Abstract

The conductivity effective masses of electrons and holes in Si are calculated for carrier temperatures from 1 to 3000 K. The temperature dependence of the electron mass is calculated by use of a phenomenological model of conduction-band nonparabolicity that has been fitted to experimental measurements of the dependence of the electron conductivity effective mass on carrier concentration. The hole mass is investigated by tight-binding calculations of the valence bands, which have been adjusted to match experimental values of the valence-band curvature parameters at the top of the valence band. The calculations are in excellent agreement with femtosecond-laser reflectivity measurements of the change in optical effective mass as hot carriers cool from 1550 to 300 K.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials,” Rev. Mod. Phys. 55, 645–705 (1983).
    [CrossRef]
  2. L.-A. Lompre, J.-M. Liu, H. Kurz, and N. Bloembergen, “Optical heating of electron–hole plasma in silicon by picosecond pulses,” Appl. Phys. Lett. 44, 3–5 (1984).
    [CrossRef]
  3. J.-M. Liu, H. Kurz, and N. Bloembergen, “Picosecond time-resolved plasma and temperature-induced changes of reflectivity and transmission in silicon” Appl. Phys. Lett. 41, 643–646 (1982).
    [CrossRef]
  4. D. von der Linde and N. Fabricius, “Observation of an electronic plasma in picosecond laser annealing of silicon,” Appl. Phys. Lett. 41, 991–993 (1982).
    [CrossRef]
  5. C. V. Shank, R. Yen, and C. Hirlmann, “Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon,” Phys. Rev. Lett. 50, 454–457 (1983).
    [CrossRef]
  6. H. M. van Driel, “Optical effective mass of high density carriers in silicon,” Appl. Phys. Lett. 44, 617–619 (1984).
    [CrossRef]
  7. G.-Z. Yang and N. Bloembergen, “Effective mass in picosecond laser-produced high-density plasma in silicon,” IEEE J. Quantum Electron. QE-22, 195–196 (1986).
    [CrossRef]
  8. T. Sjodin, H. Petek, and H.-L. Dai, “Ultrafast carrier dynamics in silicon: a two-color transient-reflection grating study on a (111) surface,” Phys. Rev. Lett. 81, 5664–5667 (1998).
    [CrossRef]
  9. E. M. Conwell and M. O. Vassell, “High-field transport in n-type GaAs,” Phys. Rev. 166, 797–821 (1968).
    [CrossRef]
  10. W. G. Spitzer and H. Y. Fan, “Determination of optical constants and carrier effective mass of semiconductors,” Phys. Rev. 106, 882–890 (1957).
    [CrossRef]
  11. L. E. Howarth and J. F. Gilbert, “Determination of free electron effective mass of n-type silicon,” J. Appl. Phys. 34, 236–237 (1963).
    [CrossRef]
  12. M. Miyao, T. Motooka, N. Natsuaki, and T. Tokuyama, “Change in the electron effective mass in extremely heavily doped n-type Si obtained by ion implantation and laser annealing,” Solid State Commun. 37, 605–608 (1981).
    [CrossRef]
  13. A. Borghesi, A. Stella, P. Bottazzi, G. Guizzetti, and L. Reggiani, “Optical determination of Si conduction-band nonparabolicity,” J. Appl. Phys. 67, 3102–3106 (1990).
    [CrossRef]
  14. D. A. Papaconstantopoulos, Handbook of the Band Structure of Elemental Solids (Plenum, New York, 1986).
  15. D. J. Chadi, “Spin–orbit splitting in crystalline and compositionally disordered semiconductors,” Phys. Rev. B 16, 790–796 (1977).
    [CrossRef]
  16. W. A. Harrison, Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (Dover, New York, 1989).
  17. Y. M. Niquet, C. Delerue, G. Allan, and M. Lannoo, “Method for tight-binding parameterization: application to silicon nanostructures,” Phys. Rev. 62, 5109–5116 (2000).
    [CrossRef]
  18. J. J. Stickler, H. J. Zeigler, and G. S. Heller, “Quantum effects in Ge and Si. I,” Phys. Rev. 127, 1077–1084 (1962).
    [CrossRef]
  19. J. C. Hensel and G. Feher, “Cyclotron resonance experiments in uniaxially stressed silicon: valence band inverse mass parameters and deformation potentials,” Phys. Rev. 129, 1041–1062 (1963).
    [CrossRef]
  20. I. Balslev and P. Lawaetz, “On the interpretation of the observed hole mass shift with uniaxial stress in silicon,” Phys. Lett. 19, 6–7 (1965).
    [CrossRef]
  21. K. Seeger, Semiconductor Physics: An Introduction (Springer, New York, 1982).
  22. C. Jacoboni, R. Minder, and G. Majni, “Effects of band nonparabolocity on electron drift velocity in silicon above room temperature,” J. Chem. Phys. Solids 36, 1129–1133 (1975).
    [CrossRef]
  23. G. N. Koskowich, M. Soma, and R. B. Darling, “Near-infrared free-carrier optical absorption in silicon: effect of first-order phonon-assisted scattering in a nonparabolic conduction band,” Phys. Rev. B 41, 2944–2947 (1990).
    [CrossRef]
  24. F. Wooten, Optical Properties of Solids (Academic, New York, 1972).
  25. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, Philadelphia, Pa., 1976).
  26. O. Madelung, Semiconductors—Basic Data (Springer, New York, 1996).
  27. J. C. Slater and G. F. Koster, “Simplified LCAO method for the periodic potential problem,” Phys. Rev. 94, 1498–1524 (1954).
    [CrossRef]
  28. D. J. Chadi and M. L. Cohen, “Tight-binding calculations of the valence bands of diamond and zincblende crystals,” Phys. Status Solidi B 68, 405–419 (1975).
    [CrossRef]
  29. K. C. Pandey and J. C. Phillips, “Atomic densities of states near Si(111) surfaces,” Phys. Rev. B 13, 750–760 (1976).
    [CrossRef]
  30. D. A. Papaconstantopoulos and E. N. Economou, “Slater–Koster parameterization for Si and the ideal-vacancy calculation,” Phys. Rev. B 22, 2903–2907 (1980).
    [CrossRef]
  31. D. N. Talwar and C. S. Ting, “Tight-binding calculations for the electronic structure of isolated vacancies and impurities in III–V compound semiconductors,” Phys. Rev. B 25, 2660–2680 (1982).
    [CrossRef]
  32. Y. Li and P. J. Lin-Chung, “New semiempirical construction of the Slater–Koster parameters for group-IV semiconductors,” Phys. Rev. B 27, 3465–3470 (1983).
    [CrossRef]
  33. C. Tserbak, H. M. Polatoglou, and G. Theodorou, “Unified approach to the electronic structure of strained Si/Ge superlattices,” Phys. Rev. B 47, 7104–7124 (1993).
    [CrossRef]
  34. G. Grosso and C. Piermarocchi, “Tight-binding model and interaction scaling laws for silicon and germanium,” Phys. Rev. B 51, 16772–16777 (1995).
    [CrossRef]
  35. G. Dresselhaus, A. F. Kip, and C. Kittel, “Cyclotron resonance of electrons and holes in silicon and germanium crystals,” Phys. Rev. 98, 368–384 (1955).
    [CrossRef]
  36. R. N. Dexter, H. J. Zeigler, and B. Lax, “Cyclotron resonance experiments in silicon and germanium,” Phys. Rev. 104, 637–664 (1956).
    [CrossRef]
  37. The universal model of Harrison16 has Esx(111)=1.131. Increasing it by 15% to 1.301 produces much better curvature parameters and BZ edge band energies.
  38. The reported Niquet SK parameters Esx(311), Esx(113), Exy(311), and Exy(113) have signs opposite those of the convention of Papaconstantopoulos. The Papaconstantopoulos convention is used in Table 2.
  39. M. Dür, K. Unterrainer, and E. Gornik, “Effect of valence-band anisotropy and nonparabolicity on total scattering rates for holes in nonpolar semiconductors,” Phys. Rev. B 49, 13991–13994 (1994).
    [CrossRef]
  40. B. Lax and J. G. Mavroides, “Statistics and galvanomagnetic effects in germanium and silicon with warped energy surfaces,” Phys. Rev. 100, 1650–1657 (1955).
    [CrossRef]
  41. J. R. Goldman and J. A. Prybyla, “Ultrafast dynamics of laser-excited electron distributions in silicon,” Phys. Rev. Lett. 72, 1364–1367 (1994).
    [CrossRef] [PubMed]
  42. S. Jeong and J. Bokor, “Ultrafast carrier dynamics near the Si(100)2×1 surface,” Phys. Rev. B 59, 4943–4951 (1999).
    [CrossRef]
  43. F. E. Doany and D. E. Grischkowsky, “Measurement of ultrafast hot-carrier relaxation in silicon by thin film enhanced, time-resolved reflectivity,” Appl. Phys. Lett. 52, 36–38 (1988).
    [CrossRef]
  44. W. Kütt, A. Esser, K. Seibert, U. Lemmer, and H. Kurz, “Femtosecond studies of plasma formation in crystalline and amorphous silicon,” in Applications of Ultrashort Laser Pulses in Science and Technology, A. Antonetti, ed., Proc. SPIE 1268, 154–165 (1990).
    [CrossRef]
  45. T. Pfeifer, W. Kütt, H. Kurz, and R. Scholz, “Generation and detection of coherent optical phonons in germanium,” Phys. Rev. Lett. 69, 3248–3251 (1992).
    [CrossRef] [PubMed]
  46. A. J. Sabbah and D. M. Riffe, “Measurement of silicon surface recombination velocity using ultrafast pump–probe reflectivity in the near infrared,” J. Appl. Phys. 88, 6954–6956 (2000).
    [CrossRef]
  47. O. B. Wright and V. E. Gusev, “Acoustic generation in crystalline silicon with femtosecond optical pulses,” Appl. Phys. Lett. 66, 1190–1192 (1995).
    [CrossRef]
  48. T. Tanaka, A. Harata, and T. Sawada, “Subpicosecond surface-restricted carrier and thermal dynamics by transient reflectivity measurements,” J. Appl. Phys. 82, 4033–4038 (1997).
    [CrossRef]
  49. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).

