Abstract

The study of a diffractive device for polarimetric applications is reported. The device consists of a diffraction grating recorded by two interfering opposite circularly polarized beams and is based on a Langmuir–Blodgett film of an azo-compound material. This material provides long-time stability and high photoinduced birefringence that makes the grating highly diffraction efficient. We show how polarization gratings permanently stored in these films are suitable for applications as photopolarimeter components.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
    [CrossRef]
  2. T. Huang and K. H. Wagner, “Holographic diffraction in photoanisotropic organic materials,” J. Opt. Soc. Am. A 10, 306–315 (1993).
    [CrossRef]
  3. L. Nikolova, T. Todorov, P. Sharlandjiev, and S. Stoyanov, “Photoinduced anisotropy: new photopolarimetric setup for real-time measurements,” Appl. Opt. 31, 6698–6701 (1992), and references therein.
    [CrossRef] [PubMed]
  4. T. Todorov and L. Nikolova, “Spectrophotopolarimeter: fast simultaneous real-time measurement of light parameters,” Opt. Lett. 17, 358–359 (1992).
    [CrossRef] [PubMed]
  5. L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
    [CrossRef] [PubMed]
  6. N. C. R. Holme, L. Nikolova, S. Hvilsted, and P. S. Ramanujam, “An analysis of the anisotropic and topographic gratings in a side chain liquid-crystalline azobenzene polyester,” Appl. Phys. Lett. 70, 1518–1521 (1997).
    [CrossRef]
  7. I. Naydenova, L. Nikolova, T. Todorov, N. C. R. Holme, S. Hvilsted, and P. S. Ramanujam, “Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters,” J. Opt. Soc. Am. B 15, 1257–1265 (1998).
    [CrossRef]
  8. L. Nikolova, L. Nedelchev, T. Todorov, Tz. Petrova, N. Tomova, V. Dragostinova, S. Hvilsted, and P. S. Ramanujam, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett. 77, 657–659 (2000).
    [CrossRef]
  9. F. Lagugnè Labarthet, P. Rochon, and A. Natanshon, “Polarization analysis of diffracted orders from a birefringence grating recorded on azobenzene containing polymer,” Appl. Phys. Lett. 75, 1377–1379 (1999), and references therein.
    [CrossRef]
  10. L. M. Blinov, G. Cipparrone, and S. P. Palto, “Phase grating recording on photosensitive Langmuir–Blodgett films,” J. Nonlin. Opt. Phys. Mater. 7, 369–383 (1998), and references therein.
    [CrossRef]
  11. F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24, 584–586 (1999).
    [CrossRef]
  12. P. Hariharan and B. C. Sanders, “Quantum phenomena in optical interferometry,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1996), Vol. XXXVI, pp. 49–128.
  13. G. Cipparrone, A. Mazzulla, S. P. Palto, S. G. Yudin, and L. M. Blinov, “Permanent polarization gratings in photosensitive Langmuir–Blodgett films,” Appl. Phys. Lett. 77, 2107–2109 (2000).
    [CrossRef]
  14. S. P. Palto and G. Durand, “Friction model of photo-induced reorientation of optical axis in photo-oriented Langmuir–Blodgett films,” J. Phys. II (Paris) 5, 963–978 (1995).
  15. R. M. A. Azzam, E. Masetti, I. M. Elminyawi, and F. G. Grosz, “Construction, calibration, and testing of a four-detector photopolarimeter,” Rev. Sci. Instrum. 59, 84–88 (1988).
    [CrossRef]

2000 (2)

L. Nikolova, L. Nedelchev, T. Todorov, Tz. Petrova, N. Tomova, V. Dragostinova, S. Hvilsted, and P. S. Ramanujam, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett. 77, 657–659 (2000).
[CrossRef]

G. Cipparrone, A. Mazzulla, S. P. Palto, S. G. Yudin, and L. M. Blinov, “Permanent polarization gratings in photosensitive Langmuir–Blodgett films,” Appl. Phys. Lett. 77, 2107–2109 (2000).
[CrossRef]

1999 (2)

F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24, 584–586 (1999).
[CrossRef]

