Abstract

The change in the interband-absorption properties of a quantum wire due to the optical near field is investigated. Calculation results show that the near field can enhance or reduce the absorption, depending on the geometry of the quantum wire and the incident direction of light.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ohtsu, Near-Field Nano/Atom Optics and Technology (Springer-Verlag, Tokyo, 1998).
  2. U. Bockelmann and G. Bastard, “Interband absorption in quantum wires. I. Zero-magnetic-field case,” Phys. Rev. B 45, 1688–1699 (1992).
    [CrossRef]
  3. T. Sogawa, H. Ando, S. Ando, and H. Kanbe, “Interband optical transition spectra in GaAs quantum wires with rectangular cross sections,” Phys. Rev. B 56, 1958–1966 (1997).
    [CrossRef]
  4. F. Flack, N. Samarth, V. Nikitin, P. A. Crowell, J. Shi, J. Levy, and D. D. Awschalom, “Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots,” Phys. Rev. B 54, R17312–R17315 (1996).
    [CrossRef]
  5. B. Hanewinkel, A. Knorr, P. Thomas, and S. W. Koch, “Optical near-field response of semiconductor quantum dots,” Phys. Rev. B 55, 13715–13725 (1997).
    [CrossRef]
  6. G. W. Bryant, “Probing quantum nanostructures with near-field optical microscopy and vice versa,” Appl. Phys. Lett. 72, 768–770 (1998).
    [CrossRef]
  7. T. Saiki, K. Nishi, and M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
    [CrossRef]
  8. H. D. Robinson, M. G. Muller, B. B. Goldberg, and J. L. Merz, “Local optical spectroscopy of self-assembled quantum dots using a near-field optical fiber probe to induce a localized strain field,” Appl. Phys. Lett. 72, 2081–2083 (1998).
    [CrossRef]
  9. O. Mauritz, G. Goldoni, F. Rossi, and E. Molinari, “Local optical spectroscopy in quantum confined systems: a theoretical description,” Phys. Rev. Lett. 82, 847–850 (1999).
    [CrossRef]
  10. C. D. Simserides, U. Hohenester, G. Goldoni, and E. Molinari, “Local absorption spectra of artificial atoms and molecules,” Phys. Rev. B 62, 13657–13666 (2000).
    [CrossRef]
  11. H. D. Robinson and B. B. Goldberg, “Light-induced spectral diffusion in single self-assembled quantum dots,” Phys. Rev. B 61, R5086–R5089 (2000).
    [CrossRef]
  12. O. Mauritz, G. Goldoni, E. Molinari, and F. Rossi, “Local optical spectroscopy of semiconductor nanostructures in the linear regime,” Phys. Rev. B 62, 8204–8211 (2000).
    [CrossRef]
  13. V. Emiliani, T. Guenther, Ch. Lienau, R. Nötzel, and K. H. Ploog, “Ultrafast near-field spectroscopy of quasi-one-dimensional transport in a single quantum wire,” Phys. Rev. B 61, R10583–R10586 (2000).
    [CrossRef]
  14. F. Intonti, V. Emiliani, Ch. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Near-field optical spectroscopy of localized and delocalized excitons in a single GaAs quantum wire,” Phys. Rev. B 63, 075313 (2001).
    [CrossRef]
  15. V. Emiliani, F. Intonti, Ch. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Near-field optical imaging and spectroscopy of a coupled quantum wire-dot structure,” Phys. Rev. B 64, 155316 (2001).
    [CrossRef]
  16. B. Lee and K.-Y. Kim, “Effect of parallel-perpendicular kinetic energy coupling under effective mass approximation at heterostructure boundaries in a quantum wire,” J. Appl. Phys. 84, 5593–5596 (1998).
    [CrossRef]
  17. J. Singh, Semiconductor Optoelectronics (McGraw-Hill, New York, 1995).
  18. Several theoretical studies have reported that quantum confinement in two dimensions significantly modifies the valence-band structures (see Refs. 2 and 3 and the references therein). That is, the heavy-hole and the light-hole states are strongly mixed even at the zone center. (Note that zone center is assumed in this paper.) Therefore we have to consider the band-coupling (mixing) effects in QWR structures for the exact quantitative calculation. However, we did not include them for simplicity. Our main claim is that the optical near field can change the field distributions in a QWR, and this change modifies the optical absorption properties of a QWR. The change in optical fields is not dependent on the specific calculation method of electronic states of a QWR. Therefore we can say that although our calculation of electronic states of a QWR neglecting band-mixing effects limits the accuracy of our modeling, it does not change the physics investigated in this paper.
  19. J.-J. Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133–237 (1997).
    [CrossRef]
  20. F. Pincemin, A. Sentenac, and J.-J. Greffet, “Near field scattered by a dielectric rod below a metallic surface,” J. Opt. Soc. Am. A 11, 1117–1127 (1994).
    [CrossRef]
  21. A. Sentenac and J.-J. Greffet, “Scattering by deep inhomogeneous gratings,” J. Opt. Soc. Am. A 9, 996–1006 (1992).
    [CrossRef]
  22. O. J. F. Martin, A. Dereux, and Ch. Girard, “Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary shape,” J. Opt. Soc. Am. A 11, 1073–1080 (1994).
    [CrossRef]
  23. O. J. F. Martin, Ch. Girard, and A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
    [CrossRef] [PubMed]
  24. R. Carminati and J.-J. Greffet, “Influence of dielectric contrast and topography on the near field scattered by an inhomogeneous surface,” J. Opt. Soc. Am. A 12, 2716–2725 (1995).
    [CrossRef]
  25. A. Castiaux, C. Girard, A. Dereux, O. J. F. Martin, and J.-P. Vigneron, “Electrodynamics in complex systems: application to near-field probing of optical microresonators,” Phys. Rev. E 54, 5752–5760 (1996).
    [CrossRef]
  26. R. Carminati, “Phase properties of the optical near-field,” Phys. Rev. E 55, R4901–R4904 (1997).
    [CrossRef]
  27. We can adopt simpler models used in the electrodynamics text books to see only a qualitative effect of the optical near field [e.g., the dipole approximation that regards the inhomogeneity as a circular dipole, J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999), Chap. 4]. However, to see the quantitative change of this effect depending on the geometry of the QWR (this is one of the main claims of this paper), we have to use a more rigorous method that can deal with inhomogeneities of arbitrary shape.
  28. K.-Y. Kim, B. Lee, and C. Lee, “Modeling of intersubband and free carrier absorption coefficients in heavily doped conduction-band quantum-well structures,” IEEE J. Quantum Electron. 35, 1491–1501 (1999).
    [CrossRef]
  29. D. D. Coon and R. P. G. Karunasiri, “New mode of IR detection using quantum wells,” Appl. Phys. Lett. 45, 649–651 (1984).
    [CrossRef]
  30. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).
  31. The exciton level in the QWR would be much closer to the resonance energy between the ground states of the conduction and heavy-hole bands (ħω00). Then, Eq. (9) reduces to ε(ω)≅εoff+ifexcNexce2/mexc2ωγexc+f00Nhhe2/mhh2ωγ00, and the refractive-index change can be negligible.