2000 (2)

Y. M. Niquet, C. Delerue, G. Allan, and M. Lannoo, “Method for tight-binding parameterization: application to silicon nanostructures,” Phys. Rev. 62, 5109–5116 (2000).
[CrossRef]

A. J. Sabbah and D. M. Riffe, “Measurement of silicon surface recombination velocity using ultrafast pump–probe reflectivity in the near infrared,” J. Appl. Phys. 88, 6954–6956 (2000).
[CrossRef]

1999 (1)

S. Jeong and J. Bokor, “Ultrafast carrier dynamics near the Si(100)2×1 surface,” Phys. Rev. B 59, 4943–4951 (1999).
[CrossRef]

1998 (1)

T. Sjodin, H. Petek, and H.-L. Dai, “Ultrafast carrier dynamics in silicon: a two-color transient-reflection grating study on a (111) surface,” Phys. Rev. Lett. 81, 5664–5667 (1998).
[CrossRef]

1997 (1)

T. Tanaka, A. Harata, and T. Sawada, “Subpicosecond surface-restricted carrier and thermal dynamics by transient reflectivity measurements,” J. Appl. Phys. 82, 4033–4038 (1997).
[CrossRef]

1995 (2)

O. B. Wright and V. E. Gusev, “Acoustic generation in crystalline silicon with femtosecond optical pulses,” Appl. Phys. Lett. 66, 1190–1192 (1995).
[CrossRef]

G. Grosso and C. Piermarocchi, “Tight-binding model and interaction scaling laws for silicon and germanium,” Phys. Rev. B 51, 16772–16777 (1995).
[CrossRef]

1994 (2)

M. Dür, K. Unterrainer, and E. Gornik, “Effect of valence-band anisotropy and nonparabolicity on total scattering rates for holes in nonpolar semiconductors,” Phys. Rev. B 49, 13991–13994 (1994).
[CrossRef]

J. R. Goldman and J. A. Prybyla, “Ultrafast dynamics of laser-excited electron distributions in silicon,” Phys. Rev. Lett. 72, 1364–1367 (1994).
[CrossRef] [PubMed]

1993 (1)

C. Tserbak, H. M. Polatoglou, and G. Theodorou, “Unified approach to the electronic structure of strained Si/Ge superlattices,” Phys. Rev. B 47, 7104–7124 (1993).
[CrossRef]

1992 (1)

T. Pfeifer, W. Kütt, H. Kurz, and R. Scholz, “Generation and detection of coherent optical phonons in germanium,” Phys. Rev. Lett. 69, 3248–3251 (1992).
[CrossRef] [PubMed]

1990 (3)

W. Kütt, A. Esser, K. Seibert, U. Lemmer, and H. Kurz, “Femtosecond studies of plasma formation in crystalline and amorphous silicon,” in Applications of Ultrashort Laser Pulses in Science and Technology, A. Antonetti, ed., Proc. SPIE 1268, 154–165 (1990).
[CrossRef]

G. N. Koskowich, M. Soma, and R. B. Darling, “Near-infrared free-carrier optical absorption in silicon: effect of first-order phonon-assisted scattering in a nonparabolic conduction band,” Phys. Rev. B 41, 2944–2947 (1990).
[CrossRef]

A. Borghesi, A. Stella, P. Bottazzi, G. Guizzetti, and L. Reggiani, “Optical determination of Si conduction-band nonparabolicity,” J. Appl. Phys. 67, 3102–3106 (1990).
[CrossRef]

1988 (1)

F. E. Doany and D. E. Grischkowsky, “Measurement of ultrafast hot-carrier relaxation in silicon by thin film enhanced, time-resolved reflectivity,” Appl. Phys. Lett. 52, 36–38 (1988).
[CrossRef]

1986 (1)

G.-Z. Yang and N. Bloembergen, “Effective mass in picosecond laser-produced high-density plasma in silicon,” IEEE J. Quantum Electron. QE-22, 195–196 (1986).
[CrossRef]

1984 (2)