F. Lagugnè Labarthet, P. Rochon, and A. Natanshon, “Polarization analysis of diffracted orders from a birefringence grating recorded on azobenzene containing polymer,” Appl. Phys. Lett. 75, 1377–1379 (1999), and references therein.
[CrossRef]

1998 (2)

L. M. Blinov, G. Cipparrone, and S. P. Palto, “Phase grating recording on photosensitive Langmuir–Blodgett films,” J. Nonlin. Opt. Phys. Mater. 7, 369–383 (1998), and references therein.
[CrossRef]

I. Naydenova, L. Nikolova, T. Todorov, N. C. R. Holme, S. Hvilsted, and P. S. Ramanujam, “Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters,” J. Opt. Soc. Am. B 15, 1257–1265 (1998).
[CrossRef]

1997 (1)

N. C. R. Holme, L. Nikolova, S. Hvilsted, and P. S. Ramanujam, “An analysis of the anisotropic and topographic gratings in a side chain liquid-crystalline azobenzene polyester,” Appl. Phys. Lett. 70, 1518–1521 (1997).
[CrossRef]

1996 (1)

1995 (1)

S. P. Palto and G. Durand, “Friction model of photo-induced reorientation of optical axis in photo-oriented Langmuir–Blodgett films,” J. Phys. II (Paris) 5, 963–978 (1995).

1993 (1)

1992 (2)

1988 (1)

R. M. A. Azzam, E. Masetti, I. M. Elminyawi, and F. G. Grosz, “Construction, calibration, and testing of a four-detector photopolarimeter,” Rev. Sci. Instrum. 59, 84–88 (1988).
[CrossRef]

1984 (1)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[CrossRef]

Andruzzi, F.

Azzam, R. M. A.

R. M. A. Azzam, E. Masetti, I. M. Elminyawi, and F. G. Grosz, “Construction, calibration, and testing of a four-detector photopolarimeter,” Rev. Sci. Instrum. 59, 84–88 (1988).
[CrossRef]

Blinov, L. M.

G. Cipparrone, A. Mazzulla, S. P. Palto, S. G. Yudin, and L. M. Blinov, “Permanent polarization gratings in photosensitive Langmuir–Blodgett films,” Appl. Phys. Lett. 77, 2107–2109 (2000).
[CrossRef]

L. M. Blinov, G. Cipparrone, and S. P. Palto, “Phase grating recording on photosensitive Langmuir–Blodgett films,” J. Nonlin. Opt. Phys. Mater. 7, 369–383 (1998), and references therein.
[CrossRef]

Cipparrone, G.

G. Cipparrone, A. Mazzulla, S. P. Palto, S. G. Yudin, and L. M. Blinov, “Permanent polarization gratings in photosensitive Langmuir–Blodgett films,” Appl. Phys. Lett. 77, 2107–2109 (2000).
[CrossRef]

L. M. Blinov, G. Cipparrone, and S. P. Palto, “Phase grating recording on photosensitive Langmuir–Blodgett films,” J. Nonlin. Opt. Phys. Mater. 7, 369–383 (1998), and references therein.
[CrossRef]

Dragostinova, V.

L. Nikolova, L. Nedelchev, T. Todorov, Tz. Petrova, N. Tomova, V. Dragostinova, S. Hvilsted, and P. S. Ramanujam, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett. 77, 657–659 (2000).
[CrossRef]

Durand, G.

S. P. Palto and G. Durand, “Friction model of photo-induced reorientation of optical axis in photo-oriented Langmuir–Blodgett films,” J. Phys. II (Paris) 5, 963–978 (1995).

Elminyawi, I. M.

R. M. A. Azzam, E. Masetti, I. M. Elminyawi, and F. G. Grosz, “Construction, calibration, and testing of a four-detector photopolarimeter,” Rev. Sci. Instrum. 59, 84–88 (1988).
[CrossRef]

Gori, F.

Grosz, F. G.

R. M. A. Azzam, E. Masetti, I. M. Elminyawi, and F. G. Grosz, “Construction, calibration, and testing of a four-detector photopolarimeter,” Rev. Sci. Instrum. 59, 84–88 (1988).
[CrossRef]

Holme, N. C. R.

