Abstract

Broadband operation based on retracing behavior (RB) of the phase-matching curves in various quasi-phase-matched materials with collinear, non-collinear, and quasi-collinear phase-matching schemes is theoretically studied. Broadband operation is feasible only at the degenerate point in a collinear configuration with a specific pump wavelength, λBC. Such a constraint sets a significant limitation on application of that scheme. With a noncollinear or a quasi-collinear phase-matching configuration the conditions and the resultant output signal ranges of broadband operation are much more flexible, particularly those that are useful for fiber communications and optical imaging of biological tissues. In a signal-resonated (idler-resonated) optical parametric oscillator (OPO) with a noncollinear or a quasi-collinear configuration, RB and hence broadband operation can be observed only for pump wavelengths shorter (longer) than λBC. Also, broadband operation for an idler-resonated OPO with a pump wavelength longer than λBC can be obtained only at the degenerate point. Nevertheless, broadband phenomena for a signal-resonated OPO with a pump wavelength shorter than λBC can be observed either at or away from the degenerate points.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Galvanauskas, K. K. Wong, K. El Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in 1.2–1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35, 731–732 (1999).
    [CrossRef]
  2. M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and bandwidth enhancement of difference frequency generation (DFG)-based wavelength conversion by pump detuning,” Electron. Lett. 35, 978–979 (1999).
    [CrossRef]
  3. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
    [CrossRef]
  4. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
    [CrossRef]
  5. S. Lin, B. Wu, F. Xie, and C. Chen, “Phase-matching retracing behavior: new features in LiB3O5,” Appl. Phys. Lett. 59, 1541–1543 (1991).
    [CrossRef]
  6. X. Liu, D. Deng, M. Li, D. Guo, and Z. Xu, “Retracing behavior of the phase-matching angle of nonlinear crystals in optical parametric oscillators,” J. Appl. Phys. 74, 2989–2991 (1993).
    [CrossRef]
  7. J. Wang, M. H. Dunn, and C. F. Rae, “Polychromatic optical parametric generation by simultaneous phase matching over a large spectral bandwidth,” Opt. Lett. 22, 763–765 (1997).
    [CrossRef] [PubMed]
  8. S. D. Huang, C. W. Hsu, D. W. Huang, and C. C. Yang, “Retracing behaviors of the phase-matching angle in noncollinear phase-matched optical parametric oscillators,” J. Opt. Soc. Am. B 15, 1375–1380 (1998).
    [CrossRef]
  9. A. J. Campillo, R. C. Hyer, and S. L. Shapiro, “Picosecond infrared-continuum generation by three-phonon parametric amplification in LiNbO3,” Opt. Lett. 4, 357–359 (1979).
    [CrossRef] [PubMed]
  10. A. Birmontas, A. Piskarskas, and A. Stabinis, “Dispersion anomalies of tuning characteristics and spectrum of an optical parametric oscillator,” Sov. J. Quantum Electron. 13, 1243–1245 (1983).
    [CrossRef]
  11. S. T. Yang and S. P. Velsko, “Frequency-agile kilohertz repetition-rate optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 24, 133–135 (1999).
    [CrossRef]
  12. M. J. Missey, V. Dominic, P. E. Powers, and K. L. Schepler, “Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators,” Opt. Lett. 24, 1227–1229 (1999).
    [CrossRef]
  13. V. Smilgevicius, A. Stabinis, A. Piskarskas, V. Pasiskevicius, J. Hellstrom, S. Wang, and F. Laurell, “Non-collinear optical parametric oscillator with periodically poled KTP,” Opt. Commun. 173, 365–369 (2000).
    [CrossRef]
  14. S. M. Russell, M. J. Missey, P. E. Powers, and K. L. Schepler, “Broadband mid-infrared generation in elliptically pumped periodically poled lithium niobate devices,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper CThJ4.
  15. V. G. Dmitriev, G. G. Gurzdyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).
  16. J. P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22, 1214–1216 (1997).
    [CrossRef] [PubMed]
  17. K. Fradkin, A. Arie, A. Skilar, and G. Rosenman, “Tunable mid-infrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
    [CrossRef]
  18. K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Mid-infrared difference-frequency generation in periodi-cally poled KTiOAsO4 and application to gas sensing,” Opt. Lett. 25, 743–745 (2000).
    [CrossRef]
  19. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
    [CrossRef]