2001 (2)

F. Intonti, V. Emiliani, Ch. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Near-field optical spectroscopy of localized and delocalized excitons in a single GaAs quantum wire,” Phys. Rev. B 63, 075313 (2001).
[CrossRef]

V. Emiliani, F. Intonti, Ch. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Near-field optical imaging and spectroscopy of a coupled quantum wire-dot structure,” Phys. Rev. B 64, 155316 (2001).
[CrossRef]

2000 (4)

C. D. Simserides, U. Hohenester, G. Goldoni, and E. Molinari, “Local absorption spectra of artificial atoms and molecules,” Phys. Rev. B 62, 13657–13666 (2000).
[CrossRef]

H. D. Robinson and B. B. Goldberg, “Light-induced spectral diffusion in single self-assembled quantum dots,” Phys. Rev. B 61, R5086–R5089 (2000).
[CrossRef]

O. Mauritz, G. Goldoni, E. Molinari, and F. Rossi, “Local optical spectroscopy of semiconductor nanostructures in the linear regime,” Phys. Rev. B 62, 8204–8211 (2000).
[CrossRef]

V. Emiliani, T. Guenther, Ch. Lienau, R. Nötzel, and K. H. Ploog, “Ultrafast near-field spectroscopy of quasi-one-dimensional transport in a single quantum wire,” Phys. Rev. B 61, R10583–R10586 (2000).
[CrossRef]

1999 (2)

O. Mauritz, G. Goldoni, F. Rossi, and E. Molinari, “Local optical spectroscopy in quantum confined systems: a theoretical description,” Phys. Rev. Lett. 82, 847–850 (1999).
[CrossRef]

K.-Y. Kim, B. Lee, and C. Lee, “Modeling of intersubband and free carrier absorption coefficients in heavily doped conduction-band quantum-well structures,” IEEE J. Quantum Electron. 35, 1491–1501 (1999).
[CrossRef]

1998 (4)

G. W. Bryant, “Probing quantum nanostructures with near-field optical microscopy and vice versa,” Appl. Phys. Lett. 72, 768–770 (1998).
[CrossRef]

T. Saiki, K. Nishi, and M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
[CrossRef]

H. D. Robinson, M. G. Muller, B. B. Goldberg, and J. L. Merz, “Local optical spectroscopy of self-assembled quantum dots using a near-field optical fiber probe to induce a localized strain field,” Appl. Phys. Lett. 72, 2081–2083 (1998).
[CrossRef]