H. M. van Driel, “Optical effective mass of high density carriers in silicon,” Appl. Phys. Lett. 44, 617–619 (1984).
[CrossRef]

L.-A. Lompre, J.-M. Liu, H. Kurz, and N. Bloembergen, “Optical heating of electron–hole plasma in silicon by picosecond pulses,” Appl. Phys. Lett. 44, 3–5 (1984).
[CrossRef]

1983 (3)

C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials,” Rev. Mod. Phys. 55, 645–705 (1983).
[CrossRef]

C. V. Shank, R. Yen, and C. Hirlmann, “Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon,” Phys. Rev. Lett. 50, 454–457 (1983).
[CrossRef]

Y. Li and P. J. Lin-Chung, “New semiempirical construction of the Slater–Koster parameters for group-IV semiconductors,” Phys. Rev. B 27, 3465–3470 (1983).
[CrossRef]

1982 (3)

D. N. Talwar and C. S. Ting, “Tight-binding calculations for the electronic structure of isolated vacancies and impurities in III–V compound semiconductors,” Phys. Rev. B 25, 2660–2680 (1982).
[CrossRef]

J.-M. Liu, H. Kurz, and N. Bloembergen, “Picosecond time-resolved plasma and temperature-induced changes of reflectivity and transmission in silicon” Appl. Phys. Lett. 41, 643–646 (1982).
[CrossRef]

D. von der Linde and N. Fabricius, “Observation of an electronic plasma in picosecond laser annealing of silicon,” Appl. Phys. Lett. 41, 991–993 (1982).
[CrossRef]

1981 (1)

M. Miyao, T. Motooka, N. Natsuaki, and T. Tokuyama, “Change in the electron effective mass in extremely heavily doped n-type Si obtained by ion implantation and laser annealing,” Solid State Commun. 37, 605–608 (1981).
[CrossRef]

1980 (1)

D. A. Papaconstantopoulos and E. N. Economou, “Slater–Koster parameterization for Si and the ideal-vacancy calculation,” Phys. Rev. B 22, 2903–2907 (1980).
[CrossRef]

1977 (1)

D. J. Chadi, “Spin–orbit splitting in crystalline and compositionally disordered semiconductors,” Phys. Rev. B 16, 790–796 (1977).
[CrossRef]

1976 (1)

K. C. Pandey and J. C. Phillips, “Atomic densities of states near Si(111) surfaces,” Phys. Rev. B 13, 750–760 (1976).
[CrossRef]

1975 (2)

C. Jacoboni, R. Minder, and G. Majni, “Effects of band nonparabolocity on electron drift velocity in silicon above room temperature,” J. Chem. Phys. Solids 36, 1129–1133 (1975).
[CrossRef]

D. J. Chadi and M. L. Cohen, “Tight-binding calculations of the valence bands of diamond and zincblende crystals,” Phys. Status Solidi B 68, 405–419 (1975).
[CrossRef]

1968 (1)

E. M. Conwell and M. O. Vassell, “High-field transport in n-type GaAs,” Phys. Rev. 166, 797–821 (1968).
[CrossRef]

1965 (1)

I. Balslev and P. Lawaetz, “On the interpretation of the observed hole mass shift with uniaxial stress in silicon,” Phys. Lett. 19, 6–7 (1965).
[CrossRef]

1963 (2)

J. C. Hensel and G. Feher, “Cyclotron resonance experiments in uniaxially stressed silicon: valence band inverse mass parameters and deformation potentials,” Phys. Rev. 129, 1041–1062 (1963).
[CrossRef]

L. E. Howarth and J. F. Gilbert, “Determination of free electron effective mass of n-type silicon,” J. Appl. Phys. 34, 236–237 (1963).
[CrossRef]

1962 (1)

J. J. Stickler, H. J. Zeigler, and G. S. Heller, “Quantum effects in Ge and Si. I,” Phys. Rev. 127, 1077–1084 (1962).
[CrossRef]

1957 (1)

W. G. Spitzer and H. Y. Fan, “Determination of optical constants and carrier effective mass of semiconductors,” Phys. Rev. 106, 882–890 (1957).
[CrossRef]

1956 (1)

R. N. Dexter, H. J. Zeigler, and B. Lax, “Cyclotron resonance experiments in silicon and germanium,” Phys. Rev. 104, 637–664 (1956).
[CrossRef]

1955 (2)

G. Dresselhaus, A. F. Kip, and C. Kittel, “Cyclotron resonance of electrons and holes in silicon and germanium crystals,” Phys. Rev. 98, 368–384 (1955).
[CrossRef]

B. Lax and J. G. Mavroides, “Statistics and galvanomagnetic effects in germanium and silicon with warped energy surfaces,” Phys. Rev. 100, 1650–1657 (1955).
[CrossRef]

1954 (1)

J. C. Slater and G. F. Koster, “Simplified LCAO method for the periodic potential problem,” Phys. Rev. 94, 1498–1524 (1954).
[CrossRef]

Allan, G.

Y. M. Niquet, C. Delerue, G. Allan, and M. Lannoo, “Method for tight-binding parameterization: application to silicon nanostructures,” Phys. Rev. 62, 5109–5116 (2000).
[CrossRef]

Balslev, I.

I. Balslev and P. Lawaetz, “On the interpretation of the observed hole mass shift with uniaxial stress in silicon,” Phys. Lett. 19, 6–7 (1965).
[CrossRef]

Bloembergen, N.

G.-Z. Yang and N. Bloembergen, “Effective mass in picosecond laser-produced high-density plasma in silicon,” IEEE J. Quantum Electron. QE-22, 195–196 (1986).
[CrossRef]

L.-A. Lompre, J.-M. Liu, H. Kurz, and N. Bloembergen, “Optical heating of electron–hole plasma in silicon by picosecond pulses,” Appl. Phys. Lett. 44, 3–5 (1984).
[CrossRef]

J.-M. Liu, H. Kurz, and N. Bloembergen, “Picosecond time-resolved plasma and temperature-induced changes of reflectivity and transmission in silicon” Appl. Phys. Lett. 41, 643–646 (1982).
[CrossRef]

Bokor, J.

S. Jeong and J. Bokor, “Ultrafast carrier dynamics near the Si(100)2×1 surface,” Phys. Rev. B 59, 4943–4951 (1999).
[CrossRef]

Borghesi, A.

A. Borghesi, A. Stella, P. Bottazzi, G. Guizzetti, and L. Reggiani, “Optical determination of Si conduction-band nonparabolicity,” J. Appl. Phys. 67, 3102–3106 (1990).
[CrossRef]

Bottazzi, P.

A. Borghesi, A. Stella, P. Bottazzi, G. Guizzetti, and L. Reggiani, “Optical determination of Si conduction-band nonparabolicity,” J. Appl. Phys. 67, 3102–3106 (1990).
[CrossRef]

Chadi, D. J.

D. J. Chadi, “Spin–orbit splitting in crystalline and compositionally disordered semiconductors,” Phys. Rev. B 16, 790–796 (1977).
[CrossRef]

D. J. Chadi and M. L. Cohen, “Tight-binding calculations of the valence bands of diamond and zincblende crystals,” Phys. Status Solidi B 68, 405–419 (1975).
[CrossRef]

Cohen, M. L.