2000

V. Smilgevicius, A. Stabinis, A. Piskarskas, V. Pasiskevicius, J. Hellstrom, S. Wang, and F. Laurell, “Non-collinear optical parametric oscillator with periodically poled KTP,” Opt. Commun. 173, 365–369 (2000).
[CrossRef]

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Mid-infrared difference-frequency generation in periodi-cally poled KTiOAsO4 and application to gas sensing,” Opt. Lett. 25, 743–745 (2000).
[CrossRef]

1999

S. T. Yang and S. P. Velsko, “Frequency-agile kilohertz repetition-rate optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 24, 133–135 (1999).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[CrossRef]

M. J. Missey, V. Dominic, P. E. Powers, and K. L. Schepler, “Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators,” Opt. Lett. 24, 1227–1229 (1999).
[CrossRef]

K. Fradkin, A. Arie, A. Skilar, and G. Rosenman, “Tunable mid-infrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

A. Galvanauskas, K. K. Wong, K. El Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in 1.2–1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35, 731–732 (1999).
[CrossRef]

M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and bandwidth enhancement of difference frequency generation (DFG)-based wavelength conversion by pump detuning,” Electron. Lett. 35, 978–979 (1999).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

1998

1997

1993

X. Liu, D. Deng, M. Li, D. Guo, and Z. Xu, “Retracing behavior of the phase-matching angle of nonlinear crystals in optical parametric oscillators,” J. Appl. Phys. 74, 2989–2991 (1993).
[CrossRef]

1991

S. Lin, B. Wu, F. Xie, and C. Chen, “Phase-matching retracing behavior: new features in LiB3O5,” Appl. Phys. Lett. 59, 1541–1543 (1991).
[CrossRef]

1983

A. Birmontas, A. Piskarskas, and A. Stabinis, “Dispersion anomalies of tuning characteristics and spectrum of an optical parametric oscillator,” Sov. J. Quantum Electron. 13, 1243–1245 (1983).
[CrossRef]

1979

Arie, A.

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Mid-infrared difference-frequency generation in periodi-cally poled KTiOAsO4 and application to gas sensing,” Opt. Lett. 25, 743–745 (2000).
[CrossRef]

K. Fradkin, A. Arie, A. Skilar, and G. Rosenman, “Tunable mid-infrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

Batchko, R. G.

Birmontas, A.

A. Birmontas, A. Piskarskas, and A. Stabinis, “Dispersion anomalies of tuning characteristics and spectrum of an optical parametric oscillator,” Sov. J. Quantum Electron. 13, 1243–1245 (1983).
[CrossRef]

Boppart, S. A.

Brener, I.

M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and bandwidth enhancement of difference frequency generation (DFG)-based wavelength conversion by pump detuning,” Electron. Lett. 35, 978–979 (1999).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Byer, R. L.

Campillo, A. J.

Chaban, E. E.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Chen, C.

S. Lin, B. Wu, F. Xie, and C. Chen, “Phase-matching retracing behavior: new features in LiB3O5,” Appl. Phys. Lett. 59, 1541–1543 (1991).
[CrossRef]

Chou, M. H.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

A. Galvanauskas, K. K. Wong, K. El Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in 1.2–1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35, 731–732 (1999).
[CrossRef]

M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and bandwidth enhancement of difference frequency generation (DFG)-based wavelength conversion by pump detuning,” Electron. Lett. 35, 978–979 (1999).
[CrossRef]

Christman, S. B.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Deng, D.

X. Liu, D. Deng, M. Li, D. Guo, and Z. Xu, “Retracing behavior of the phase-matching angle of nonlinear crystals in optical parametric oscillators,” J. Appl. Phys. 74, 2989–2991 (1993).
[CrossRef]

Dominic, V.

Drexler, W.

Dunn, M. H.

El Hadi, K.

A. Galvanauskas, K. K. Wong, K. El Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in 1.2–1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35, 731–732 (1999).
[CrossRef]

Fejer, M. M.

A. Galvanauskas, K. K. Wong, K. El Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in 1.2–1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35, 731–732 (1999).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and bandwidth enhancement of difference frequency generation (DFG)-based wavelength conversion by pump detuning,” Electron. Lett. 35, 978–979 (1999).
[CrossRef]

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[CrossRef]

J. P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22, 1214–1216 (1997).
[CrossRef] [PubMed]

Fermann, M. E.

