Abstract

We report the creation of microchannels in a photosensitive material, the arsenic trisulfide As2S3. We show that microchannels are created through the process of self-writing and are highly sensitive to the photosensitivity of the material as well as the quality of the incident wave front. The very high photosensitivity of As2S3 allows the self-written waveguide to become much smaller than the incident beam. We present a numerical analysis based on the nonlinear Schrödinger equation that accounts well for the diversity of the microchannels that were experimentally observed and shows that they can actually guide light.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25, 254–256 (2000).
    [CrossRef]
  2. M. Frumar, M. Vlček, Z. Černošek, Z. Polák, and T. Wágner, “Photoinduced changes of the structure and physical properties of amorphous chalcogenides,” J. Non-Cryst. Solids 213&214, 215–224 (1997).
    [CrossRef]
  3. K. Tanaka, N. Toyosawa, and H. Hisakuni, “Photoinduced Bragg gratings in As2S3 optical fibers,” Opt. Lett. 20, 1976–1978 (1995).
    [CrossRef] [PubMed]
  4. A. Saliminia, A. Villeneuve, T. V. Galstyan, S. Larochelle, and K. Richardson, “First- and second-order Bragg gratings in single mode planar waveguides of chalcogenide glasses,” J. Lightwave Technol. 17, 837–842 (1999).
    [CrossRef]
  5. H. Hisakuni and K. Tanaka, “Optical fabrication of microlenses in chalcogenide glasses,” Opt. Lett. 20, 958–960 (1995).
    [CrossRef] [PubMed]
  6. T. V. Galstyan, J.-F. Viens, A. Villeneuve, K. Richardson, and M. A. Duguay, “Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses,” J. Lightwave Technol. 15, 1343–1347 (1997).
    [CrossRef]
  7. T. M. Monro, L. Poladian, and C. Martijn de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1104–1113 (1998).
    [CrossRef]
  8. T. M. Monro, D. Moss, M. Bazylenko, C. Martijn de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in a photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998).
    [CrossRef]
  9. C. Meneghini and A. Villeneuve, “As2S3 photosensitivity by two-photon absorption: holographic gratings and self-written channel waveguides,” J. Opt. Soc. Am. B 15, 2946–2950 (1998).
    [CrossRef]
  10. N. Ho⁁, B. Bourliaguet, J. M. Laniel, R. Vallée, and A. Villeneuve, “Observation of filament creation in As2S3,” Nonlinear Guided Waves and Their Applications, Vol. 55 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper WC-8–1, pp. 473–475.
  11. O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
    [CrossRef]
  12. C. Meneghini, “Dispositifs photoniques plans à base de verres de chalcogénures,” Ph.D. dissertation (Université Laval, Québec, Canada, 2000).
  13. S. R. Elliot, “Scattering studies of photostructural changes in chalcogenide glasses,” J. Non-Cryst. Solids 59&60, 899–907 (1983).
    [CrossRef]
  14. S. R. Elliot, “A unified model for reversible photostructural effects in chalcogenide glasses,” J. Non-Cryst. Solids 81, 71–98 (1986).
    [CrossRef]
  15. K. Tanaka, “Reversible photostructural changes: mechanisms, properties and applications,” J. Non-Cryst. Solids 35&36, 1023–1034 (1980).
    [CrossRef]
  16. K. Tanaka and H. Hisakuni, “Photoinduced phenomena in As2S3 glass under subbandgap excitation,” J. Non-Cryst. Solids 198–200, 714–718 (1996).
    [CrossRef]
  17. Y. Y. Babinets, Y. V. Vlasenko, M. P. Lisitsa, V. M. Mitsa, V. P. Pinzenik, and C. Sibilia, “Nonlinear absorption and local coordination of atoms in Asx(GeS2)1−x glasses,” Sov. J. Quantum Electron. 18, 1279–1280 (1988).
    [CrossRef]
  18. M. Sheik-Bahae, A. A. Said, T. Wei, D. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  19. T. M. Monro, C. Martijn de Sterke, and L. Polodian, “Investigation of waveguide growth in photosensitive germanosilicate glass,” J. Opt. Soc. Am. B 13, 2824–2832 (1996).
    [CrossRef]