D. J. Chadi and M. L. Cohen, “Tight-binding calculations of the valence bands of diamond and zincblende crystals,” Phys. Status Solidi B 68, 405–419 (1975).
[CrossRef]

Conwell, E. M.

E. M. Conwell and M. O. Vassell, “High-field transport in n-type GaAs,” Phys. Rev. 166, 797–821 (1968).
[CrossRef]

Dai, H.-L.

T. Sjodin, H. Petek, and H.-L. Dai, “Ultrafast carrier dynamics in silicon: a two-color transient-reflection grating study on a (111) surface,” Phys. Rev. Lett. 81, 5664–5667 (1998).
[CrossRef]

Darling, R. B.

G. N. Koskowich, M. Soma, and R. B. Darling, “Near-infrared free-carrier optical absorption in silicon: effect of first-order phonon-assisted scattering in a nonparabolic conduction band,” Phys. Rev. B 41, 2944–2947 (1990).
[CrossRef]

Delerue, C.

Y. M. Niquet, C. Delerue, G. Allan, and M. Lannoo, “Method for tight-binding parameterization: application to silicon nanostructures,” Phys. Rev. 62, 5109–5116 (2000).
[CrossRef]

Dexter, R. N.

R. N. Dexter, H. J. Zeigler, and B. Lax, “Cyclotron resonance experiments in silicon and germanium,” Phys. Rev. 104, 637–664 (1956).
[CrossRef]

Doany, F. E.

F. E. Doany and D. E. Grischkowsky, “Measurement of ultrafast hot-carrier relaxation in silicon by thin film enhanced, time-resolved reflectivity,” Appl. Phys. Lett. 52, 36–38 (1988).
[CrossRef]

Dresselhaus, G.

G. Dresselhaus, A. F. Kip, and C. Kittel, “Cyclotron resonance of electrons and holes in silicon and germanium crystals,” Phys. Rev. 98, 368–384 (1955).
[CrossRef]

Dür, M.

M. Dür, K. Unterrainer, and E. Gornik, “Effect of valence-band anisotropy and nonparabolicity on total scattering rates for holes in nonpolar semiconductors,” Phys. Rev. B 49, 13991–13994 (1994).
[CrossRef]

Economou, E. N.

D. A. Papaconstantopoulos and E. N. Economou, “Slater–Koster parameterization for Si and the ideal-vacancy calculation,” Phys. Rev. B 22, 2903–2907 (1980).
[CrossRef]

Esser, A.

W. Kütt, A. Esser, K. Seibert, U. Lemmer, and H. Kurz, “Femtosecond studies of plasma formation in crystalline and amorphous silicon,” in Applications of Ultrashort Laser Pulses in Science and Technology, A. Antonetti, ed., Proc. SPIE 1268, 154–165 (1990).
[CrossRef]

Fabricius, N.

D. von der Linde and N. Fabricius, “Observation of an electronic plasma in picosecond laser annealing of silicon,” Appl. Phys. Lett. 41, 991–993 (1982).
[CrossRef]

Fan, H. Y.

W. G. Spitzer and H. Y. Fan, “Determination of optical constants and carrier effective mass of semiconductors,” Phys. Rev. 106, 882–890 (1957).
[CrossRef]

Feher, G.

J. C. Hensel and G. Feher, “Cyclotron resonance experiments in uniaxially stressed silicon: valence band inverse mass parameters and deformation potentials,” Phys. Rev. 129, 1041–1062 (1963).
[CrossRef]

Gilbert, J. F.

L. E. Howarth and J. F. Gilbert, “Determination of free electron effective mass of n-type silicon,” J. Appl. Phys. 34, 236–237 (1963).
[CrossRef]

Goldman, J. R.

J. R. Goldman and J. A. Prybyla, “Ultrafast dynamics of laser-excited electron distributions in silicon,” Phys. Rev. Lett. 72, 1364–1367 (1994).
[CrossRef] [PubMed]

Gornik, E.

M. Dür, K. Unterrainer, and E. Gornik, “Effect of valence-band anisotropy and nonparabolicity on total scattering rates for holes in nonpolar semiconductors,” Phys. Rev. B 49, 13991–13994 (1994).
[CrossRef]

Grischkowsky, D. E.

F. E. Doany and D. E. Grischkowsky, “Measurement of ultrafast hot-carrier relaxation in silicon by thin film enhanced, time-resolved reflectivity,” Appl. Phys. Lett. 52, 36–38 (1988).
[CrossRef]

Grosso, G.

G. Grosso and C. Piermarocchi, “Tight-binding model and interaction scaling laws for silicon and germanium,” Phys. Rev. B 51, 16772–16777 (1995).
[CrossRef]

Guizzetti, G.

A. Borghesi, A. Stella, P. Bottazzi, G. Guizzetti, and L. Reggiani, “Optical determination of Si conduction-band nonparabolicity,” J. Appl. Phys. 67, 3102–3106 (1990).
[CrossRef]

Gusev, V. E.

O. B. Wright and V. E. Gusev, “Acoustic generation in crystalline silicon with femtosecond optical pulses,” Appl. Phys. Lett. 66, 1190–1192 (1995).
[CrossRef]

Harata, A.

T. Tanaka, A. Harata, and T. Sawada, “Subpicosecond surface-restricted carrier and thermal dynamics by transient reflectivity measurements,” J. Appl. Phys. 82, 4033–4038 (1997).
[CrossRef]

Heller, G. S.

J. J. Stickler, H. J. Zeigler, and G. S. Heller, “Quantum effects in Ge and Si. I,” Phys. Rev. 127, 1077–1084 (1962).
[CrossRef]

Hensel, J. C.

J. C. Hensel and G. Feher, “Cyclotron resonance experiments in uniaxially stressed silicon: valence band inverse mass parameters and deformation potentials,” Phys. Rev. 129, 1041–1062 (1963).
[CrossRef]

Hirlmann, C.

C. V. Shank, R. Yen, and C. Hirlmann, “Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon,” Phys. Rev. Lett. 50, 454–457 (1983).
[CrossRef]

Howarth, L. E.

L. E. Howarth and J. F. Gilbert, “Determination of free electron effective mass of n-type silicon,” J. Appl. Phys. 34, 236–237 (1963).
[CrossRef]

Jacoboni, C.

C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials,” Rev. Mod. Phys. 55, 645–705 (1983).
[CrossRef]

C. Jacoboni, R. Minder, and G. Majni, “Effects of band nonparabolocity on electron drift velocity in silicon above room temperature,” J. Chem. Phys. Solids 36, 1129–1133 (1975).
[CrossRef]

Jeong, S.

S. Jeong and J. Bokor, “Ultrafast carrier dynamics near the Si(100)2×1 surface,” Phys. Rev. B 59, 4943–4951 (1999).
[CrossRef]

Kip, A. F.

G. Dresselhaus, A. F. Kip, and C. Kittel, “Cyclotron resonance of electrons and holes in silicon and germanium crystals,” Phys. Rev. 98, 368–384 (1955).
[CrossRef]

Kittel, C.