I. Naydenova, L. Nikolova, T. Todorov, N. C. R. Holme, S. Hvilsted, and P. S. Ramanujam, “Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters,” J. Opt. Soc. Am. B 15, 1257–1265 (1998).
[CrossRef]

N. C. R. Holme, L. Nikolova, S. Hvilsted, and P. S. Ramanujam, “An analysis of the anisotropic and topographic gratings in a side chain liquid-crystalline azobenzene polyester,” Appl. Phys. Lett. 70, 1518–1521 (1997).
[CrossRef]

Huang, T.

Hvilsted, S.

L. Nikolova, L. Nedelchev, T. Todorov, Tz. Petrova, N. Tomova, V. Dragostinova, S. Hvilsted, and P. S. Ramanujam, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett. 77, 657–659 (2000).
[CrossRef]

I. Naydenova, L. Nikolova, T. Todorov, N. C. R. Holme, S. Hvilsted, and P. S. Ramanujam, “Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters,” J. Opt. Soc. Am. B 15, 1257–1265 (1998).
[CrossRef]

N. C. R. Holme, L. Nikolova, S. Hvilsted, and P. S. Ramanujam, “An analysis of the anisotropic and topographic gratings in a side chain liquid-crystalline azobenzene polyester,” Appl. Phys. Lett. 70, 1518–1521 (1997).
[CrossRef]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
[CrossRef] [PubMed]

Ivanov, M.

Lagugnè Labarthet, F.

F. Lagugnè Labarthet, P. Rochon, and A. Natanshon, “Polarization analysis of diffracted orders from a birefringence grating recorded on azobenzene containing polymer,” Appl. Phys. Lett. 75, 1377–1379 (1999), and references therein.
[CrossRef]

Masetti, E.

R. M. A. Azzam, E. Masetti, I. M. Elminyawi, and F. G. Grosz, “Construction, calibration, and testing of a four-detector photopolarimeter,” Rev. Sci. Instrum. 59, 84–88 (1988).
[CrossRef]

Mazzulla, A.

G. Cipparrone, A. Mazzulla, S. P. Palto, S. G. Yudin, and L. M. Blinov, “Permanent polarization gratings in photosensitive Langmuir–Blodgett films,” Appl. Phys. Lett. 77, 2107–2109 (2000).
[CrossRef]

Natanshon, A.

F. Lagugnè Labarthet, P. Rochon, and A. Natanshon, “Polarization analysis of diffracted orders from a birefringence grating recorded on azobenzene containing polymer,” Appl. Phys. Lett. 75, 1377–1379 (1999), and references therein.
[CrossRef]

Naydenova, I.

Nedelchev, L.

L. Nikolova, L. Nedelchev, T. Todorov, Tz. Petrova, N. Tomova, V. Dragostinova, S. Hvilsted, and P. S. Ramanujam, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett. 77, 657–659 (2000).
[CrossRef]

Nikolova, L.

L. Nikolova, L. Nedelchev, T. Todorov, Tz. Petrova, N. Tomova, V. Dragostinova, S. Hvilsted, and P. S. Ramanujam, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett. 77, 657–659 (2000).
[CrossRef]

I. Naydenova, L. Nikolova, T. Todorov, N. C. R. Holme, S. Hvilsted, and P. S. Ramanujam, “Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters,” J. Opt. Soc. Am. B 15, 1257–1265 (1998).
[CrossRef]

N. C. R. Holme, L. Nikolova, S. Hvilsted, and P. S. Ramanujam, “An analysis of the anisotropic and topographic gratings in a side chain liquid-crystalline azobenzene polyester,” Appl. Phys. Lett. 70, 1518–1521 (1997).
[CrossRef]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
[CrossRef] [PubMed]

T. Todorov and L. Nikolova, “Spectrophotopolarimeter: fast simultaneous real-time measurement of light parameters,” Opt. Lett. 17, 358–359 (1992).
[CrossRef] [PubMed]

L. Nikolova, T. Todorov, P. Sharlandjiev, and S. Stoyanov, “Photoinduced anisotropy: new photopolarimetric setup for real-time measurements,” Appl. Opt. 31, 6698–6701 (1992), and references therein.
[CrossRef] [PubMed]

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[CrossRef]

Palto, S. P.

