, in “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402-1–4 (2001).

[CrossRef]

G. Breitenbach, S. Schiller, and J. Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471–475 (1997).

[CrossRef]

A. Montina and F. T. Arecchi, “Toward an optical evidence of quantum interference between macroscopically different states,” Phys. Rev. A 58, 3472–3476 (1998).

[CrossRef]

U. Leonhardt, M. Munroe, T. Kiss, Th. Richter, and M. G. Raymer, “Sampling of photon statistics and density matrix using homodyne detection,” Opt. Commun. 127, 144–160 (1996).

[CrossRef]

G. M. D’Ariano, C. Macchiavello, and M. G. A. Paris, “Detection of the density matrix through optical homodyne tomography without filtered back projection,” Phys. Rev. A 50, 4298–4302 (1994).

[CrossRef]
[PubMed]

U. Leonhardt, M. Munroe, T. Kiss, Th. Richter, and M. G. Raymer, “Sampling of photon statistics and density matrix using homodyne detection,” Opt. Commun. 127, 144–160 (1996).

[CrossRef]

D. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner function distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993).

[CrossRef]
[PubMed]

S. Reynaud, A. Heidmann, E. Giacobono, and C. Fabre, “Quantum fluctuations in optical systems,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1992), Vol. 30, pp. 1–85.

U. Leonhardt, M. Munroe, T. Kiss, Th. Richter, and M. G. Raymer, “Sampling of photon statistics and density matrix using homodyne detection,” Opt. Commun. 127, 144–160 (1996).

[CrossRef]

K. Vogel and H. Risken, “Determination of quasiprobability distribution in terms of probability distributions for rotated quadrature phase,” Phys. Rev. A 40, 2847–2849 (1989).

[CrossRef]
[PubMed]

After the submission of this manuscript, A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, reported the quantum reconstruction of a single photon Fock state, using a laser repetition rate of 800 kHz, in “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402-1–4 (2001).

[CrossRef]

G. Breitenbach, S. Schiller, and J. Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471–475 (1997).

[CrossRef]

D. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner function distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993).

[CrossRef]
[PubMed]

K. Vogel and H. Risken, “Determination of quasiprobability distribution in terms of probability distributions for rotated quadrature phase,” Phys. Rev. A 40, 2847–2849 (1989).

[CrossRef]
[PubMed]

M. Crispino, G. Di Giuseppe, F. De Martini, P. Mataloni, and H. Kanatsoulis, “Towards a Fock-states tomographic reconstruction,” Fortschr. Phys. 48, 589–598 (2000).

[CrossRef]

G. Breitenbach, S. Schiller, and J. Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471–475 (1997).

[CrossRef]

U. Leonhardt, M. Munroe, T. Kiss, Th. Richter, and M. G. Raymer, “Sampling of photon statistics and density matrix using homodyne detection,” Opt. Commun. 127, 144–160 (1996).

[CrossRef]

G. M. D’Ariano, C. Macchiavello, and M. G. A. Paris, “Detection of the density matrix through optical homodyne tomography without filtered back projection,” Phys. Rev. A 50, 4298–4302 (1994).

[CrossRef]
[PubMed]

K. Vogel and H. Risken, “Determination of quasiprobability distribution in terms of probability distributions for rotated quadrature phase,” Phys. Rev. A 40, 2847–2849 (1989).

[CrossRef]
[PubMed]

A. Montina and F. T. Arecchi, “Toward an optical evidence of quantum interference between macroscopically different states,” Phys. Rev. A 58, 3472–3476 (1998).

[CrossRef]

After the submission of this manuscript, A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, reported the quantum reconstruction of a single photon Fock state, using a laser repetition rate of 800 kHz, in “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402-1–4 (2001).

[CrossRef]

D. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner function distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993).

[CrossRef]
[PubMed]

D. W. Allan, “Statistics of atomic frequency standard,” Proc. IEEE 54, 221–230 (1966).

[CrossRef]

S. Reynaud, A. Heidmann, E. Giacobono, and C. Fabre, “Quantum fluctuations in optical systems,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1992), Vol. 30, pp. 1–85.

U. Leonhardt, Measuring the Quantum State of Light (Cambridge U. Press, Cambridge, 1997).