2001

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

2000

1999

1998

C. Meneghini and A. Villeneuve, “As2S3 photosensitivity by two-photon absorption: holographic gratings and self-written channel waveguides,” J. Opt. Soc. Am. B 15, 2946–2950 (1998).
[CrossRef]

T. M. Monro, L. Poladian, and C. Martijn de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1104–1113 (1998).
[CrossRef]

T. M. Monro, D. Moss, M. Bazylenko, C. Martijn de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in a photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998).
[CrossRef]

1997

M. Frumar, M. Vlček, Z. Černošek, Z. Polák, and T. Wágner, “Photoinduced changes of the structure and physical properties of amorphous chalcogenides,” J. Non-Cryst. Solids 213&214, 215–224 (1997).
[CrossRef]

T. V. Galstyan, J.-F. Viens, A. Villeneuve, K. Richardson, and M. A. Duguay, “Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses,” J. Lightwave Technol. 15, 1343–1347 (1997).
[CrossRef]

1996

K. Tanaka and H. Hisakuni, “Photoinduced phenomena in As2S3 glass under subbandgap excitation,” J. Non-Cryst. Solids 198–200, 714–718 (1996).
[CrossRef]

T. M. Monro, C. Martijn de Sterke, and L. Polodian, “Investigation of waveguide growth in photosensitive germanosilicate glass,” J. Opt. Soc. Am. B 13, 2824–2832 (1996).
[CrossRef]

1995

1990

M. Sheik-Bahae, A. A. Said, T. Wei, D. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

1988

Y. Y. Babinets, Y. V. Vlasenko, M. P. Lisitsa, V. M. Mitsa, V. P. Pinzenik, and C. Sibilia, “Nonlinear absorption and local coordination of atoms in Asx(GeS2)1−x glasses,” Sov. J. Quantum Electron. 18, 1279–1280 (1988).
[CrossRef]

1986

S. R. Elliot, “A unified model for reversible photostructural effects in chalcogenide glasses,” J. Non-Cryst. Solids 81, 71–98 (1986).
[CrossRef]

1983

S. R. Elliot, “Scattering studies of photostructural changes in chalcogenide glasses,” J. Non-Cryst. Solids 59&60, 899–907 (1983).
[CrossRef]

1980

K. Tanaka, “Reversible photostructural changes: mechanisms, properties and applications,” J. Non-Cryst. Solids 35&36, 1023–1034 (1980).
[CrossRef]

Aggarwal, I. D.

Babinets, Y. Y.

Y. Y. Babinets, Y. V. Vlasenko, M. P. Lisitsa, V. M. Mitsa, V. P. Pinzenik, and C. Sibilia, “Nonlinear absorption and local coordination of atoms in Asx(GeS2)1−x glasses,” Sov. J. Quantum Electron. 18, 1279–1280 (1988).
[CrossRef]

Bazylenko, M.

T. M. Monro, D. Moss, M. Bazylenko, C. Martijn de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in a photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998).
[CrossRef]

Bruneel, J. L.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

Cardinal, T.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

Cernošek, Z.

M. Frumar, M. Vlček, Z. Černošek, Z. Polák, and T. Wágner, “Photoinduced changes of the structure and physical properties of amorphous chalcogenides,” J. Non-Cryst. Solids 213&214, 215–224 (1997).
[CrossRef]

Cheong, S.-W.

Couzi, M.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

Duguay, M. A.

T. V. Galstyan, J.-F. Viens, A. Villeneuve, K. Richardson, and M. A. Duguay, “Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses,” J. Lightwave Technol. 15, 1343–1347 (1997).
[CrossRef]

Efimov, O. M.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

Elliot, S. R.

S. R. Elliot, “A unified model for reversible photostructural effects in chalcogenide glasses,” J. Non-Cryst. Solids 81, 71–98 (1986).
[CrossRef]

S. R. Elliot, “Scattering studies of photostructural changes in chalcogenide glasses,” J. Non-Cryst. Solids 59&60, 899–907 (1983).
[CrossRef]

Frumar, M.

M. Frumar, M. Vlček, Z. Černošek, Z. Polák, and T. Wágner, “Photoinduced changes of the structure and physical properties of amorphous chalcogenides,” J. Non-Cryst. Solids 213&214, 215–224 (1997).
[CrossRef]

Galstyan, T. V.