G. Cipparrone, A. Mazzulla, S. P. Palto, S. G. Yudin, and L. M. Blinov, “Permanent polarization gratings in photosensitive Langmuir–Blodgett films,” Appl. Phys. Lett. 77, 2107–2109 (2000).
[CrossRef]

L. M. Blinov, G. Cipparrone, and S. P. Palto, “Phase grating recording on photosensitive Langmuir–Blodgett films,” J. Nonlin. Opt. Phys. Mater. 7, 369–383 (1998), and references therein.
[CrossRef]

S. P. Palto and G. Durand, “Friction model of photo-induced reorientation of optical axis in photo-oriented Langmuir–Blodgett films,” J. Phys. II (Paris) 5, 963–978 (1995).

Petrova, Tz.

L. Nikolova, L. Nedelchev, T. Todorov, Tz. Petrova, N. Tomova, V. Dragostinova, S. Hvilsted, and P. S. Ramanujam, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett. 77, 657–659 (2000).
[CrossRef]

Ramanujam, P. S.

L. Nikolova, L. Nedelchev, T. Todorov, Tz. Petrova, N. Tomova, V. Dragostinova, S. Hvilsted, and P. S. Ramanujam, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett. 77, 657–659 (2000).
[CrossRef]

I. Naydenova, L. Nikolova, T. Todorov, N. C. R. Holme, S. Hvilsted, and P. S. Ramanujam, “Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters,” J. Opt. Soc. Am. B 15, 1257–1265 (1998).
[CrossRef]

N. C. R. Holme, L. Nikolova, S. Hvilsted, and P. S. Ramanujam, “An analysis of the anisotropic and topographic gratings in a side chain liquid-crystalline azobenzene polyester,” Appl. Phys. Lett. 70, 1518–1521 (1997).
[CrossRef]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
[CrossRef] [PubMed]

Rochon, P.

F. Lagugnè Labarthet, P. Rochon, and A. Natanshon, “Polarization analysis of diffracted orders from a birefringence grating recorded on azobenzene containing polymer,” Appl. Phys. Lett. 75, 1377–1379 (1999), and references therein.
[CrossRef]

Sharlandjiev, P.

Stoyanov, S.

Todorov, T.

Tomova, N.

L. Nikolova, L. Nedelchev, T. Todorov, Tz. Petrova, N. Tomova, V. Dragostinova, S. Hvilsted, and P. S. Ramanujam, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett. 77, 657–659 (2000).
[CrossRef]

Wagner, K. H.

Yudin, S. G.

G. Cipparrone, A. Mazzulla, S. P. Palto, S. G. Yudin, and L. M. Blinov, “Permanent polarization gratings in photosensitive Langmuir–Blodgett films,” Appl. Phys. Lett. 77, 2107–2109 (2000).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

N. C. R. Holme, L. Nikolova, S. Hvilsted, and P. S. Ramanujam, “An analysis of the anisotropic and topographic gratings in a side chain liquid-crystalline azobenzene polyester,” Appl. Phys. Lett. 70, 1518–1521 (1997).
[CrossRef]

G. Cipparrone, A. Mazzulla, S. P. Palto, S. G. Yudin, and L. M. Blinov, “Permanent polarization gratings in photosensitive Langmuir–Blodgett films,” Appl. Phys. Lett. 77, 2107–2109 (2000).
[CrossRef]

L. Nikolova, L. Nedelchev, T. Todorov, Tz. Petrova, N. Tomova, V. Dragostinova, S. Hvilsted, and P. S. Ramanujam, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett. 77, 657–659 (2000).
[CrossRef]

F. Lagugnè Labarthet, P. Rochon, and A. Natanshon, “Polarization analysis of diffracted orders from a birefringence grating recorded on azobenzene containing polymer,” Appl. Phys. Lett. 75, 1377–1379 (1999), and references therein.
[CrossRef]

J. Nonlin. Opt. Phys. Mater. (1)

L. M. Blinov, G. Cipparrone, and S. P. Palto, “Phase grating recording on photosensitive Langmuir–Blodgett films,” J. Nonlin. Opt. Phys. Mater. 7, 369–383 (1998), and references therein.
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. II (Paris) (1)

S. P. Palto and G. Durand, “Friction model of photo-induced reorientation of optical axis in photo-oriented Langmuir–Blodgett films,” J. Phys. II (Paris) 5, 963–978 (1995).