A. Galvanauskas, K. K. Wong, K. El Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in 1.2–1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35, 731–732 (1999).
[CrossRef]

Fradkin, K.

K. Fradkin, A. Arie, A. Skilar, and G. Rosenman, “Tunable mid-infrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

Fradkin-Kashi, K.

Fujimoto, J. G.

Galvanauskas, A.

A. Galvanauskas, K. K. Wong, K. El Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in 1.2–1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35, 731–732 (1999).
[CrossRef]

Guo, D.

X. Liu, D. Deng, M. Li, D. Guo, and Z. Xu, “Retracing behavior of the phase-matching angle of nonlinear crystals in optical parametric oscillators,” J. Appl. Phys. 74, 2989–2991 (1993).
[CrossRef]

Harter, D.

A. Galvanauskas, K. K. Wong, K. El Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in 1.2–1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35, 731–732 (1999).
[CrossRef]

Hellstrom, J.

V. Smilgevicius, A. Stabinis, A. Piskarskas, V. Pasiskevicius, J. Hellstrom, S. Wang, and F. Laurell, “Non-collinear optical parametric oscillator with periodically poled KTP,” Opt. Commun. 173, 365–369 (2000).
[CrossRef]

Hofer, M.

A. Galvanauskas, K. K. Wong, K. El Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in 1.2–1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35, 731–732 (1999).
[CrossRef]

Hsu, C. W.

Huang, D. W.

Huang, S. D.

Hyer, R. C.

Ippen, E. P.

Kartner, F. X.

Laurell, F.

V. Smilgevicius, A. Stabinis, A. Piskarskas, V. Pasiskevicius, J. Hellstrom, S. Wang, and F. Laurell, “Non-collinear optical parametric oscillator with periodically poled KTP,” Opt. Commun. 173, 365–369 (2000).
[CrossRef]

Li, M.

X. Liu, D. Deng, M. Li, D. Guo, and Z. Xu, “Retracing behavior of the phase-matching angle of nonlinear crystals in optical parametric oscillators,” J. Appl. Phys. 74, 2989–2991 (1993).
[CrossRef]

Li, X. D.

Lin, S.

S. Lin, B. Wu, F. Xie, and C. Chen, “Phase-matching retracing behavior: new features in LiB3O5,” Appl. Phys. Lett. 59, 1541–1543 (1991).
[CrossRef]

Liu, X.

X. Liu, D. Deng, M. Li, D. Guo, and Z. Xu, “Retracing behavior of the phase-matching angle of nonlinear crystals in optical parametric oscillators,” J. Appl. Phys. 74, 2989–2991 (1993).
[CrossRef]

Meyn, J. P.

Miller, G. D.

Missey, M. J.

Morgner, U.

Parameswaran, K. R.

M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and bandwidth enhancement of difference frequency generation (DFG)-based wavelength conversion by pump detuning,” Electron. Lett. 35, 978–979 (1999).
[CrossRef]

Pasiskevicius, V.

V. Smilgevicius, A. Stabinis, A. Piskarskas, V. Pasiskevicius, J. Hellstrom, S. Wang, and F. Laurell, “Non-collinear optical parametric oscillator with periodically poled KTP,” Opt. Commun. 173, 365–369 (2000).
[CrossRef]

Piskarskas, A.

V. Smilgevicius, A. Stabinis, A. Piskarskas, V. Pasiskevicius, J. Hellstrom, S. Wang, and F. Laurell, “Non-collinear optical parametric oscillator with periodically poled KTP,” Opt. Commun. 173, 365–369 (2000).
[CrossRef]

A. Birmontas, A. Piskarskas, and A. Stabinis, “Dispersion anomalies of tuning characteristics and spectrum of an optical parametric oscillator,” Sov. J. Quantum Electron. 13, 1243–1245 (1983).
[CrossRef]

Pitris, C.

Powers, P. E.

Rae, C. F.

Rosenman, G.

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Mid-infrared difference-frequency generation in periodi-cally poled KTiOAsO4 and application to gas sensing,” Opt. Lett. 25, 743–745 (2000).
[CrossRef]

K. Fradkin, A. Arie, A. Skilar, and G. Rosenman, “Tunable mid-infrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

Schepler, K. L.