A. Saliminia, A. Villeneuve, T. V. Galstyan, S. Larochelle, and K. Richardson, “First- and second-order Bragg gratings in single mode planar waveguides of chalcogenide glasses,” J. Lightwave Technol. 17, 837–842 (1999).
[CrossRef]

T. V. Galstyan, J.-F. Viens, A. Villeneuve, K. Richardson, and M. A. Duguay, “Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses,” J. Lightwave Technol. 15, 1343–1347 (1997).
[CrossRef]

Glebov, L. B.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

Hagan, D.

M. Sheik-Bahae, A. A. Said, T. Wei, D. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Hisakuni, H.

Hwang, H. Y.

Katsufuji, T.

Larochelle, S.

Lenz, G.

Lines, M. E.

Lisitsa, M. P.

Y. Y. Babinets, Y. V. Vlasenko, M. P. Lisitsa, V. M. Mitsa, V. P. Pinzenik, and C. Sibilia, “Nonlinear absorption and local coordination of atoms in Asx(GeS2)1−x glasses,” Sov. J. Quantum Electron. 18, 1279–1280 (1988).
[CrossRef]

Martijn de Sterke, C.

T. M. Monro, L. Poladian, and C. Martijn de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1104–1113 (1998).
[CrossRef]

T. M. Monro, D. Moss, M. Bazylenko, C. Martijn de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in a photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998).
[CrossRef]

T. M. Monro, C. Martijn de Sterke, and L. Polodian, “Investigation of waveguide growth in photosensitive germanosilicate glass,” J. Opt. Soc. Am. B 13, 2824–2832 (1996).
[CrossRef]

Meneghini, C.

Mitsa, V. M.

Y. Y. Babinets, Y. V. Vlasenko, M. P. Lisitsa, V. M. Mitsa, V. P. Pinzenik, and C. Sibilia, “Nonlinear absorption and local coordination of atoms in Asx(GeS2)1−x glasses,” Sov. J. Quantum Electron. 18, 1279–1280 (1988).
[CrossRef]

Monro, T. M.

T. M. Monro, L. Poladian, and C. Martijn de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1104–1113 (1998).
[CrossRef]

T. M. Monro, D. Moss, M. Bazylenko, C. Martijn de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in a photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998).
[CrossRef]

T. M. Monro, C. Martijn de Sterke, and L. Polodian, “Investigation of waveguide growth in photosensitive germanosilicate glass,” J. Opt. Soc. Am. B 13, 2824–2832 (1996).
[CrossRef]

Moss, D.

T. M. Monro, D. Moss, M. Bazylenko, C. Martijn de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in a photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998).
[CrossRef]

Park, S. H.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

Pinzenik, V. P.

Y. Y. Babinets, Y. V. Vlasenko, M. P. Lisitsa, V. M. Mitsa, V. P. Pinzenik, and C. Sibilia, “Nonlinear absorption and local coordination of atoms in Asx(GeS2)1−x glasses,” Sov. J. Quantum Electron. 18, 1279–1280 (1988).
[CrossRef]

Poladian, L.

T. M. Monro, L. Poladian, and C. Martijn de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1104–1113 (1998).
[CrossRef]

T. M. Monro, D. Moss, M. Bazylenko, C. Martijn de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in a photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998).
[CrossRef]

Polák, Z.

M. Frumar, M. Vlček, Z. Černošek, Z. Polák, and T. Wágner, “Photoinduced changes of the structure and physical properties of amorphous chalcogenides,” J. Non-Cryst. Solids 213&214, 215–224 (1997).
[CrossRef]

Polodian, L.

Richardson, K.

A. Saliminia, A. Villeneuve, T. V. Galstyan, S. Larochelle, and K. Richardson, “First- and second-order Bragg gratings in single mode planar waveguides of chalcogenide glasses,” J. Lightwave Technol. 17, 837–842 (1999).
[CrossRef]

T. V. Galstyan, J.-F. Viens, A. Villeneuve, K. Richardson, and M. A. Duguay, “Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses,” J. Lightwave Technol. 15, 1343–1347 (1997).
[CrossRef]

Richardson, K. A.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. Wei, D. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Saliminia, A.

