Abstract

High-order harmonic generation (HHG) in laser fields of relativistic intensity is studied. It is shown that, owing to relativistic longitudinal displacement of the photoelectrons, significant HHG suppression occurs. Such suppression is greater for the low-frequency part of the HHG spectrum than for the high-frequency part. We propose to use a standing-wave pump instead of a traveling wave to overcome this effect and to enhance the efficiency of HHG. The efficiency of utilizing atoms in a standing wave decreases with growth in the pump intensity. However, in traveling-wave HHG the decrease in efficiency is still greater; therefore, using a standing wave allows one to obtain a HHG intensity that is essentially greater than in a traveling wave (for example, a gain factor of 102 can be achieved when one is pumping Ar8+ ions with a radiation of intensity 1018 W/cm2 and a wavelength of 0.3 µm).

© 2002 Optical Society of America

Full Article  |  PDF Article
Related Articles
High-order harmonic generation by atoms with strong high-frequency and low-frequency pumping

Vladimir D. Taranukhin and Nickolay Yu. Shubin
J. Opt. Soc. Am. B 17(9) 1509-1516 (2000)

Stabilization window and attosecond pulse train production at atom ionization in superintense laser field

M. Yu. Ryabikin and A. M. Sergeev
Opt. Express 7(12) 417-426 (2000)

Attosecond pulse generation by a two-color field

Vladimir D. Taranukhin
J. Opt. Soc. Am. B 21(2) 419-424 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription