Abstract

We address the improvement of quasi-phase-matched (QPM) wavelength conversion in semiconductor waveguides by optimizing the modulation of the nonlinear susceptibility, considering the role of QPM grating order and redesigning the waveguide core to improve coupling efficiency.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by water bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
    [CrossRef]
  2. P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier-Lafaye, “5.2–5.6-mm source tunable by frequency conversion in a GaAs-based waveguide,” Opt. Lett. 23, 331–333 (1998).
    [CrossRef]
  3. A. Fiore, S. Janz, L. Delobel, P. vanderMeer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72, 2942–2944 (1998).
    [CrossRef]
  4. S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by water-bonding,” Appl. Phys. Lett. 66, 3410–3412 (1995).
    [CrossRef]
  5. C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris, “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 202, 187–193 (1999).
    [CrossRef]
  6. A. Saher Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in GaAs AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing,” Opt. Lett. 25, 1370–1372 (2000).
    [CrossRef]
  7. O. P. Kowalski, C. J. Hamilton, S. D. McDougall, J. H. Marsh, A. C. Bryce, R. M. De La Rue, B. Vögele, C. R. Stanley, C. C. Button, and J. S. Roberts, “A universal damage induced technique for quantum well intermixing,” Appl. Phys. Lett. 72, 581–583 (1997).
    [CrossRef]
  8. S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. DeLaRue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4, 636–646 (1998).
    [CrossRef]
  9. S. Janz, F. Chatenoud, and R. Normandin, “Quasi-phase-matched second-harmonic generation from asymmetric coupled quantum wells,” Opt. Lett. 19, 622–624 (1994).
    [CrossRef] [PubMed]
  10. D. C. Hutchings and J. M. Arnold, “Determination of second-order nonlinear coefficients in semiconductors using pseudospin equations for three-level systems,” Phys. Rev. B 56, 4056–4067 (1997).
    [CrossRef]
  11. J. S. Aitchison, M. W. Street, N. D. Whitbread, D. C. Hutchings, J. H. Marsh, G. T. Kennedy, and W. Sibbett, “Modulation of second-order nonlinear tensor components in multiple quantum well structures,” IEEE J. Sel. Top. Quantum Electron. 4, 695–700 (1998).
    [CrossRef]
  12. D. C. Hutchings, “Modulation of the second-order susceptibility in GaAs/AlAs superlattices,” Appl. Phys. Lett. 76, 1362–1364 (2000).
    [CrossRef]
  13. D. C. Hutchings, “Electronic bandstructure of disordered superlattices,” Superlattices Microstruct. 26, 195–209 (1999).
    [CrossRef]
  14. A. Saher Helmy, D. C. Hutchings, T. C. Kleckner, J. S. Aitchison, A. C. Bryce, J. H. Marsh, P. Martin, J. P. Landesman, C. T. A. Brown, K. Moutzouris, M. Ebrahimzadeh, and S. G. Ayling, “Quantum well intermixing technologies for quasi-phase-matching gratings in GaAs/AlAs superlattice waveguides,” in IEEE Lasers and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2000), Vol. 2, pp. 712–713.
  15. E. Anemogiannis and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” J. Lightwave Technol. 10, 1344–1351 (1992).
    [CrossRef]
  16. T. C. Kleckner, K. Zeaiter, J. S. Aitchison, and D. C. Hutchings, “Quasi-phase matching in semiconductor waveguides using quantum well intermixing,” in Institute of Physics Quantum Electronics and Photonics 15 (U. Strathclyde Press, Glasgow, UK, 2001), p. 98.

2000

1999

D. C. Hutchings, “Electronic bandstructure of disordered superlattices,” Superlattices Microstruct. 26, 195–209 (1999).
[CrossRef]

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris, “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 202, 187–193 (1999).
[CrossRef]

1998

P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier-Lafaye, “5.2–5.6-mm source tunable by frequency conversion in a GaAs-based waveguide,” Opt. Lett. 23, 331–333 (1998).
[CrossRef]

A. Fiore, S. Janz, L. Delobel, P. vanderMeer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72, 2942–2944 (1998).
[CrossRef]

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. DeLaRue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4, 636–646 (1998).
[CrossRef]

J. S. Aitchison, M. W. Street, N. D. Whitbread, D. C. Hutchings, J. H. Marsh, G. T. Kennedy, and W. Sibbett, “Modulation of second-order nonlinear tensor components in multiple quantum well structures,” IEEE J. Sel. Top. Quantum Electron. 4, 695–700 (1998).
[CrossRef]

1997

D. C. Hutchings and J. M. Arnold, “Determination of second-order nonlinear coefficients in semiconductors using pseudospin equations for three-level systems,” Phys. Rev. B 56, 4056–4067 (1997).
[CrossRef]

O. P. Kowalski, C. J. Hamilton, S. D. McDougall, J. H. Marsh, A. C. Bryce, R. M. De La Rue, B. Vögele, C. R. Stanley, C. C. Button, and J. S. Roberts, “A universal damage induced technique for quantum well intermixing,” Appl. Phys. Lett. 72, 581–583 (1997).
[CrossRef]

1996

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by water bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

1995

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by water-bonding,” Appl. Phys. Lett. 66, 3410–3412 (1995).
[CrossRef]

1994

1992

E. Anemogiannis and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” J. Lightwave Technol. 10, 1344–1351 (1992).
[CrossRef]

Aitchison, J. S.

A. Saher Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in GaAs AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing,” Opt. Lett. 25, 1370–1372 (2000).
[CrossRef]

J. S. Aitchison, M. W. Street, N. D. Whitbread, D. C. Hutchings, J. H. Marsh, G. T. Kennedy, and W. Sibbett, “Modulation of second-order nonlinear tensor components in multiple quantum well structures,” IEEE J. Sel. Top. Quantum Electron. 4, 695–700 (1998).
[CrossRef]

Anemogiannis, E.

E. Anemogiannis and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” J. Lightwave Technol. 10, 1344–1351 (1992).
[CrossRef]

Antoniades, N.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by water bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Arnold, J. M.

Berger, V.

P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier-Lafaye, “5.2–5.6-mm source tunable by frequency conversion in a GaAs-based waveguide,” Opt. Lett. 23, 331–333 (1998).
[CrossRef]

A. Fiore, S. Janz, L. Delobel, P. vanderMeer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72, 2942–2944 (1998).
[CrossRef]

Bhat, R.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by water bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by water-bonding,” Appl. Phys. Lett. 66, 3410–3412 (1995).
[CrossRef]

Bravetti, P.

A. Fiore, S. Janz, L. Delobel, P. vanderMeer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72, 2942–2944 (1998).
[CrossRef]

P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier-Lafaye, “5.2–5.6-mm source tunable by frequency conversion in a GaAs-based waveguide,” Opt. Lett. 23, 331–333 (1998).
[CrossRef]

Brown, C. T. A.

Bryce, A. C.

A. Saher Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in GaAs AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing,” Opt. Lett. 25, 1370–1372 (2000).
[CrossRef]

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. DeLaRue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4, 636–646 (1998).
[CrossRef]

O. P. Kowalski, C. J. Hamilton, S. D. McDougall, J. H. Marsh, A. C. Bryce, R. M. De La Rue, B. Vögele, C. R. Stanley, C. C. Button, and J. S. Roberts, “A universal damage induced technique for quantum well intermixing,” Appl. Phys. Lett. 72, 581–583 (1997).
[CrossRef]

Button, C. C.

O. P. Kowalski, C. J. Hamilton, S. D. McDougall, J. H. Marsh, A. C. Bryce, R. M. De La Rue, B. Vögele, C. R. Stanley, C. C. Button, and J. S. Roberts, “A universal damage induced technique for quantum well intermixing,” Appl. Phys. Lett. 72, 581–583 (1997).
[CrossRef]

Camacho, F.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. DeLaRue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4, 636–646 (1998).
[CrossRef]

Caneau, C.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by water bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by water-bonding,” Appl. Phys. Lett. 66, 3410–3412 (1995).
[CrossRef]

Chatenoud, F.

De La Rue, R. M.

O. P. Kowalski, C. J. Hamilton, S. D. McDougall, J. H. Marsh, A. C. Bryce, R. M. De La Rue, B. Vögele, C. R. Stanley, C. C. Button, and J. S. Roberts, “A universal damage induced technique for quantum well intermixing,” Appl. Phys. Lett. 72, 581–583 (1997).
[CrossRef]

DeLaRue, R. M.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. DeLaRue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4, 636–646 (1998).
[CrossRef]

Delobel, L.

A. Fiore, S. Janz, L. Delobel, P. vanderMeer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72, 2942–2944 (1998).
[CrossRef]

Ebert, C. B.

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris, “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 202, 187–193 (1999).
[CrossRef]

Ebrahimzadeh, M.

Eyres, L. A.