B. Lee and K.-Y. Kim, “Effect of parallel-perpendicular kinetic energy coupling under effective mass approximation at heterostructure boundaries in a quantum wire,” J. Appl. Phys. 84, 5593–5596 (1998).
[CrossRef]

1997 (4)

J.-J. Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133–237 (1997).
[CrossRef]

T. Sogawa, H. Ando, S. Ando, and H. Kanbe, “Interband optical transition spectra in GaAs quantum wires with rectangular cross sections,” Phys. Rev. B 56, 1958–1966 (1997).
[CrossRef]

B. Hanewinkel, A. Knorr, P. Thomas, and S. W. Koch, “Optical near-field response of semiconductor quantum dots,” Phys. Rev. B 55, 13715–13725 (1997).
[CrossRef]

R. Carminati, “Phase properties of the optical near-field,” Phys. Rev. E 55, R4901–R4904 (1997).
[CrossRef]

1996 (2)

A. Castiaux, C. Girard, A. Dereux, O. J. F. Martin, and J.-P. Vigneron, “Electrodynamics in complex systems: application to near-field probing of optical microresonators,” Phys. Rev. E 54, 5752–5760 (1996).
[CrossRef]

F. Flack, N. Samarth, V. Nikitin, P. A. Crowell, J. Shi, J. Levy, and D. D. Awschalom, “Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots,” Phys. Rev. B 54, R17312–R17315 (1996).
[CrossRef]

1995 (2)

O. J. F. Martin, Ch. Girard, and A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

R. Carminati and J.-J. Greffet, “Influence of dielectric contrast and topography on the near field scattered by an inhomogeneous surface,” J. Opt. Soc. Am. A 12, 2716–2725 (1995).
[CrossRef]

1994 (2)

1992 (2)

A. Sentenac and J.-J. Greffet, “Scattering by deep inhomogeneous gratings,” J. Opt. Soc. Am. A 9, 996–1006 (1992).
[CrossRef]

U. Bockelmann and G. Bastard, “Interband absorption in quantum wires. I. Zero-magnetic-field case,” Phys. Rev. B 45, 1688–1699 (1992).
[CrossRef]

1984 (1)

D. D. Coon and R. P. G. Karunasiri, “New mode of IR detection using quantum wells,” Appl. Phys. Lett. 45, 649–651 (1984).
[CrossRef]

Ando, H.

T. Sogawa, H. Ando, S. Ando, and H. Kanbe, “Interband optical transition spectra in GaAs quantum wires with rectangular cross sections,” Phys. Rev. B 56, 1958–1966 (1997).
[CrossRef]

Ando, S.

T. Sogawa, H. Ando, S. Ando, and H. Kanbe, “Interband optical transition spectra in GaAs quantum wires with rectangular cross sections,” Phys. Rev. B 56, 1958–1966 (1997).
[CrossRef]

Awschalom, D. D.

F. Flack, N. Samarth, V. Nikitin, P. A. Crowell, J. Shi, J. Levy, and D. D. Awschalom, “Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots,” Phys. Rev. B 54, R17312–R17315 (1996).
[CrossRef]

Bastard, G.

U. Bockelmann and G. Bastard, “Interband absorption in quantum wires. I. Zero-magnetic-field case,” Phys. Rev. B 45, 1688–1699 (1992).
[CrossRef]

Bockelmann, U.

U. Bockelmann and G. Bastard, “Interband absorption in quantum wires. I. Zero-magnetic-field case,” Phys. Rev. B 45, 1688–1699 (1992).
[CrossRef]

Bryant, G. W.

G. W. Bryant, “Probing quantum nanostructures with near-field optical microscopy and vice versa,” Appl. Phys. Lett. 72, 768–770 (1998).
[CrossRef]

Carminati, R.

J.-J. Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133–237 (1997).
[CrossRef]

R. Carminati, “Phase properties of the optical near-field,” Phys. Rev. E 55, R4901–R4904 (1997).
[CrossRef]

R. Carminati and J.-J. Greffet, “Influence of dielectric contrast and topography on the near field scattered by an inhomogeneous surface,” J. Opt. Soc. Am. A 12, 2716–2725 (1995).
[CrossRef]

Castiaux, A.

A. Castiaux, C. Girard, A. Dereux, O. J. F. Martin, and J.-P. Vigneron, “Electrodynamics in complex systems: application to near-field probing of optical microresonators,” Phys. Rev. E 54, 5752–5760 (1996).
[CrossRef]

Coon, D. D.

D. D. Coon and R. P. G. Karunasiri, “New mode of IR detection using quantum wells,” Appl. Phys. Lett. 45, 649–651 (1984).
[CrossRef]

Crowell, P. A.

F. Flack, N. Samarth, V. Nikitin, P. A. Crowell, J. Shi, J. Levy, and D. D. Awschalom, “Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots,” Phys. Rev. B 54, R17312–R17315 (1996).
[CrossRef]

Dereux, A.