Shapiro, S. L.

Skilar, A.

K. Fradkin, A. Arie, A. Skilar, and G. Rosenman, “Tunable mid-infrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

Smilgevicius, V.

V. Smilgevicius, A. Stabinis, A. Piskarskas, V. Pasiskevicius, J. Hellstrom, S. Wang, and F. Laurell, “Non-collinear optical parametric oscillator with periodically poled KTP,” Opt. Commun. 173, 365–369 (2000).
[CrossRef]

Stabinis, A.

V. Smilgevicius, A. Stabinis, A. Piskarskas, V. Pasiskevicius, J. Hellstrom, S. Wang, and F. Laurell, “Non-collinear optical parametric oscillator with periodically poled KTP,” Opt. Commun. 173, 365–369 (2000).
[CrossRef]

A. Birmontas, A. Piskarskas, and A. Stabinis, “Dispersion anomalies of tuning characteristics and spectrum of an optical parametric oscillator,” Sov. J. Quantum Electron. 13, 1243–1245 (1983).
[CrossRef]

Tulloch, W. M.

Urenski, P.

Velsko, S. P.

Wang, J.

Wang, S.

V. Smilgevicius, A. Stabinis, A. Piskarskas, V. Pasiskevicius, J. Hellstrom, S. Wang, and F. Laurell, “Non-collinear optical parametric oscillator with periodically poled KTP,” Opt. Commun. 173, 365–369 (2000).
[CrossRef]

Weise, D. R.

Wong, K. K.

A. Galvanauskas, K. K. Wong, K. El Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in 1.2–1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35, 731–732 (1999).
[CrossRef]

Wu, B.

S. Lin, B. Wu, F. Xie, and C. Chen, “Phase-matching retracing behavior: new features in LiB3O5,” Appl. Phys. Lett. 59, 1541–1543 (1991).
[CrossRef]

Xie, F.

S. Lin, B. Wu, F. Xie, and C. Chen, “Phase-matching retracing behavior: new features in LiB3O5,” Appl. Phys. Lett. 59, 1541–1543 (1991).
[CrossRef]

Xu, Z.

X. Liu, D. Deng, M. Li, D. Guo, and Z. Xu, “Retracing behavior of the phase-matching angle of nonlinear crystals in optical parametric oscillators,” J. Appl. Phys. 74, 2989–2991 (1993).
[CrossRef]

Yang, C. C.

Yang, S. T.

Appl. Phys. Lett.

S. Lin, B. Wu, F. Xie, and C. Chen, “Phase-matching retracing behavior: new features in LiB3O5,” Appl. Phys. Lett. 59, 1541–1543 (1991).
[CrossRef]

K. Fradkin, A. Arie, A. Skilar, and G. Rosenman, “Tunable mid-infrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

Electron. Lett.

A. Galvanauskas, K. K. Wong, K. El Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in 1.2–1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35, 731–732 (1999).
[CrossRef]

M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and bandwidth enhancement of difference frequency generation (DFG)-based wavelength conversion by pump detuning,” Electron. Lett. 35, 978–979 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

J. Appl. Phys.

X. Liu, D. Deng, M. Li, D. Guo, and Z. Xu, “Retracing behavior of the phase-matching angle of nonlinear crystals in optical parametric oscillators,” J. Appl. Phys. 74, 2989–2991 (1993).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

V. Smilgevicius, A. Stabinis, A. Piskarskas, V. Pasiskevicius, J. Hellstrom, S. Wang, and F. Laurell, “Non-collinear optical parametric oscillator with periodically poled KTP,” Opt. Commun. 173, 365–369 (2000).
[CrossRef]

Opt. Lett.

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Mid-infrared difference-frequency generation in periodi-cally poled KTiOAsO4 and application to gas sensing,” Opt. Lett. 25, 743–745 (2000).
[CrossRef]

A. J. Campillo, R. C. Hyer, and S. L. Shapiro, “Picosecond infrared-continuum generation by three-phonon parametric amplification in LiNbO3,” Opt. Lett. 4, 357–359 (1979).
[CrossRef] [PubMed]

J. Wang, M. H. Dunn, and C. F. Rae, “Polychromatic optical parametric generation by simultaneous phase matching over a large spectral bandwidth,” Opt. Lett. 22, 763–765 (1997).
[CrossRef] [PubMed]

J. P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22, 1214–1216 (1997).
[CrossRef] [PubMed]

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[CrossRef]

S. T. Yang and S. P. Velsko, “Frequency-agile kilohertz repetition-rate optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 24, 133–135 (1999).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[CrossRef]

M. J. Missey, V. Dominic, P. E. Powers, and K. L. Schepler, “Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators,” Opt. Lett. 24, 1227–1229 (1999).
[CrossRef]

Sov. J. Quantum Electron.