Sanghera, J. S.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. Wei, D. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Sibilia, C.

Y. Y. Babinets, Y. V. Vlasenko, M. P. Lisitsa, V. M. Mitsa, V. P. Pinzenik, and C. Sibilia, “Nonlinear absorption and local coordination of atoms in Asx(GeS2)1−x glasses,” Sov. J. Quantum Electron. 18, 1279–1280 (1988).
[CrossRef]

Slusher, R. E.

Spälter, S.

Tanaka, K.

K. Tanaka and H. Hisakuni, “Photoinduced phenomena in As2S3 glass under subbandgap excitation,” J. Non-Cryst. Solids 198–200, 714–718 (1996).
[CrossRef]

H. Hisakuni and K. Tanaka, “Optical fabrication of microlenses in chalcogenide glasses,” Opt. Lett. 20, 958–960 (1995).
[CrossRef] [PubMed]

K. Tanaka, N. Toyosawa, and H. Hisakuni, “Photoinduced Bragg gratings in As2S3 optical fibers,” Opt. Lett. 20, 1976–1978 (1995).
[CrossRef] [PubMed]

K. Tanaka, “Reversible photostructural changes: mechanisms, properties and applications,” J. Non-Cryst. Solids 35&36, 1023–1034 (1980).
[CrossRef]

Toyosawa, N.

Van Stryland, E.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. Wei, D. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Viens, J.-F.

T. V. Galstyan, J.-F. Viens, A. Villeneuve, K. Richardson, and M. A. Duguay, “Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses,” J. Lightwave Technol. 15, 1343–1347 (1997).
[CrossRef]

Villeneuve, A.

Vlasenko, Y. V.

Y. Y. Babinets, Y. V. Vlasenko, M. P. Lisitsa, V. M. Mitsa, V. P. Pinzenik, and C. Sibilia, “Nonlinear absorption and local coordination of atoms in Asx(GeS2)1−x glasses,” Sov. J. Quantum Electron. 18, 1279–1280 (1988).
[CrossRef]

Vlcek, M.

M. Frumar, M. Vlček, Z. Černošek, Z. Polák, and T. Wágner, “Photoinduced changes of the structure and physical properties of amorphous chalcogenides,” J. Non-Cryst. Solids 213&214, 215–224 (1997).
[CrossRef]

Wágner, T.

M. Frumar, M. Vlček, Z. Černošek, Z. Polák, and T. Wágner, “Photoinduced changes of the structure and physical properties of amorphous chalcogenides,” J. Non-Cryst. Solids 213&214, 215–224 (1997).
[CrossRef]

Wei, T.

M. Sheik-Bahae, A. A. Said, T. Wei, D. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Zimmermann, J.

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. A. Said, T. Wei, D. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

J. Lightwave Technol.

T. V. Galstyan, J.-F. Viens, A. Villeneuve, K. Richardson, and M. A. Duguay, “Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses,” J. Lightwave Technol. 15, 1343–1347 (1997).
[CrossRef]

A. Saliminia, A. Villeneuve, T. V. Galstyan, S. Larochelle, and K. Richardson, “First- and second-order Bragg gratings in single mode planar waveguides of chalcogenide glasses,” J. Lightwave Technol. 17, 837–842 (1999).
[CrossRef]

J. Non-Cryst. Solids

S. R. Elliot, “Scattering studies of photostructural changes in chalcogenide glasses,” J. Non-Cryst. Solids 59&60, 899–907 (1983).
[CrossRef]

S. R. Elliot, “A unified model for reversible photostructural effects in chalcogenide glasses,” J. Non-Cryst. Solids 81, 71–98 (1986).
[CrossRef]

K. Tanaka, “Reversible photostructural changes: mechanisms, properties and applications,” J. Non-Cryst. Solids 35&36, 1023–1034 (1980).
[CrossRef]

K. Tanaka and H. Hisakuni, “Photoinduced phenomena in As2S3 glass under subbandgap excitation,” J. Non-Cryst. Solids 198–200, 714–718 (1996).
[CrossRef]

M. Frumar, M. Vlček, Z. Černošek, Z. Polák, and T. Wágner, “Photoinduced changes of the structure and physical properties of amorphous chalcogenides,” J. Non-Cryst. Solids 213&214, 215–224 (1997).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Opt. Mater.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

Phys. Rev. E

T. M. Monro, L. Poladian, and C. Martijn de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1104–1113 (1998).
[CrossRef]

Phys. Rev. Lett.