Opt. Acta (1)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[CrossRef]

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

R. M. A. Azzam, E. Masetti, I. M. Elminyawi, and F. G. Grosz, “Construction, calibration, and testing of a four-detector photopolarimeter,” Rev. Sci. Instrum. 59, 84–88 (1988).
[CrossRef]

Other (1)

P. Hariharan and B. C. Sanders, “Quantum phenomena in optical interferometry,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1996), Vol. XXXVI, pp. 49–128.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Spatial dependence of the light’s electric vector for two interfering opposite circularly polarized beams: (a) E=Ecl+Ecr, (b) E=Ecr+Ecl.

Fig. 2
Fig. 2

Experimental setup: M’s, mirrors; BS, beam splitter; P, polarizer; WP’s, quarter-wave plates; Ph’s, photodiodes; FDP, four-detector polarimeter; R’s, right circularly polarized; L’s, left circularly polarized.

Fig. 3
Fig. 3

Polarization analyses of the diffracted beams’ normalized intensities: (a) +1; (b) zero, and (c) -1 orders for linear (p) incident polarization.

Fig. 4
Fig. 4

Test run of ellipticity e of the light beam transmitted by a quarter-wave plate as a function of the rotation angle of the beam’s optical axis. Continuous curve, theory; asterisks, experiment.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

E=22 cos(δ/2)sin(δ/2),
TP=R-1TR,
R=cos(δ/2)sin(δ/2)-sin(δ/2)cos(δ/2)
T=exp(iΔϕ)00exp(-iΔϕ)
Tp=cos(Δϕ)+i sin(Δϕ)cos δi sin(Δϕ)sin δi sin(Δϕ)sin δcos(Δϕ)-i sin(Δϕ)cos δ.
ExEy exp(iθ),
Et=TPEi,
Et=cos(Δϕ)+i sin(Δϕ)cos δi sin(Δϕ)sin δi sin(Δϕ)sin δcos(Δϕ)-i sin(Δϕ)cos δExEy exp(iθ)=cos(Δϕ)ExEy exp(iθ)+i sin(Δϕ)2 exp(iδ)+exp(-iδ)i[exp(-iδ)-exp(iδ)]i[exp(-iδ)-exp(iδ)]-[exp(iδ)+exp(-iδ)]ExEy exp(iθ).
E0=cos(Δϕ)ExEy exp(iθ),
E+1=i sin(Δϕ)2[Ex-iEy exp(iθ)]1-i,
E-1=i sin(Δϕ)2[Ex+iEy exp(iθ)]1i.
E=22 cos(δ/2)-sin(δ/2).
S0=Ex2+Ey2,
S1=Ex2-Ey2,
S2=2ExEy cos θ,
S3=2ExEy sin θ.
E0(α)=E0x cos(α)+E0y sin(α).
E0(α)=cos(Δϕ)Ex cos(α)+cos(Δϕ)Ey exp(iθ)sin(α),
I0(α)=cos2(Δϕ)[Ex2 cos2(α)+Ey2 sin2(α)+ExEy sin(2α)cosθ],
I+1=[sin2(Δϕ)/2](Ex2+Ey2+2ExEy sin θ),
I-1=[sin2(Δϕ)/2](Ex2+Ey2-2ExEy sin θ).
I0(0)=cos2(Δϕ)Ex2,
I0(45°)=[cos2(Δϕ)/2](Ex2+Ey2+2ExEy cos θ),
I+1=[sin2(Δϕ)/2](Ex2+Ey2+2ExEy sin θ),
I-1=[sin2(Δϕ)/2](Ex2+Ey2-2ExEy sin θ).
S0=[1/sin2(Δϕ)](I+1+I-1),
S1=[2/cos2(Δϕ)]I0(0°)-[1/sin2(Δϕ)](I+1+I-1),
S2=[2/cos2(Δϕ)]I0(45°)-[1/sin2(Δϕ)](I+1+I-1),
S3=[1/sin2(Δϕ)](I+1-I-1).
e=tan12 arcsinI+1-I-1I+1+I-1,
Θ=(1/2)arctan(S2/S1).

Metrics