A. Castiaux, C. Girard, A. Dereux, O. J. F. Martin, and J.-P. Vigneron, “Electrodynamics in complex systems: application to near-field probing of optical microresonators,” Phys. Rev. E 54, 5752–5760 (1996).
[CrossRef]

O. J. F. Martin, Ch. Girard, and A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

O. J. F. Martin, A. Dereux, and Ch. Girard, “Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary shape,” J. Opt. Soc. Am. A 11, 1073–1080 (1994).
[CrossRef]

Elsaesser, T.

F. Intonti, V. Emiliani, Ch. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Near-field optical spectroscopy of localized and delocalized excitons in a single GaAs quantum wire,” Phys. Rev. B 63, 075313 (2001).
[CrossRef]

V. Emiliani, F. Intonti, Ch. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Near-field optical imaging and spectroscopy of a coupled quantum wire-dot structure,” Phys. Rev. B 64, 155316 (2001).
[CrossRef]

Emiliani, V.

V. Emiliani, F. Intonti, Ch. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Near-field optical imaging and spectroscopy of a coupled quantum wire-dot structure,” Phys. Rev. B 64, 155316 (2001).
[CrossRef]

F. Intonti, V. Emiliani, Ch. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Near-field optical spectroscopy of localized and delocalized excitons in a single GaAs quantum wire,” Phys. Rev. B 63, 075313 (2001).
[CrossRef]

V. Emiliani, T. Guenther, Ch. Lienau, R. Nötzel, and K. H. Ploog, “Ultrafast near-field spectroscopy of quasi-one-dimensional transport in a single quantum wire,” Phys. Rev. B 61, R10583–R10586 (2000).
[CrossRef]

Flack, F.

F. Flack, N. Samarth, V. Nikitin, P. A. Crowell, J. Shi, J. Levy, and D. D. Awschalom, “Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots,” Phys. Rev. B 54, R17312–R17315 (1996).
[CrossRef]

Girard, C.

A. Castiaux, C. Girard, A. Dereux, O. J. F. Martin, and J.-P. Vigneron, “Electrodynamics in complex systems: application to near-field probing of optical microresonators,” Phys. Rev. E 54, 5752–5760 (1996).
[CrossRef]

Girard, Ch.

O. J. F. Martin, Ch. Girard, and A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

O. J. F. Martin, A. Dereux, and Ch. Girard, “Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary shape,” J. Opt. Soc. Am. A 11, 1073–1080 (1994).
[CrossRef]

Goldberg, B. B.

H. D. Robinson and B. B. Goldberg, “Light-induced spectral diffusion in single self-assembled quantum dots,” Phys. Rev. B 61, R5086–R5089 (2000).
[CrossRef]

H. D. Robinson, M. G. Muller, B. B. Goldberg, and J. L. Merz, “Local optical spectroscopy of self-assembled quantum dots using a near-field optical fiber probe to induce a localized strain field,” Appl. Phys. Lett. 72, 2081–2083 (1998).
[CrossRef]

Goldoni, G.

C. D. Simserides, U. Hohenester, G. Goldoni, and E. Molinari, “Local absorption spectra of artificial atoms and molecules,” Phys. Rev. B 62, 13657–13666 (2000).
[CrossRef]

O. Mauritz, G. Goldoni, E. Molinari, and F. Rossi, “Local optical spectroscopy of semiconductor nanostructures in the linear regime,” Phys. Rev. B 62, 8204–8211 (2000).
[CrossRef]

O. Mauritz, G. Goldoni, F. Rossi, and E. Molinari, “Local optical spectroscopy in quantum confined systems: a theoretical description,” Phys. Rev. Lett. 82, 847–850 (1999).
[CrossRef]

Greffet, J.-J.

Guenther, T.

V. Emiliani, T. Guenther, Ch. Lienau, R. Nötzel, and K. H. Ploog, “Ultrafast near-field spectroscopy of quasi-one-dimensional transport in a single quantum wire,” Phys. Rev. B 61, R10583–R10586 (2000).
[CrossRef]

Hanewinkel, B.

B. Hanewinkel, A. Knorr, P. Thomas, and S. W. Koch, “Optical near-field response of semiconductor quantum dots,” Phys. Rev. B 55, 13715–13725 (1997).
[CrossRef]

Hohenester, U.

C. D. Simserides, U. Hohenester, G. Goldoni, and E. Molinari, “Local absorption spectra of artificial atoms and molecules,” Phys. Rev. B 62, 13657–13666 (2000).
[CrossRef]

Intonti, F.

F. Intonti, V. Emiliani, Ch. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Near-field optical spectroscopy of localized and delocalized excitons in a single GaAs quantum wire,” Phys. Rev. B 63, 075313 (2001).
[CrossRef]

V. Emiliani, F. Intonti, Ch. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Near-field optical imaging and spectroscopy of a coupled quantum wire-dot structure,” Phys. Rev. B 64, 155316 (2001).
[CrossRef]

Kanbe, H.