G. Dresselhaus, A. F. Kip, and C. Kittel, “Cyclotron resonance of electrons and holes in silicon and germanium crystals,” Phys. Rev. 98, 368–384 (1955).
[CrossRef]

Koskowich, G. N.

G. N. Koskowich, M. Soma, and R. B. Darling, “Near-infrared free-carrier optical absorption in silicon: effect of first-order phonon-assisted scattering in a nonparabolic conduction band,” Phys. Rev. B 41, 2944–2947 (1990).
[CrossRef]

Koster, G. F.

J. C. Slater and G. F. Koster, “Simplified LCAO method for the periodic potential problem,” Phys. Rev. 94, 1498–1524 (1954).
[CrossRef]

Kurz, H.

T. Pfeifer, W. Kütt, H. Kurz, and R. Scholz, “Generation and detection of coherent optical phonons in germanium,” Phys. Rev. Lett. 69, 3248–3251 (1992).
[CrossRef] [PubMed]

W. Kütt, A. Esser, K. Seibert, U. Lemmer, and H. Kurz, “Femtosecond studies of plasma formation in crystalline and amorphous silicon,” in Applications of Ultrashort Laser Pulses in Science and Technology, A. Antonetti, ed., Proc. SPIE 1268, 154–165 (1990).
[CrossRef]

L.-A. Lompre, J.-M. Liu, H. Kurz, and N. Bloembergen, “Optical heating of electron–hole plasma in silicon by picosecond pulses,” Appl. Phys. Lett. 44, 3–5 (1984).
[CrossRef]

J.-M. Liu, H. Kurz, and N. Bloembergen, “Picosecond time-resolved plasma and temperature-induced changes of reflectivity and transmission in silicon” Appl. Phys. Lett. 41, 643–646 (1982).
[CrossRef]

Kütt, W.

T. Pfeifer, W. Kütt, H. Kurz, and R. Scholz, “Generation and detection of coherent optical phonons in germanium,” Phys. Rev. Lett. 69, 3248–3251 (1992).
[CrossRef] [PubMed]

W. Kütt, A. Esser, K. Seibert, U. Lemmer, and H. Kurz, “Femtosecond studies of plasma formation in crystalline and amorphous silicon,” in Applications of Ultrashort Laser Pulses in Science and Technology, A. Antonetti, ed., Proc. SPIE 1268, 154–165 (1990).
[CrossRef]

Lannoo, M.

Y. M. Niquet, C. Delerue, G. Allan, and M. Lannoo, “Method for tight-binding parameterization: application to silicon nanostructures,” Phys. Rev. 62, 5109–5116 (2000).
[CrossRef]

Lawaetz, P.

I. Balslev and P. Lawaetz, “On the interpretation of the observed hole mass shift with uniaxial stress in silicon,” Phys. Lett. 19, 6–7 (1965).
[CrossRef]

Lax, B.

R. N. Dexter, H. J. Zeigler, and B. Lax, “Cyclotron resonance experiments in silicon and germanium,” Phys. Rev. 104, 637–664 (1956).
[CrossRef]

B. Lax and J. G. Mavroides, “Statistics and galvanomagnetic effects in germanium and silicon with warped energy surfaces,” Phys. Rev. 100, 1650–1657 (1955).
[CrossRef]

Lemmer, U.

W. Kütt, A. Esser, K. Seibert, U. Lemmer, and H. Kurz, “Femtosecond studies of plasma formation in crystalline and amorphous silicon,” in Applications of Ultrashort Laser Pulses in Science and Technology, A. Antonetti, ed., Proc. SPIE 1268, 154–165 (1990).
[CrossRef]

Li, Y.

Y. Li and P. J. Lin-Chung, “New semiempirical construction of the Slater–Koster parameters for group-IV semiconductors,” Phys. Rev. B 27, 3465–3470 (1983).
[CrossRef]

Lin-Chung, P. J.

Y. Li and P. J. Lin-Chung, “New semiempirical construction of the Slater–Koster parameters for group-IV semiconductors,” Phys. Rev. B 27, 3465–3470 (1983).
[CrossRef]

Liu, J.-M.

L.-A. Lompre, J.-M. Liu, H. Kurz, and N. Bloembergen, “Optical heating of electron–hole plasma in silicon by picosecond pulses,” Appl. Phys. Lett. 44, 3–5 (1984).
[CrossRef]

J.-M. Liu, H. Kurz, and N. Bloembergen, “Picosecond time-resolved plasma and temperature-induced changes of reflectivity and transmission in silicon” Appl. Phys. Lett. 41, 643–646 (1982).
[CrossRef]

Lompre, L.-A.

L.-A. Lompre, J.-M. Liu, H. Kurz, and N. Bloembergen, “Optical heating of electron–hole plasma in silicon by picosecond pulses,” Appl. Phys. Lett. 44, 3–5 (1984).
[CrossRef]

Majni, G.

C. Jacoboni, R. Minder, and G. Majni, “Effects of band nonparabolocity on electron drift velocity in silicon above room temperature,” J. Chem. Phys. Solids 36, 1129–1133 (1975).
[CrossRef]

Mavroides, J. G.

B. Lax and J. G. Mavroides, “Statistics and galvanomagnetic effects in germanium and silicon with warped energy surfaces,” Phys. Rev. 100, 1650–1657 (1955).
[CrossRef]

Minder, R.

C. Jacoboni, R. Minder, and G. Majni, “Effects of band nonparabolocity on electron drift velocity in silicon above room temperature,” J. Chem. Phys. Solids 36, 1129–1133 (1975).
[CrossRef]

Miyao, M.

M. Miyao, T. Motooka, N. Natsuaki, and T. Tokuyama, “Change in the electron effective mass in extremely heavily doped n-type Si obtained by ion implantation and laser annealing,” Solid State Commun. 37, 605–608 (1981).
[CrossRef]

Motooka, T.

M. Miyao, T. Motooka, N. Natsuaki, and T. Tokuyama, “Change in the electron effective mass in extremely heavily doped n-type Si obtained by ion implantation and laser annealing,” Solid State Commun. 37, 605–608 (1981).
[CrossRef]

Natsuaki, N.

M. Miyao, T. Motooka, N. Natsuaki, and T. Tokuyama, “Change in the electron effective mass in extremely heavily doped n-type Si obtained by ion implantation and laser annealing,” Solid State Commun. 37, 605–608 (1981).
[CrossRef]

Niquet, Y. M.

Y. M. Niquet, C. Delerue, G. Allan, and M. Lannoo, “Method for tight-binding parameterization: application to silicon nanostructures,” Phys. Rev. 62, 5109–5116 (2000).
[CrossRef]

Pandey, K. C.

K. C. Pandey and J. C. Phillips, “Atomic densities of states near Si(111) surfaces,” Phys. Rev. B 13, 750–760 (1976).
[CrossRef]

Papaconstantopoulos, D. A.

D. A. Papaconstantopoulos and E. N. Economou, “Slater–Koster parameterization for Si and the ideal-vacancy calculation,” Phys. Rev. B 22, 2903–2907 (1980).
[CrossRef]

Petek, H.