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris, “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 202, 187–193 (1999).
[CrossRef]

Fejer, M. M.

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris, “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 202, 187–193 (1999).
[CrossRef]

Fiore, A.

A. Fiore, S. Janz, L. Delobel, P. vanderMeer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72, 2942–2944 (1998).
[CrossRef]

P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier-Lafaye, “5.2–5.6-mm source tunable by frequency conversion in a GaAs-based waveguide,” Opt. Lett. 23, 331–333 (1998).
[CrossRef]

Gauthier-Lafaye, O.

Glytsis, E. N.

E. Anemogiannis and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” J. Lightwave Technol. 10, 1344–1351 (1992).
[CrossRef]

Hamilton, C. J.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. DeLaRue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4, 636–646 (1998).
[CrossRef]

O. P. Kowalski, C. J. Hamilton, S. D. McDougall, J. H. Marsh, A. C. Bryce, R. M. De La Rue, B. Vögele, C. R. Stanley, C. C. Button, and J. S. Roberts, “A universal damage induced technique for quantum well intermixing,” Appl. Phys. Lett. 72, 581–583 (1997).
[CrossRef]

Harris, J. S.

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris, “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 202, 187–193 (1999).
[CrossRef]

Helmy, A. Saher

Hutchings, D. C.

A. Saher Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in GaAs AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing,” Opt. Lett. 25, 1370–1372 (2000).
[CrossRef]

D. C. Hutchings, “Modulation of the second-order susceptibility in GaAs/AlAs superlattices,” Appl. Phys. Lett. 76, 1362–1364 (2000).
[CrossRef]

D. C. Hutchings, “Electronic bandstructure of disordered superlattices,” Superlattices Microstruct. 26, 195–209 (1999).
[CrossRef]

J. S. Aitchison, M. W. Street, N. D. Whitbread, D. C. Hutchings, J. H. Marsh, G. T. Kennedy, and W. Sibbett, “Modulation of second-order nonlinear tensor components in multiple quantum well structures,” IEEE J. Sel. Top. Quantum Electron. 4, 695–700 (1998).
[CrossRef]

D. C. Hutchings and J. M. Arnold, “Determination of second-order nonlinear coefficients in semiconductors using pseudospin equations for three-level systems,” Phys. Rev. B 56, 4056–4067 (1997).
[CrossRef]

Janz, S.

A. Fiore, S. Janz, L. Delobel, P. vanderMeer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72, 2942–2944 (1998).
[CrossRef]

S. Janz, F. Chatenoud, and R. Normandin, “Quasi-phase-matched second-harmonic generation from asymmetric coupled quantum wells,” Opt. Lett. 19, 622–624 (1994).
[CrossRef] [PubMed]

Ke, M.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. DeLaRue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4, 636–646 (1998).
[CrossRef]

Kennedy, G. T.

J. S. Aitchison, M. W. Street, N. D. Whitbread, D. C. Hutchings, J. H. Marsh, G. T. Kennedy, and W. Sibbett, “Modulation of second-order nonlinear tensor components in multiple quantum well structures,” IEEE J. Sel. Top. Quantum Electron. 4, 695–700 (1998).
[CrossRef]

Kleckner, T. C.

Kowalski, O. P.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. DeLaRue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4, 636–646 (1998).
[CrossRef]

O. P. Kowalski, C. J. Hamilton, S. D. McDougall, J. H. Marsh, A. C. Bryce, R. M. De La Rue, B. Vögele, C. R. Stanley, C. C. Button, and J. S. Roberts, “A universal damage induced technique for quantum well intermixing,” Appl. Phys. Lett. 72, 581–583 (1997).
[CrossRef]

Koza, M. A.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by water bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by water-bonding,” Appl. Phys. Lett. 66, 3410–3412 (1995).
[CrossRef]

Marsh, J. H.

A. Saher Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in GaAs AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing,” Opt. Lett. 25, 1370–1372 (2000).
[CrossRef]

J. S. Aitchison, M. W. Street, N. D. Whitbread, D. C. Hutchings, J. H. Marsh, G. T. Kennedy, and W. Sibbett, “Modulation of second-order nonlinear tensor components in multiple quantum well structures,” IEEE J. Sel. Top. Quantum Electron. 4, 695–700 (1998).
[CrossRef]

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. DeLaRue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4, 636–646 (1998).
[CrossRef]

O. P. Kowalski, C. J. Hamilton, S. D. McDougall, J. H. Marsh, A. C. Bryce, R. M. De La Rue, B. Vögele, C. R. Stanley, C. C. Button, and J. S. Roberts, “A universal damage induced technique for quantum well intermixing,” Appl. Phys. Lett. 72, 581–583 (1997).
[CrossRef]

McDougall, S. D.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. DeLaRue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4, 636–646 (1998).
[CrossRef]

O. P. Kowalski, C. J. Hamilton, S. D. McDougall, J. H. Marsh, A. C. Bryce, R. M. De La Rue, B. Vögele, C. R. Stanley, C. C. Button, and J. S. Roberts, “A universal damage induced technique for quantum well intermixing,” Appl. Phys. Lett. 72, 581–583 (1997).
[CrossRef]

Moutzouris, K.

