Abstract

Thermal poling and depoling current for twin-hole fibers was measured. The current’s evolution was compared with electro-optic evolution. The thermally stimulated discharge efficiency was measured to be 5%. Atomic-force microscopy was used to study the HF-etched transverse sections of thermally poled twin-hole fiber. Thermal poling modified the etch rate in two rings about the anode hole. The outer ring was found to move with time, whereas the inner ring’s position was stationary. Results are explained by use of a space-charge model that comprises two components: movement of impurity ions and charge injection in which the charge injection component dominates the poling characteristics.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Österberg and W. Margulis, “Dye laser pumped by Nd: YAG laser pulses frequency doubled in a glass optical fiber,” Opt. Lett. 11, 516–518 (1986).
    [CrossRef]
  2. T. G. Alley and S. R. G. Brueck, “Visualization of the nonlinear optical space-charge region of bulk thermally poled fused silica glass,” Opt. Lett. 23, 1170–1172 (1998).
    [CrossRef]
  3. P. G. Kazansky, A. R. Smith, P. St. J. Russell, G. M. Yang, and G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68, 269–271 (1996).
    [CrossRef]
  4. D. Wong, W. Xu, and S. Fleming, “Charge dynamics and distributions in thermally poled silica fiber,” in Optical Devices for Fiber Communication, M. J. Digonnet, ed., Proc. SPIE 3847, 88–93 (1999).
    [CrossRef]
  5. W. Xu, J. Arentoft, D. Wong, and S. Fleming, “Evidence of space-charge effects in thermal poling,” IEEE Photon. Technol. Lett. 11, 1265–1267 (1999).
    [CrossRef]
  6. V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation,” Appl. Phys. Lett. 74, 2423–2425 (1999).
    [CrossRef]
  7. W. Xu, D. Wong, S. Fleming, and P. Blazkiewicz, “Movement of charge layers during thermal poling of silica fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides 1999, E. J. Friebele, R. Kashyap, and T. Erdogan, eds., Vol. 33 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 115–117.
  8. G. M. Sessler, Electrets, 2nd ed. (Springer-Verlag, Berlin, 1987), Chap. 3, p. 95.
  9. T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. Appl. Phys. 86, 6634–6640 (1999).
    [CrossRef]
  10. J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver-containing electrodes,” Electron. Lett. 36, 1635–1636 (2000).
    [CrossRef]
  11. P. Blazkiewicz, W. Xu, and S. Fleming, “Thermally stimulated poling and depoling current in thermally poled silica,” in LEOS 2000 Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2000), pp. 659–660.
  12. M. L. von Bibra, A. Roberts, P. Mulvaney, and S. T. Huntington, “Direct imaging of end-of-range compaction in ion beam irradiated silica waveguides by atomic force microscopy,” J. Appl. Phys. 87, 8429–8432 (2000).
    [CrossRef]
  13. G. M. Sessler, Electrets (Springer-Verlag, Berlin, 1980), Chap. 2, p. 27.
  14. W. Xu, M. Janos, D. Wong, and S. Fleming, “Thermally poling of boron-codoped germanosilicate fiber,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E82-B, 1283–1286 (1999).
  15. H. Takebe, P. G. Kazansky, P. St. J. Russell, and K. Morinaga, “Effect of poling conditions on second-harmonic generation in fused silica,” Opt. Lett. 21, 468–470 (1996).
    [CrossRef] [PubMed]
  16. R. A. Myers, N. Mukherjee, and S. R. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1734 (1991).
    [CrossRef] [PubMed]
  17. V. Pruneri and P. G. Kazansky, “Frequency doubling of picosecond pulses in periodically poled D-shape silica fibre,” Electron. Lett. 33, 318–319 (1997).
    [CrossRef]

2000

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver-containing electrodes,” Electron. Lett. 36, 1635–1636 (2000).
[CrossRef]

M. L. von Bibra, A. Roberts, P. Mulvaney, and S. T. Huntington, “Direct imaging of end-of-range compaction in ion beam irradiated silica waveguides by atomic force microscopy,” J. Appl. Phys. 87, 8429–8432 (2000).
[CrossRef]

1999

W. Xu, M. Janos, D. Wong, and S. Fleming, “Thermally poling of boron-codoped germanosilicate fiber,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E82-B, 1283–1286 (1999).