T. Sogawa, H. Ando, S. Ando, and H. Kanbe, “Interband optical transition spectra in GaAs quantum wires with rectangular cross sections,” Phys. Rev. B 56, 1958–1966 (1997).
[CrossRef]

Karunasiri, R. P. G.

D. D. Coon and R. P. G. Karunasiri, “New mode of IR detection using quantum wells,” Appl. Phys. Lett. 45, 649–651 (1984).
[CrossRef]

Kim, K.-Y.

K.-Y. Kim, B. Lee, and C. Lee, “Modeling of intersubband and free carrier absorption coefficients in heavily doped conduction-band quantum-well structures,” IEEE J. Quantum Electron. 35, 1491–1501 (1999).
[CrossRef]

B. Lee and K.-Y. Kim, “Effect of parallel-perpendicular kinetic energy coupling under effective mass approximation at heterostructure boundaries in a quantum wire,” J. Appl. Phys. 84, 5593–5596 (1998).
[CrossRef]

Knorr, A.

B. Hanewinkel, A. Knorr, P. Thomas, and S. W. Koch, “Optical near-field response of semiconductor quantum dots,” Phys. Rev. B 55, 13715–13725 (1997).
[CrossRef]

Koch, S. W.

B. Hanewinkel, A. Knorr, P. Thomas, and S. W. Koch, “Optical near-field response of semiconductor quantum dots,” Phys. Rev. B 55, 13715–13725 (1997).
[CrossRef]

Lee, B.

K.-Y. Kim, B. Lee, and C. Lee, “Modeling of intersubband and free carrier absorption coefficients in heavily doped conduction-band quantum-well structures,” IEEE J. Quantum Electron. 35, 1491–1501 (1999).
[CrossRef]

B. Lee and K.-Y. Kim, “Effect of parallel-perpendicular kinetic energy coupling under effective mass approximation at heterostructure boundaries in a quantum wire,” J. Appl. Phys. 84, 5593–5596 (1998).
[CrossRef]

Lee, C.

K.-Y. Kim, B. Lee, and C. Lee, “Modeling of intersubband and free carrier absorption coefficients in heavily doped conduction-band quantum-well structures,” IEEE J. Quantum Electron. 35, 1491–1501 (1999).
[CrossRef]

Levy, J.

F. Flack, N. Samarth, V. Nikitin, P. A. Crowell, J. Shi, J. Levy, and D. D. Awschalom, “Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots,” Phys. Rev. B 54, R17312–R17315 (1996).
[CrossRef]

Lienau, Ch.

V. Emiliani, F. Intonti, Ch. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Near-field optical imaging and spectroscopy of a coupled quantum wire-dot structure,” Phys. Rev. B 64, 155316 (2001).
[CrossRef]

F. Intonti, V. Emiliani, Ch. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Near-field optical spectroscopy of localized and delocalized excitons in a single GaAs quantum wire,” Phys. Rev. B 63, 075313 (2001).
[CrossRef]

V. Emiliani, T. Guenther, Ch. Lienau, R. Nötzel, and K. H. Ploog, “Ultrafast near-field spectroscopy of quasi-one-dimensional transport in a single quantum wire,” Phys. Rev. B 61, R10583–R10586 (2000).
[CrossRef]

Martin, O. J. F.

A. Castiaux, C. Girard, A. Dereux, O. J. F. Martin, and J.-P. Vigneron, “Electrodynamics in complex systems: application to near-field probing of optical microresonators,” Phys. Rev. E 54, 5752–5760 (1996).
[CrossRef]

O. J. F. Martin, Ch. Girard, and A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

O. J. F. Martin, A. Dereux, and Ch. Girard, “Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary shape,” J. Opt. Soc. Am. A 11, 1073–1080 (1994).
[CrossRef]

Mauritz, O.

O. Mauritz, G. Goldoni, E. Molinari, and F. Rossi, “Local optical spectroscopy of semiconductor nanostructures in the linear regime,” Phys. Rev. B 62, 8204–8211 (2000).
[CrossRef]

O. Mauritz, G. Goldoni, F. Rossi, and E. Molinari, “Local optical spectroscopy in quantum confined systems: a theoretical description,” Phys. Rev. Lett. 82, 847–850 (1999).
[CrossRef]

Merz, J. L.

H. D. Robinson, M. G. Muller, B. B. Goldberg, and J. L. Merz, “Local optical spectroscopy of self-assembled quantum dots using a near-field optical fiber probe to induce a localized strain field,” Appl. Phys. Lett. 72, 2081–2083 (1998).
[CrossRef]

Molinari, E.