Nagle, J.

A. Fiore, S. Janz, L. Delobel, P. vanderMeer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72, 2942–2944 (1998).
[CrossRef]

P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier-Lafaye, “5.2–5.6-mm source tunable by frequency conversion in a GaAs-based waveguide,” Opt. Lett. 23, 331–333 (1998).
[CrossRef]

Normandin, R.

Qiu, B.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. DeLaRue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4, 636–646 (1998).
[CrossRef]

Rajhel, A.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by water bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Roberts, J. S.

O. P. Kowalski, C. J. Hamilton, S. D. McDougall, J. H. Marsh, A. C. Bryce, R. M. De La Rue, B. Vögele, C. R. Stanley, C. C. Button, and J. S. Roberts, “A universal damage induced technique for quantum well intermixing,” Appl. Phys. Lett. 72, 581–583 (1997).
[CrossRef]

Rosencher, E.

P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier-Lafaye, “5.2–5.6-mm source tunable by frequency conversion in a GaAs-based waveguide,” Opt. Lett. 23, 331–333 (1998).
[CrossRef]

A. Fiore, S. Janz, L. Delobel, P. vanderMeer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72, 2942–2944 (1998).
[CrossRef]

Sibbett, W.

J. S. Aitchison, M. W. Street, N. D. Whitbread, D. C. Hutchings, J. H. Marsh, G. T. Kennedy, and W. Sibbett, “Modulation of second-order nonlinear tensor components in multiple quantum well structures,” IEEE J. Sel. Top. Quantum Electron. 4, 695–700 (1998).
[CrossRef]

Stanley, C. R.

A. Saher Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in GaAs AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing,” Opt. Lett. 25, 1370–1372 (2000).
[CrossRef]

O. P. Kowalski, C. J. Hamilton, S. D. McDougall, J. H. Marsh, A. C. Bryce, R. M. De La Rue, B. Vögele, C. R. Stanley, C. C. Button, and J. S. Roberts, “A universal damage induced technique for quantum well intermixing,” Appl. Phys. Lett. 72, 581–583 (1997).
[CrossRef]

Street, M. W.

J. S. Aitchison, M. W. Street, N. D. Whitbread, D. C. Hutchings, J. H. Marsh, G. T. Kennedy, and W. Sibbett, “Modulation of second-order nonlinear tensor components in multiple quantum well structures,” IEEE J. Sel. Top. Quantum Electron. 4, 695–700 (1998).
[CrossRef]

vanderMeer, P.

A. Fiore, S. Janz, L. Delobel, P. vanderMeer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72, 2942–2944 (1998).
[CrossRef]

Vögele, B.

O. P. Kowalski, C. J. Hamilton, S. D. McDougall, J. H. Marsh, A. C. Bryce, R. M. De La Rue, B. Vögele, C. R. Stanley, C. C. Button, and J. S. Roberts, “A universal damage induced technique for quantum well intermixing,” Appl. Phys. Lett. 72, 581–583 (1997).
[CrossRef]

Whitbread, N. D.

J. S. Aitchison, M. W. Street, N. D. Whitbread, D. C. Hutchings, J. H. Marsh, G. T. Kennedy, and W. Sibbett, “Modulation of second-order nonlinear tensor components in multiple quantum well structures,” IEEE J. Sel. Top. Quantum Electron. 4, 695–700 (1998).
[CrossRef]

Yoo, S. J. B.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by water bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by water-bonding,” Appl. Phys. Lett. 66, 3410–3412 (1995).
[CrossRef]

Appl. Phys. Lett.