T. M. Monro, D. Moss, M. Bazylenko, C. Martijn de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in a photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998).
[CrossRef]

Sov. J. Quantum Electron.

Y. Y. Babinets, Y. V. Vlasenko, M. P. Lisitsa, V. M. Mitsa, V. P. Pinzenik, and C. Sibilia, “Nonlinear absorption and local coordination of atoms in Asx(GeS2)1−x glasses,” Sov. J. Quantum Electron. 18, 1279–1280 (1988).
[CrossRef]

Other

N. Ho⁁, B. Bourliaguet, J. M. Laniel, R. Vallée, and A. Villeneuve, “Observation of filament creation in As2S3,” Nonlinear Guided Waves and Their Applications, Vol. 55 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper WC-8–1, pp. 473–475.

C. Meneghini, “Dispositifs photoniques plans à base de verres de chalcogénures,” Ph.D. dissertation (Université Laval, Québec, Canada, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

(a) Image of the output of an 8-mm-long waveguide as a function of time (indicated in minutes on the figure). The frame width corresponds to ∼250 µm. Light is spread over the entire frame width initially. After 4 min, the confinement is maximal and appears to degrade subsequently. (b) After the exposure, the waveguide is observed from the top with an optical microscope (200× magnification with phase contrast). The photographed region is 150 µm by 465 µm. The air–waveguide interface is at the top of the figure, and the bottom of the figure is toward the output. A 1-µm-wide, 480-µm-long microchannel is clearly visible. The left-hand microchannel corresponds to the experiment shown in (a), and the right-hand microchannel corresponds to a similar experiment, which shows the reproducibility of the phenomenon.

Fig. 3
Fig. 3

Pictures of the surface of the slabs taken with an optical microscope (200× magnification with phase contrast). The interface is at the bottom. (a) Injected peak intensity is 4.0 MW/cm2. The cleave is of very high quality. Only a single microchannel is created at ∼170 µm from the interface. The microchannel is 1 µm wide and 575 µm long. (b) Injected peak intensity is 8.9 MW/cm2. The cleave is of lesser quality. Over a 30-µm-wide region, multiple microchannels are created. Only one subsists and is 1 µm wide and 320 µm long. Spots seen on the pictures are microcrystals in the slab.

Fig. 4
Fig. 4

Numerical results. The index of refraction of the slab is shown. The input facet is on the right. Black is the original index; the greatest index change is shown by the brightest white. (a) A clean wavefront is incident on the slab, and a single microchannel is created at a distance from the interface. (b) Same intensity as in (a), but noise is added to the incident wavefront. Multiple microchannels are created and collapse into a single one. (c) Same level of noise as in (b), but the intensity is twice as high. Multiple erratic microchannels are created. The maximal index change is 10-3.

Fig. 5
Fig. 5

(a) FWHM of the intensity during propagation in the microchannel (dots) and in free propagation (line). There is a significant lateral confinement caused by the microchannel, and it therefore efficiently guides light. (b) Peak intensity during propagation in the microchannel (dots) and in free propagation (line). The oscillations are proportional to those in the FWHM, and there is no general decline, showing that the microchannel does not radiates light during propagation.

Fig. 6
Fig. 6

Role of n2. Same simulation, but different n2: (a) n2=4.2×10-18 m2/W; (b) n2=0. n2 amplifies the noise.

Fig. 7
Fig. 7

FWHM of the intensity at the end of each pass during the simulation. The confinement becomes narrower as time passes and reaches a minimum when the index saturates. Inset, index profile when the confinement reaches its maximum. The lateral distance is in micrometers.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Az=i2k0n02Ax2diffractionik02n0ΔnAlateral confinementik0n2deff|A|2Anonlinearityα02Aα22|A|2deffAlosses (1PA and TPA),
n(x, z, E)=n0+Δnsat1-expE(x, z)B,

Metrics