T. Sjodin, H. Petek, and H.-L. Dai, “Ultrafast carrier dynamics in silicon: a two-color transient-reflection grating study on a (111) surface,” Phys. Rev. Lett. 81, 5664–5667 (1998).
[CrossRef]

Pfeifer, T.

T. Pfeifer, W. Kütt, H. Kurz, and R. Scholz, “Generation and detection of coherent optical phonons in germanium,” Phys. Rev. Lett. 69, 3248–3251 (1992).
[CrossRef] [PubMed]

Phillips, J. C.

K. C. Pandey and J. C. Phillips, “Atomic densities of states near Si(111) surfaces,” Phys. Rev. B 13, 750–760 (1976).
[CrossRef]

Piermarocchi, C.

G. Grosso and C. Piermarocchi, “Tight-binding model and interaction scaling laws for silicon and germanium,” Phys. Rev. B 51, 16772–16777 (1995).
[CrossRef]

Polatoglou, H. M.

C. Tserbak, H. M. Polatoglou, and G. Theodorou, “Unified approach to the electronic structure of strained Si/Ge superlattices,” Phys. Rev. B 47, 7104–7124 (1993).
[CrossRef]

Prybyla, J. A.

J. R. Goldman and J. A. Prybyla, “Ultrafast dynamics of laser-excited electron distributions in silicon,” Phys. Rev. Lett. 72, 1364–1367 (1994).
[CrossRef] [PubMed]

Reggiani, L.

A. Borghesi, A. Stella, P. Bottazzi, G. Guizzetti, and L. Reggiani, “Optical determination of Si conduction-band nonparabolicity,” J. Appl. Phys. 67, 3102–3106 (1990).
[CrossRef]

C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials,” Rev. Mod. Phys. 55, 645–705 (1983).
[CrossRef]

Riffe, D. M.

A. J. Sabbah and D. M. Riffe, “Measurement of silicon surface recombination velocity using ultrafast pump–probe reflectivity in the near infrared,” J. Appl. Phys. 88, 6954–6956 (2000).
[CrossRef]

Sabbah, A. J.

A. J. Sabbah and D. M. Riffe, “Measurement of silicon surface recombination velocity using ultrafast pump–probe reflectivity in the near infrared,” J. Appl. Phys. 88, 6954–6956 (2000).
[CrossRef]

Sawada, T.

T. Tanaka, A. Harata, and T. Sawada, “Subpicosecond surface-restricted carrier and thermal dynamics by transient reflectivity measurements,” J. Appl. Phys. 82, 4033–4038 (1997).
[CrossRef]

Scholz, R.

T. Pfeifer, W. Kütt, H. Kurz, and R. Scholz, “Generation and detection of coherent optical phonons in germanium,” Phys. Rev. Lett. 69, 3248–3251 (1992).
[CrossRef] [PubMed]

Seibert, K.

W. Kütt, A. Esser, K. Seibert, U. Lemmer, and H. Kurz, “Femtosecond studies of plasma formation in crystalline and amorphous silicon,” in Applications of Ultrashort Laser Pulses in Science and Technology, A. Antonetti, ed., Proc. SPIE 1268, 154–165 (1990).
[CrossRef]

Shank, C. V.

C. V. Shank, R. Yen, and C. Hirlmann, “Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon,” Phys. Rev. Lett. 50, 454–457 (1983).
[CrossRef]

Sjodin, T.

T. Sjodin, H. Petek, and H.-L. Dai, “Ultrafast carrier dynamics in silicon: a two-color transient-reflection grating study on a (111) surface,” Phys. Rev. Lett. 81, 5664–5667 (1998).
[CrossRef]

Slater, J. C.

J. C. Slater and G. F. Koster, “Simplified LCAO method for the periodic potential problem,” Phys. Rev. 94, 1498–1524 (1954).
[CrossRef]

Soma, M.

G. N. Koskowich, M. Soma, and R. B. Darling, “Near-infrared free-carrier optical absorption in silicon: effect of first-order phonon-assisted scattering in a nonparabolic conduction band,” Phys. Rev. B 41, 2944–2947 (1990).
[CrossRef]

Spitzer, W. G.

W. G. Spitzer and H. Y. Fan, “Determination of optical constants and carrier effective mass of semiconductors,” Phys. Rev. 106, 882–890 (1957).
[CrossRef]

Stella, A.

A. Borghesi, A. Stella, P. Bottazzi, G. Guizzetti, and L. Reggiani, “Optical determination of Si conduction-band nonparabolicity,” J. Appl. Phys. 67, 3102–3106 (1990).
[CrossRef]

Stickler, J. J.

J. J. Stickler, H. J. Zeigler, and G. S. Heller, “Quantum effects in Ge and Si. I,” Phys. Rev. 127, 1077–1084 (1962).
[CrossRef]

Talwar, D. N.

D. N. Talwar and C. S. Ting, “Tight-binding calculations for the electronic structure of isolated vacancies and impurities in III–V compound semiconductors,” Phys. Rev. B 25, 2660–2680 (1982).
[CrossRef]

Tanaka, T.

T. Tanaka, A. Harata, and T. Sawada, “Subpicosecond surface-restricted carrier and thermal dynamics by transient reflectivity measurements,” J. Appl. Phys. 82, 4033–4038 (1997).
[CrossRef]

Theodorou, G.

C. Tserbak, H. M. Polatoglou, and G. Theodorou, “Unified approach to the electronic structure of strained Si/Ge superlattices,” Phys. Rev. B 47, 7104–7124 (1993).
[CrossRef]

Ting, C. S.

D. N. Talwar and C. S. Ting, “Tight-binding calculations for the electronic structure of isolated vacancies and impurities in III–V compound semiconductors,” Phys. Rev. B 25, 2660–2680 (1982).
[CrossRef]

Tokuyama, T.

M. Miyao, T. Motooka, N. Natsuaki, and T. Tokuyama, “Change in the electron effective mass in extremely heavily doped n-type Si obtained by ion implantation and laser annealing,” Solid State Commun. 37, 605–608 (1981).
[CrossRef]

Tserbak, C.

C. Tserbak, H. M. Polatoglou, and G. Theodorou, “Unified approach to the electronic structure of strained Si/Ge superlattices,” Phys. Rev. B 47, 7104–7124 (1993).
[CrossRef]

Unterrainer, K.

M. Dür, K. Unterrainer, and E. Gornik, “Effect of valence-band anisotropy and nonparabolicity on total scattering rates for holes in nonpolar semiconductors,” Phys. Rev. B 49, 13991–13994 (1994).
[CrossRef]

van Driel, H. M.

H. M. van Driel, “Optical effective mass of high density carriers in silicon,” Appl. Phys. Lett. 44, 617–619 (1984).
[CrossRef]

Vassell, M. O.

E. M. Conwell and M. O. Vassell, “High-field transport in n-type GaAs,” Phys. Rev. 166, 797–821 (1968).
[CrossRef]

von der Linde, D.

D. von der Linde and N. Fabricius, “Observation of an electronic plasma in picosecond laser annealing of silicon,” Appl. Phys. Lett. 41, 991–993 (1982).
[CrossRef]

Wright, O. B.