A. Birmontas, A. Piskarskas, and A. Stabinis, “Dispersion anomalies of tuning characteristics and spectrum of an optical parametric oscillator,” Sov. J. Quantum Electron. 13, 1243–1245 (1983).
[CrossRef]

Other

S. M. Russell, M. J. Missey, P. E. Powers, and K. L. Schepler, “Broadband mid-infrared generation in elliptically pumped periodically poled lithium niobate devices,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper CThJ4.

V. G. Dmitriev, G. G. Gurzdyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Orientations of various interacting wave vectors in a quasi-phase matched crystal with a noncollinear phase-matching configuration.

Fig. 2
Fig. 2

Phase-matched wavelength versus the QPM period of PPLN in the collinear phase-matching scheme for pump wavelengths ranging from 500 to 1000 nm with temperature fixed at 150 °C.

Fig. 3
Fig. 3

Phase-matched wavelength versus QPM period of PPLN in the collinear phase-matching scheme for pump wavelengths ranging from 930 to 1000 nm with temperature fixed at 150 °C.

Fig. 4
Fig. 4

Tuning curves of a noncollinear signal-resonated PPLN OPO with pump wavelength at 600 nm and temperature fixed at 160 °C for several QPM periods.

Fig. 5
Fig. 5

Tuning curves of a noncollinear signal-resonated PPLN OPO with pump wavelength at 800 nm and temperature fixed at 160 °C for several QPM periods.

Fig. 6
Fig. 6

Tuning curves of a noncollinear signal-resonated PPLN OPO with pump wavelength at 1000 nm and temperature fixed at 160 °C for several QPM periods.

Fig. 7
Fig. 7

Tuning curves of a noncollinear idler-resonated PPLN OPO with pump wavelength at 1000 nm and temperature fixed at 160 °C for several QPM periods.

Fig. 8
Fig. 8

Tuning curves of a noncollinear, signal-resonated PPLN OPO with pump wavelength at 900 nm. Broadband operation appears when the PPLN period is near 24.3 µm.

Fig. 9
Fig. 9

Tuning curves of a noncollinear, idler-resonated PPLN OPO with pump wavelength at 1064 nm. Broadband operation appears when the PPLN period is near 30.7 µm.

Fig. 10
Fig. 10

Orientations of various interacting wave vectors in a quasi-phase-matched crystal with a quasi-collinear phase-matching configuration.

Fig. 11
Fig. 11

Tuning curves of quasi-collinear, signal-resonated PPLN OPO with pump wavelength at 800 nm and crystal temperature fixed at 180 °C.

Fig. 12
Fig. 12

Tuning curves of quasi-collinear, signal-resonated PPLN OPO with pump wavelength at 900 nm and crystal temperature fixed at 180 °C.

Fig. 13
Fig. 13

Tuning curves of a quasi-collinear, signal-resonated PPLN OPO with PPLN period fixed at 15.2 µm and crystal temperature fixed at 180 °C. Broadband operation is feasible with pump wavelength at 904 nm.

Fig. 14
Fig. 14

γ angle values versus θ angle values for the five curves in Fig. 12.

Tables (4)

Tables Icon

Table 1 Broadband Operation with Various Phase-Matching Methods Based on PPLN

Tables Icon

Table 2 Broadband Operation with Various Phase-Matching Methods Based on PPKTP

Tables Icon

Table 3 Broadband Operation with Various Phase-Matching Methods Based on PPKTA

Tables Icon

Table 4 Broadband Operation with Various Phase-Matching Methods Based on PPLT

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n(λs, T)λs sin δ+n(λi, T)λi sin γ
+mΓ(T) sin θ=0,
n(λs, T)λs cos δ+n(λi, T)λi cos γ
+mΓ(T) cos θ=n(λp, T)λp.

Metrics