C. D. Simserides, U. Hohenester, G. Goldoni, and E. Molinari, “Local absorption spectra of artificial atoms and molecules,” Phys. Rev. B 62, 13657–13666 (2000).
[CrossRef]

O. Mauritz, G. Goldoni, E. Molinari, and F. Rossi, “Local optical spectroscopy of semiconductor nanostructures in the linear regime,” Phys. Rev. B 62, 8204–8211 (2000).
[CrossRef]

O. Mauritz, G. Goldoni, F. Rossi, and E. Molinari, “Local optical spectroscopy in quantum confined systems: a theoretical description,” Phys. Rev. Lett. 82, 847–850 (1999).
[CrossRef]

Muller, M. G.

H. D. Robinson, M. G. Muller, B. B. Goldberg, and J. L. Merz, “Local optical spectroscopy of self-assembled quantum dots using a near-field optical fiber probe to induce a localized strain field,” Appl. Phys. Lett. 72, 2081–2083 (1998).
[CrossRef]

Nikitin, V.

F. Flack, N. Samarth, V. Nikitin, P. A. Crowell, J. Shi, J. Levy, and D. D. Awschalom, “Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots,” Phys. Rev. B 54, R17312–R17315 (1996).
[CrossRef]

Nishi, K.

T. Saiki, K. Nishi, and M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
[CrossRef]

Nötzel, R.

F. Intonti, V. Emiliani, Ch. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Near-field optical spectroscopy of localized and delocalized excitons in a single GaAs quantum wire,” Phys. Rev. B 63, 075313 (2001).
[CrossRef]

V. Emiliani, F. Intonti, Ch. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Near-field optical imaging and spectroscopy of a coupled quantum wire-dot structure,” Phys. Rev. B 64, 155316 (2001).
[CrossRef]

V. Emiliani, T. Guenther, Ch. Lienau, R. Nötzel, and K. H. Ploog, “Ultrafast near-field spectroscopy of quasi-one-dimensional transport in a single quantum wire,” Phys. Rev. B 61, R10583–R10586 (2000).
[CrossRef]

Ohtsu, M.

T. Saiki, K. Nishi, and M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
[CrossRef]

Pincemin, F.

Ploog, K. H.

V. Emiliani, F. Intonti, Ch. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Near-field optical imaging and spectroscopy of a coupled quantum wire-dot structure,” Phys. Rev. B 64, 155316 (2001).
[CrossRef]

F. Intonti, V. Emiliani, Ch. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Near-field optical spectroscopy of localized and delocalized excitons in a single GaAs quantum wire,” Phys. Rev. B 63, 075313 (2001).
[CrossRef]

V. Emiliani, T. Guenther, Ch. Lienau, R. Nötzel, and K. H. Ploog, “Ultrafast near-field spectroscopy of quasi-one-dimensional transport in a single quantum wire,” Phys. Rev. B 61, R10583–R10586 (2000).
[CrossRef]

Robinson, H. D.

H. D. Robinson and B. B. Goldberg, “Light-induced spectral diffusion in single self-assembled quantum dots,” Phys. Rev. B 61, R5086–R5089 (2000).
[CrossRef]

H. D. Robinson, M. G. Muller, B. B. Goldberg, and J. L. Merz, “Local optical spectroscopy of self-assembled quantum dots using a near-field optical fiber probe to induce a localized strain field,” Appl. Phys. Lett. 72, 2081–2083 (1998).
[CrossRef]

Rossi, F.

O. Mauritz, G. Goldoni, E. Molinari, and F. Rossi, “Local optical spectroscopy of semiconductor nanostructures in the linear regime,” Phys. Rev. B 62, 8204–8211 (2000).
[CrossRef]

O. Mauritz, G. Goldoni, F. Rossi, and E. Molinari, “Local optical spectroscopy in quantum confined systems: a theoretical description,” Phys. Rev. Lett. 82, 847–850 (1999).
[CrossRef]

Saiki, T.

T. Saiki, K. Nishi, and M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
[CrossRef]

Samarth, N.

F. Flack, N. Samarth, V. Nikitin, P. A. Crowell, J. Shi, J. Levy, and D. D. Awschalom, “Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots,” Phys. Rev. B 54, R17312–R17315 (1996).
[CrossRef]

Sentenac, A.

Shi, J.

F. Flack, N. Samarth, V. Nikitin, P. A. Crowell, J. Shi, J. Levy, and D. D. Awschalom, “Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots,” Phys. Rev. B 54, R17312–R17315 (1996).
[CrossRef]

Simserides, C. D.

C. D. Simserides, U. Hohenester, G. Goldoni, and E. Molinari, “Local absorption spectra of artificial atoms and molecules,” Phys. Rev. B 62, 13657–13666 (2000).
[CrossRef]

Sogawa, T.