O. B. Wright and V. E. Gusev, “Acoustic generation in crystalline silicon with femtosecond optical pulses,” Appl. Phys. Lett. 66, 1190–1192 (1995).
[CrossRef]

Yang, G.-Z.

G.-Z. Yang and N. Bloembergen, “Effective mass in picosecond laser-produced high-density plasma in silicon,” IEEE J. Quantum Electron. QE-22, 195–196 (1986).
[CrossRef]

Yen, R.

C. V. Shank, R. Yen, and C. Hirlmann, “Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon,” Phys. Rev. Lett. 50, 454–457 (1983).
[CrossRef]

Zeigler, H. J.

J. J. Stickler, H. J. Zeigler, and G. S. Heller, “Quantum effects in Ge and Si. I,” Phys. Rev. 127, 1077–1084 (1962).
[CrossRef]

R. N. Dexter, H. J. Zeigler, and B. Lax, “Cyclotron resonance experiments in silicon and germanium,” Phys. Rev. 104, 637–664 (1956).
[CrossRef]

Appl. Phys. Lett. (6)

L.-A. Lompre, J.-M. Liu, H. Kurz, and N. Bloembergen, “Optical heating of electron–hole plasma in silicon by picosecond pulses,” Appl. Phys. Lett. 44, 3–5 (1984).
[CrossRef]

J.-M. Liu, H. Kurz, and N. Bloembergen, “Picosecond time-resolved plasma and temperature-induced changes of reflectivity and transmission in silicon” Appl. Phys. Lett. 41, 643–646 (1982).
[CrossRef]

D. von der Linde and N. Fabricius, “Observation of an electronic plasma in picosecond laser annealing of silicon,” Appl. Phys. Lett. 41, 991–993 (1982).
[CrossRef]

H. M. van Driel, “Optical effective mass of high density carriers in silicon,” Appl. Phys. Lett. 44, 617–619 (1984).
[CrossRef]

F. E. Doany and D. E. Grischkowsky, “Measurement of ultrafast hot-carrier relaxation in silicon by thin film enhanced, time-resolved reflectivity,” Appl. Phys. Lett. 52, 36–38 (1988).
[CrossRef]

O. B. Wright and V. E. Gusev, “Acoustic generation in crystalline silicon with femtosecond optical pulses,” Appl. Phys. Lett. 66, 1190–1192 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

G.-Z. Yang and N. Bloembergen, “Effective mass in picosecond laser-produced high-density plasma in silicon,” IEEE J. Quantum Electron. QE-22, 195–196 (1986).
[CrossRef]

J. Appl. Phys. (4)

L. E. Howarth and J. F. Gilbert, “Determination of free electron effective mass of n-type silicon,” J. Appl. Phys. 34, 236–237 (1963).
[CrossRef]

A. Borghesi, A. Stella, P. Bottazzi, G. Guizzetti, and L. Reggiani, “Optical determination of Si conduction-band nonparabolicity,” J. Appl. Phys. 67, 3102–3106 (1990).
[CrossRef]

T. Tanaka, A. Harata, and T. Sawada, “Subpicosecond surface-restricted carrier and thermal dynamics by transient reflectivity measurements,” J. Appl. Phys. 82, 4033–4038 (1997).
[CrossRef]

A. J. Sabbah and D. M. Riffe, “Measurement of silicon surface recombination velocity using ultrafast pump–probe reflectivity in the near infrared,” J. Appl. Phys. 88, 6954–6956 (2000).
[CrossRef]

J. Chem. Phys. Solids (1)

C. Jacoboni, R. Minder, and G. Majni, “Effects of band nonparabolocity on electron drift velocity in silicon above room temperature,” J. Chem. Phys. Solids 36, 1129–1133 (1975).
[CrossRef]

Phys. Lett. (1)

I. Balslev and P. Lawaetz, “On the interpretation of the observed hole mass shift with uniaxial stress in silicon,” Phys. Lett. 19, 6–7 (1965).
[CrossRef]

Phys. Rev. (9)

J. C. Slater and G. F. Koster, “Simplified LCAO method for the periodic potential problem,” Phys. Rev. 94, 1498–1524 (1954).
[CrossRef]

G. Dresselhaus, A. F. Kip, and C. Kittel, “Cyclotron resonance of electrons and holes in silicon and germanium crystals,” Phys. Rev. 98, 368–384 (1955).
[CrossRef]

R. N. Dexter, H. J. Zeigler, and B. Lax, “Cyclotron resonance experiments in silicon and germanium,” Phys. Rev. 104, 637–664 (1956).
[CrossRef]

Y. M. Niquet, C. Delerue, G. Allan, and M. Lannoo, “Method for tight-binding parameterization: application to silicon nanostructures,” Phys. Rev. 62, 5109–5116 (2000).
[CrossRef]

J. J. Stickler, H. J. Zeigler, and G. S. Heller, “Quantum effects in Ge and Si. I,” Phys. Rev. 127, 1077–1084 (1962).
[CrossRef]

J. C. Hensel and G. Feher, “Cyclotron resonance experiments in uniaxially stressed silicon: valence band inverse mass parameters and deformation potentials,” Phys. Rev. 129, 1041–1062 (1963).
[CrossRef]

E. M. Conwell and M. O. Vassell, “High-field transport in n-type GaAs,” Phys. Rev. 166, 797–821 (1968).
[CrossRef]

W. G. Spitzer and H. Y. Fan, “Determination of optical constants and carrier effective mass of semiconductors,” Phys. Rev. 106, 882–890 (1957).
[CrossRef]

B. Lax and J. G. Mavroides, “Statistics and galvanomagnetic effects in germanium and silicon with warped energy surfaces,” Phys. Rev. 100, 1650–1657 (1955).
[CrossRef]

Phys. Rev. B (10)

M. Dür, K. Unterrainer, and E. Gornik, “Effect of valence-band anisotropy and nonparabolicity on total scattering rates for holes in nonpolar semiconductors,” Phys. Rev. B 49, 13991–13994 (1994).
[CrossRef]

S. Jeong and J. Bokor, “Ultrafast carrier dynamics near the Si(100)2×1 surface,” Phys. Rev. B 59, 4943–4951 (1999).
[CrossRef]

D. J. Chadi, “Spin–orbit splitting in crystalline and compositionally disordered semiconductors,” Phys. Rev. B 16, 790–796 (1977).
[CrossRef]

K. C. Pandey and J. C. Phillips, “Atomic densities of states near Si(111) surfaces,” Phys. Rev. B 13, 750–760 (1976).
[CrossRef]

D. A. Papaconstantopoulos and E. N. Economou, “Slater–Koster parameterization for Si and the ideal-vacancy calculation,” Phys. Rev. B 22, 2903–2907 (1980).
[CrossRef]

D. N. Talwar and C. S. Ting, “Tight-binding calculations for the electronic structure of isolated vacancies and impurities in III–V compound semiconductors,” Phys. Rev. B 25, 2660–2680 (1982).
[CrossRef]

Y. Li and P. J. Lin-Chung, “New semiempirical construction of the Slater–Koster parameters for group-IV semiconductors,” Phys. Rev. B 27, 3465–3470 (1983).
[CrossRef]