D. Wong, W. Xu, and S. Fleming, “Charge dynamics and distributions in thermally poled silica fiber,” in Optical Devices for Fiber Communication, M. J. Digonnet, ed., Proc. SPIE 3847, 88–93 (1999).
[CrossRef]

W. Xu, J. Arentoft, D. Wong, and S. Fleming, “Evidence of space-charge effects in thermal poling,” IEEE Photon. Technol. Lett. 11, 1265–1267 (1999).
[CrossRef]

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation,” Appl. Phys. Lett. 74, 2423–2425 (1999).
[CrossRef]

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. Appl. Phys. 86, 6634–6640 (1999).
[CrossRef]

1998

1997

V. Pruneri and P. G. Kazansky, “Frequency doubling of picosecond pulses in periodically poled D-shape silica fibre,” Electron. Lett. 33, 318–319 (1997).
[CrossRef]

1996

H. Takebe, P. G. Kazansky, P. St. J. Russell, and K. Morinaga, “Effect of poling conditions on second-harmonic generation in fused silica,” Opt. Lett. 21, 468–470 (1996).
[CrossRef] [PubMed]

P. G. Kazansky, A. R. Smith, P. St. J. Russell, G. M. Yang, and G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68, 269–271 (1996).
[CrossRef]

1991

1986

Alley, T. G.

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. Appl. Phys. 86, 6634–6640 (1999).
[CrossRef]

T. G. Alley and S. R. G. Brueck, “Visualization of the nonlinear optical space-charge region of bulk thermally poled fused silica glass,” Opt. Lett. 23, 1170–1172 (1998).
[CrossRef]

Arentoft, J.

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver-containing electrodes,” Electron. Lett. 36, 1635–1636 (2000).
[CrossRef]

W. Xu, J. Arentoft, D. Wong, and S. Fleming, “Evidence of space-charge effects in thermal poling,” IEEE Photon. Technol. Lett. 11, 1265–1267 (1999).
[CrossRef]

Bonfrate, G.

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation,” Appl. Phys. Lett. 74, 2423–2425 (1999).
[CrossRef]

Bozhevolnyi, S. I.

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver-containing electrodes,” Electron. Lett. 36, 1635–1636 (2000).
[CrossRef]

Brueck, S. R.

Brueck, S. R. G.

Brueck, S. R. J.

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. Appl. Phys. 86, 6634–6640 (1999).
[CrossRef]

Fleming, S.

W. Xu, M. Janos, D. Wong, and S. Fleming, “Thermally poling of boron-codoped germanosilicate fiber,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E82-B, 1283–1286 (1999).

W. Xu, J. Arentoft, D. Wong, and S. Fleming, “Evidence of space-charge effects in thermal poling,” IEEE Photon. Technol. Lett. 11, 1265–1267 (1999).
[CrossRef]

D. Wong, W. Xu, and S. Fleming, “Charge dynamics and distributions in thermally poled silica fiber,” in Optical Devices for Fiber Communication, M. J. Digonnet, ed., Proc. SPIE 3847, 88–93 (1999).
[CrossRef]

Huntington, S. T.

M. L. von Bibra, A. Roberts, P. Mulvaney, and S. T. Huntington, “Direct imaging of end-of-range compaction in ion beam irradiated silica waveguides by atomic force microscopy,” J. Appl. Phys. 87, 8429–8432 (2000).
[CrossRef]

Janos, M.

W. Xu, M. Janos, D. Wong, and S. Fleming, “Thermally poling of boron-codoped germanosilicate fiber,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E82-B, 1283–1286 (1999).

Kazansky, P. G.

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation,” Appl. Phys. Lett. 74, 2423–2425 (1999).
[CrossRef]

V. Pruneri and P. G. Kazansky, “Frequency doubling of picosecond pulses in periodically poled D-shape silica fibre,” Electron. Lett. 33, 318–319 (1997).
[CrossRef]

P. G. Kazansky, A. R. Smith, P. St. J. Russell, G. M. Yang, and G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68, 269–271 (1996).
[CrossRef]

H. Takebe, P. G. Kazansky, P. St. J. Russell, and K. Morinaga, “Effect of poling conditions on second-harmonic generation in fused silica,” Opt. Lett. 21, 468–470 (1996).
[CrossRef] [PubMed]

Kristensen, M.