T. Sogawa, H. Ando, S. Ando, and H. Kanbe, “Interband optical transition spectra in GaAs quantum wires with rectangular cross sections,” Phys. Rev. B 56, 1958–1966 (1997).
[CrossRef]

Thomas, P.

B. Hanewinkel, A. Knorr, P. Thomas, and S. W. Koch, “Optical near-field response of semiconductor quantum dots,” Phys. Rev. B 55, 13715–13725 (1997).
[CrossRef]

Vigneron, J.-P.

A. Castiaux, C. Girard, A. Dereux, O. J. F. Martin, and J.-P. Vigneron, “Electrodynamics in complex systems: application to near-field probing of optical microresonators,” Phys. Rev. E 54, 5752–5760 (1996).
[CrossRef]

Appl. Phys. Lett. (3)

G. W. Bryant, “Probing quantum nanostructures with near-field optical microscopy and vice versa,” Appl. Phys. Lett. 72, 768–770 (1998).
[CrossRef]

H. D. Robinson, M. G. Muller, B. B. Goldberg, and J. L. Merz, “Local optical spectroscopy of self-assembled quantum dots using a near-field optical fiber probe to induce a localized strain field,” Appl. Phys. Lett. 72, 2081–2083 (1998).
[CrossRef]

D. D. Coon and R. P. G. Karunasiri, “New mode of IR detection using quantum wells,” Appl. Phys. Lett. 45, 649–651 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

K.-Y. Kim, B. Lee, and C. Lee, “Modeling of intersubband and free carrier absorption coefficients in heavily doped conduction-band quantum-well structures,” IEEE J. Quantum Electron. 35, 1491–1501 (1999).
[CrossRef]

J. Appl. Phys. (1)

B. Lee and K.-Y. Kim, “Effect of parallel-perpendicular kinetic energy coupling under effective mass approximation at heterostructure boundaries in a quantum wire,” J. Appl. Phys. 84, 5593–5596 (1998).
[CrossRef]

J. Opt. Soc. Am. A (4)

Jpn. J. Appl. Phys. (1)

T. Saiki, K. Nishi, and M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
[CrossRef]

Phys. Rev. B (10)

U. Bockelmann and G. Bastard, “Interband absorption in quantum wires. I. Zero-magnetic-field case,” Phys. Rev. B 45, 1688–1699 (1992).
[CrossRef]

T. Sogawa, H. Ando, S. Ando, and H. Kanbe, “Interband optical transition spectra in GaAs quantum wires with rectangular cross sections,” Phys. Rev. B 56, 1958–1966 (1997).
[CrossRef]

F. Flack, N. Samarth, V. Nikitin, P. A. Crowell, J. Shi, J. Levy, and D. D. Awschalom, “Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots,” Phys. Rev. B 54, R17312–R17315 (1996).
[CrossRef]

B. Hanewinkel, A. Knorr, P. Thomas, and S. W. Koch, “Optical near-field response of semiconductor quantum dots,” Phys. Rev. B 55, 13715–13725 (1997).
[CrossRef]

C. D. Simserides, U. Hohenester, G. Goldoni, and E. Molinari, “Local absorption spectra of artificial atoms and molecules,” Phys. Rev. B 62, 13657–13666 (2000).
[CrossRef]

H. D. Robinson and B. B. Goldberg, “Light-induced spectral diffusion in single self-assembled quantum dots,” Phys. Rev. B 61, R5086–R5089 (2000).
[CrossRef]

O. Mauritz, G. Goldoni, E. Molinari, and F. Rossi, “Local optical spectroscopy of semiconductor nanostructures in the linear regime,” Phys. Rev. B 62, 8204–8211 (2000).
[CrossRef]

V. Emiliani, T. Guenther, Ch. Lienau, R. Nötzel, and K. H. Ploog, “Ultrafast near-field spectroscopy of quasi-one-dimensional transport in a single quantum wire,” Phys. Rev. B 61, R10583–R10586 (2000).
[CrossRef]

F. Intonti, V. Emiliani, Ch. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Near-field optical spectroscopy of localized and delocalized excitons in a single GaAs quantum wire,” Phys. Rev. B 63, 075313 (2001).
[CrossRef]

V. Emiliani, F. Intonti, Ch. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Near-field optical imaging and spectroscopy of a coupled quantum wire-dot structure,” Phys. Rev. B 64, 155316 (2001).
[CrossRef]

Phys. Rev. E (2)

A. Castiaux, C. Girard, A. Dereux, O. J. F. Martin, and J.-P. Vigneron, “Electrodynamics in complex systems: application to near-field probing of optical microresonators,” Phys. Rev. E 54, 5752–5760 (1996).
[CrossRef]

R. Carminati, “Phase properties of the optical near-field,” Phys. Rev. E 55, R4901–R4904 (1997).
[CrossRef]

Phys. Rev. Lett. (2)