C. Tserbak, H. M. Polatoglou, and G. Theodorou, “Unified approach to the electronic structure of strained Si/Ge superlattices,” Phys. Rev. B 47, 7104–7124 (1993).
[CrossRef]

G. Grosso and C. Piermarocchi, “Tight-binding model and interaction scaling laws for silicon and germanium,” Phys. Rev. B 51, 16772–16777 (1995).
[CrossRef]

G. N. Koskowich, M. Soma, and R. B. Darling, “Near-infrared free-carrier optical absorption in silicon: effect of first-order phonon-assisted scattering in a nonparabolic conduction band,” Phys. Rev. B 41, 2944–2947 (1990).
[CrossRef]

Phys. Rev. Lett. (4)

T. Sjodin, H. Petek, and H.-L. Dai, “Ultrafast carrier dynamics in silicon: a two-color transient-reflection grating study on a (111) surface,” Phys. Rev. Lett. 81, 5664–5667 (1998).
[CrossRef]

C. V. Shank, R. Yen, and C. Hirlmann, “Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon,” Phys. Rev. Lett. 50, 454–457 (1983).
[CrossRef]

T. Pfeifer, W. Kütt, H. Kurz, and R. Scholz, “Generation and detection of coherent optical phonons in germanium,” Phys. Rev. Lett. 69, 3248–3251 (1992).
[CrossRef] [PubMed]

J. R. Goldman and J. A. Prybyla, “Ultrafast dynamics of laser-excited electron distributions in silicon,” Phys. Rev. Lett. 72, 1364–1367 (1994).
[CrossRef] [PubMed]

Phys. Status Solidi B (1)

D. J. Chadi and M. L. Cohen, “Tight-binding calculations of the valence bands of diamond and zincblende crystals,” Phys. Status Solidi B 68, 405–419 (1975).
[CrossRef]

Proc. SPIE (1)

W. Kütt, A. Esser, K. Seibert, U. Lemmer, and H. Kurz, “Femtosecond studies of plasma formation in crystalline and amorphous silicon,” in Applications of Ultrashort Laser Pulses in Science and Technology, A. Antonetti, ed., Proc. SPIE 1268, 154–165 (1990).
[CrossRef]

Rev. Mod. Phys. (1)

C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials,” Rev. Mod. Phys. 55, 645–705 (1983).
[CrossRef]

Solid State Commun. (1)

M. Miyao, T. Motooka, N. Natsuaki, and T. Tokuyama, “Change in the electron effective mass in extremely heavily doped n-type Si obtained by ion implantation and laser annealing,” Solid State Commun. 37, 605–608 (1981).
[CrossRef]

Other (9)

D. A. Papaconstantopoulos, Handbook of the Band Structure of Elemental Solids (Plenum, New York, 1986).

W. A. Harrison, Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (Dover, New York, 1989).

K. Seeger, Semiconductor Physics: An Introduction (Springer, New York, 1982).

F. Wooten, Optical Properties of Solids (Academic, New York, 1972).

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, Philadelphia, Pa., 1976).

O. Madelung, Semiconductors—Basic Data (Springer, New York, 1996).

The universal model of Harrison16 has Esx(111)=1.131. Increasing it by 15% to 1.301 produces much better curvature parameters and BZ edge band energies.

The reported Niquet SK parameters Esx(311), Esx(113), Exy(311), and Exy(113) have signs opposite those of the convention of Papaconstantopoulos. The Papaconstantopoulos convention is used in Table 2.

S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Si electron conductivity mass versus carrier density at room temperature. Symbols indicate experiment points. Dashed curves, standard model of nonparabolicity, Eq. (1); solid curve, extended model, Eq. (7). For comparison among the calculated curves, me0 has been slightly adjusted in each calculation such that the low-density, room-temperature mass equals 0.285 m0.

Fig. 2
Fig. 2

Calculated electron conductivity mass versus temperature in the nondegenerate carrier-density limit. Dashed curve, standard model of nonparabolicity with α=0.6 eV-1; solid curve, extended model with α=0.4 eV-1 and β=0.25 eV-2.

Fig. 3
Fig. 3

Valence-band dispersion curves along high-symmetry directions near the top of the valence band. (a) Bands calculated from the Harrison model matched to the Stickler curvature parameters. (b) Solid curves, Harrison model matched to the Balslev curvature parameters; dashed curves, Dür model with the Balslev curvature parameters.

Fig. 4
Fig. 4

Calculated hole conductivity mass versus temperature in the nondegenerate carrier-density limit. (a) Curves for the Niquet, Harrison, and Papaconstantopoulos SK parameters sets matched to the Stickler (three top curves) and Balslev (three bottom curves) curvature parameters. (b) Solid curve, average of three tight-binding calculations matched to the Balslev curvature parameters; long-dashed curve, Dür model with Balslev curvature parameters; short-dashed curve, Dür model with Balslev curvature parameters (the split-off band is neglected); dotted curve, parabolic bands, Eq. (9).

Fig. 5
Fig. 5

Electron, hole, and optical masses versus temperature in the nondegenerate carrier density limit. (a) Electron mass from extended model with α=0.4 eV-1 and β=0.25 eV-2. Hole mass from average of three tight-binding calculations matched to the Balslev curvature parameters. (b) Optical mass calculated from the electron and hole masses; see text.

Fig. 6
Fig. 6

Time-dependent reflectivity change of Si(100) after excitation by a 25-fs, 800-nm laser pulse. (A) Coherent spike, (B) pulse-width-limited drop in reflectivity caused by optical response of excited free carriers, (C) continued drop caused by decrease in optical mass as carriers cool to room temperature, (D) beginning of increase in reflectivity owing to carrier recombination across the Si bandgap.

Tables (4)

Tables Icon

Table 1 Experimentally Derived Curvature Parametersa

Tables Icon

Table 2 Curvature and SK Parameters for Three Tight-Binding Modelsa

Tables Icon

Table 3 Values of SK Parameters Esx(220), Exy(220), and Exy(113) Adjusted by Use of the Harrison, Papaconstantopoulos, and Niquet SK Parameter Sets to Match the Balslev–Stickler Curve Parametersa

Tables Icon

Table 4 Comparison of Calculated Values of me(T), mh(T), and mopt(T) among Present Study, van Driel Study, and Yang–Bloembergen Studya

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E(1+αE)=2k22me0.
1mi(k)=132k2Ei(k).
1mc(nc, T)=i,k f[μc(nc), Ei(k), T][1/mi(k)]i,k f[μc(nc), Ei(k), T].
1mc(E)=1me0 1+(8/3)α(E+αE2)[1+4α(E+αE2)]3/2.
me(E)=me01+103αE.
ρi(E)=21/2me03/2π23E1/2(1+αE)1/2(1+2αE).
E(1+αE+βE2)=2k22me0.
me(T)=me0(1+5αkBT).
E lhhh(k)=Ak2±[B2k4+C2(kx2ky2+ky2kz2+kz2kx2)]1/2,
Eso(k)=Ak2+Δ,
ΔRR=-γ ncmopt,

Metrics