A. Fiore, S. Janz, L. Delobel, P. vanderMeer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72, 2942–2944 (1998).
[CrossRef]

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by water-bonding,” Appl. Phys. Lett. 66, 3410–3412 (1995).
[CrossRef]

O. P. Kowalski, C. J. Hamilton, S. D. McDougall, J. H. Marsh, A. C. Bryce, R. M. De La Rue, B. Vögele, C. R. Stanley, C. C. Button, and J. S. Roberts, “A universal damage induced technique for quantum well intermixing,” Appl. Phys. Lett. 72, 581–583 (1997).
[CrossRef]

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by water bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

D. C. Hutchings, “Modulation of the second-order susceptibility in GaAs/AlAs superlattices,” Appl. Phys. Lett. 76, 1362–1364 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. S. Aitchison, M. W. Street, N. D. Whitbread, D. C. Hutchings, J. H. Marsh, G. T. Kennedy, and W. Sibbett, “Modulation of second-order nonlinear tensor components in multiple quantum well structures,” IEEE J. Sel. Top. Quantum Electron. 4, 695–700 (1998).
[CrossRef]

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. DeLaRue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4, 636–646 (1998).
[CrossRef]

J. Cryst. Growth

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris, “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 202, 187–193 (1999).
[CrossRef]

J. Lightwave Technol.

E. Anemogiannis and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” J. Lightwave Technol. 10, 1344–1351 (1992).
[CrossRef]

Opt. Lett.

Phys. Rev. B

D. C. Hutchings and J. M. Arnold, “Determination of second-order nonlinear coefficients in semiconductors using pseudospin equations for three-level systems,” Phys. Rev. B 56, 4056–4067 (1997).
[CrossRef]

Superlattices Microstruct.

D. C. Hutchings, “Electronic bandstructure of disordered superlattices,” Superlattices Microstruct. 26, 195–209 (1999).
[CrossRef]

Other

A. Saher Helmy, D. C. Hutchings, T. C. Kleckner, J. S. Aitchison, A. C. Bryce, J. H. Marsh, P. Martin, J. P. Landesman, C. T. A. Brown, K. Moutzouris, M. Ebrahimzadeh, and S. G. Ayling, “Quantum well intermixing technologies for quasi-phase-matching gratings in GaAs/AlAs superlattice waveguides,” in IEEE Lasers and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2000), Vol. 2, pp. 712–713.

T. C. Kleckner, K. Zeaiter, J. S. Aitchison, and D. C. Hutchings, “Quasi-phase matching in semiconductor waveguides using quantum well intermixing,” in Institute of Physics Quantum Electronics and Photonics 15 (U. Strathclyde Press, Glasgow, UK, 2001), p. 98.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of a semiconductor wafer after processing to produce a QPM grating with alternating caps to activate and inhibit impurity-free vacancy intermixing.

Fig. 2
Fig. 2

Half-bandgap wavelength corresponding to the lowest interband transition in a GaAs/AlAs superlattice as a function of GaAs and AlAs layer thickness in monolayers. The contour lines range from 1.3 to 1.65 µm in steps of 0.05 µm from bottom to top.

Fig. 3
Fig. 3

Modulation Δχxyz(2) obtained for Ld=0, 20 monolayers at a wavelength of 1.55 µm in a (14GaAs) (N AlAs) superlattice (circles). Also shown is the wavelength corresponding to the half-band edge (triangles).

Fig. 4
Fig. 4

Calculated dispersion of χxyz(2) in 14:14, 12:12, and 10:10 monolayer GaAs/AlAs superlattices for as-grown (solid curves, Ld=0) and intermixed (dashed curves, Ld=20) monolayers.

Fig. 5
Fig. 5

Square of the overlap integral (see text) plotted as a function of additional layer thickness and composition. Also shown are the number of SHG guided TM modes.

Fig. 6
Fig. 6

Power density for the fundamental TE mode (solid curves) and the second-harmonic TM mode (dashed curves) in a slab waveguide for (a) the original sample design with a 600-nm superlattice core and (b) the redesigned sample with the addition of two 300-nm Al0.52Ga0.48As buffer layers. The vertical lines indicate the position of the interfaces between the different layers, with air (n=1) at the far right.

Fig. 7
Fig. 7

Revised sample design for 1.55-µm channel conversion.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

dE2ωdz=iωcn2ωdeff(z)(Eω)2 exp(iΔkz).
E2ω()=iωcn2ω(Eω)2 -deff(z)exp(iΔkz)dz
=iωcn2ω(Eω)2d˜eff(Δk),
deff(z)=n=- dn exp(-2πinz/Λ),
dNdN exp-(NπLs/Λ)2=dN exp-(ΔkLs/2)2.
R Eω2E2ω*dx2,
- |E|2dx1.

Metrics