O. J. F. Martin, Ch. Girard, and A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

O. Mauritz, G. Goldoni, F. Rossi, and E. Molinari, “Local optical spectroscopy in quantum confined systems: a theoretical description,” Phys. Rev. Lett. 82, 847–850 (1999).
[CrossRef]

Prog. Surf. Sci. (1)

J.-J. Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133–237 (1997).
[CrossRef]

Other (6)

M. Ohtsu, Near-Field Nano/Atom Optics and Technology (Springer-Verlag, Tokyo, 1998).

J. Singh, Semiconductor Optoelectronics (McGraw-Hill, New York, 1995).

Several theoretical studies have reported that quantum confinement in two dimensions significantly modifies the valence-band structures (see Refs. 2 and 3 and the references therein). That is, the heavy-hole and the light-hole states are strongly mixed even at the zone center. (Note that zone center is assumed in this paper.) Therefore we have to consider the band-coupling (mixing) effects in QWR structures for the exact quantitative calculation. However, we did not include them for simplicity. Our main claim is that the optical near field can change the field distributions in a QWR, and this change modifies the optical absorption properties of a QWR. The change in optical fields is not dependent on the specific calculation method of electronic states of a QWR. Therefore we can say that although our calculation of electronic states of a QWR neglecting band-mixing effects limits the accuracy of our modeling, it does not change the physics investigated in this paper.

We can adopt simpler models used in the electrodynamics text books to see only a qualitative effect of the optical near field [e.g., the dipole approximation that regards the inhomogeneity as a circular dipole, J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999), Chap. 4]. However, to see the quantitative change of this effect depending on the geometry of the QWR (this is one of the main claims of this paper), we have to use a more rigorous method that can deal with inhomogeneities of arbitrary shape.

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).

The exciton level in the QWR would be much closer to the resonance energy between the ground states of the conduction and heavy-hole bands (ħω00). Then, Eq. (9) reduces to ε(ω)≅εoff+ifexcNexce2/mexc2ωγexc+f00Nhhe2/mhh2ωγ00, and the refractive-index change can be negligible.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Geometry of QWR used in this paper. It is two-dimensional structure and thus invariant in the y direction.

Fig. 2
Fig. 2

Calculated light intensities when (a) Wx=30 and Wz=10 nm and (b) Wx=10.8 and Wz=20 nm.

Fig. 3
Fig. 3

Calculated light intensities when (a) θ=0°, (b) θ=45°, and (c) θ=80°. Note that the scales of intensity axes are not the same in all figures.

Fig. 4
Fig. 4

Calculated transition matrix elements for various geometries.

Fig. 5
Fig. 5

Normalized transition matrix elements for various geometries.

Fig. 6
Fig. 6

Calculated transition matrix elements for various incident angles.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

E(x, z)=E(0)(x, z)+k02dxdz[2(x, z)-1]×G¯¯(x-x, z, z)E(x, z),
E(n+1)(x, z)=E(0)(x, z)+k02dxdz×[2(x, z)-1]×G¯¯(x-x, z, z)E(n)(x, z).
uν,m,n,kξm,n,k|H1|uν,m,n,kξm,n,k
uν,m,n,k|p|uν,m,n,k·ξm,n,k|A|ξm,n,k+uν,m,n,k|uν,m,n,kξm,n,k|A·p|ξm,n,k.
uν,m,n,kξm,n,k|H1|uν,m,n,kξm,n,k
uν,m,n,k|p|uν,m,n,k·ξm,n,k|A|ξm,n,k.
|Mm-m,n-nk-k|2
=|uν,m,n,k|p|uν,m,n,k|2|ξm,n,k|A|ξm,n,k|2.
χ(1)(ω)=nafnaNae2/mωna2-ω2-2iωγna,
(ω)=off+nexcfnexcNnexce2/mexcωnexc2-ω2-2iωγnexc+nc,nhhfnc,nhhNnhhe2/mhhωnc,nhh2-ω2-2iωγnc,nhh,
(ω)off+fexcNexce2/mexcωexc2-ω2-2iωγexc+f00Nhhe2/mhhω002-ω2-2iωγ00,
(ωω00)off+fexcNexce2/mexcωexc2-ω2-2iωγexc+if00Nhhe2/mhh2ωγ00
=off+Δ.
E(1)(x, z)=E(0)(x, z)+k02dxdz[2,on(x, z)-1,on]G¯¯(x-x, z, z)E(0)(x, z)=E(0)(x, z)+k02dxdz[2,off(x, z)-1,off]G¯¯(x-x, z, z)E(0)(x, z)+k02dxdz[Δ2(x, z)-Δ1]G¯¯(x-x, z, z)E(0)(x, z)=E(0)(x, z)+Erefloc(x, z)+Eexcloc(x, z),
IS=Sdr|E(r)|2,
(ω)off+ifexcNexce2/mexc2ωγexc+f00Nhhe2/mhh2ωγ00,

Metrics