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver-containing electrodes,” Electron. Lett. 36, 1635–1636 (2000).
[CrossRef]

Margulis, W.

Morinaga, K.

Mukherjee, N.

Mulvaney, P.

M. L. von Bibra, A. Roberts, P. Mulvaney, and S. T. Huntington, “Direct imaging of end-of-range compaction in ion beam irradiated silica waveguides by atomic force microscopy,” J. Appl. Phys. 87, 8429–8432 (2000).
[CrossRef]

Myers, R. A.

Österberg, U.

Pedersen, K.

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver-containing electrodes,” Electron. Lett. 36, 1635–1636 (2000).
[CrossRef]

Pruneri, V.

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation,” Appl. Phys. Lett. 74, 2423–2425 (1999).
[CrossRef]

V. Pruneri and P. G. Kazansky, “Frequency doubling of picosecond pulses in periodically poled D-shape silica fibre,” Electron. Lett. 33, 318–319 (1997).
[CrossRef]

Roberts, A.

M. L. von Bibra, A. Roberts, P. Mulvaney, and S. T. Huntington, “Direct imaging of end-of-range compaction in ion beam irradiated silica waveguides by atomic force microscopy,” J. Appl. Phys. 87, 8429–8432 (2000).
[CrossRef]

Russell, P. St. J.

P. G. Kazansky, A. R. Smith, P. St. J. Russell, G. M. Yang, and G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68, 269–271 (1996).
[CrossRef]

H. Takebe, P. G. Kazansky, P. St. J. Russell, and K. Morinaga, “Effect of poling conditions on second-harmonic generation in fused silica,” Opt. Lett. 21, 468–470 (1996).
[CrossRef] [PubMed]

Samoggia, F.

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation,” Appl. Phys. Lett. 74, 2423–2425 (1999).
[CrossRef]

Sessler, G. M.

P. G. Kazansky, A. R. Smith, P. St. J. Russell, G. M. Yang, and G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68, 269–271 (1996).
[CrossRef]

Shi, P.

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver-containing electrodes,” Electron. Lett. 36, 1635–1636 (2000).
[CrossRef]

Smith, A. R.

P. G. Kazansky, A. R. Smith, P. St. J. Russell, G. M. Yang, and G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68, 269–271 (1996).
[CrossRef]

Takebe, H.

von Bibra, M. L.

M. L. von Bibra, A. Roberts, P. Mulvaney, and S. T. Huntington, “Direct imaging of end-of-range compaction in ion beam irradiated silica waveguides by atomic force microscopy,” J. Appl. Phys. 87, 8429–8432 (2000).
[CrossRef]

Wiedenbeck, M.

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. Appl. Phys. 86, 6634–6640 (1999).
[CrossRef]

Wong, D.

W. Xu, M. Janos, D. Wong, and S. Fleming, “Thermally poling of boron-codoped germanosilicate fiber,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E82-B, 1283–1286 (1999).

D. Wong, W. Xu, and S. Fleming, “Charge dynamics and distributions in thermally poled silica fiber,” in Optical Devices for Fiber Communication, M. J. Digonnet, ed., Proc. SPIE 3847, 88–93 (1999).
[CrossRef]

W. Xu, J. Arentoft, D. Wong, and S. Fleming, “Evidence of space-charge effects in thermal poling,” IEEE Photon. Technol. Lett. 11, 1265–1267 (1999).
[CrossRef]

Xu, W.

D. Wong, W. Xu, and S. Fleming, “Charge dynamics and distributions in thermally poled silica fiber,” in Optical Devices for Fiber Communication, M. J. Digonnet, ed., Proc. SPIE 3847, 88–93 (1999).
[CrossRef]

W. Xu, J. Arentoft, D. Wong, and S. Fleming, “Evidence of space-charge effects in thermal poling,” IEEE Photon. Technol. Lett. 11, 1265–1267 (1999).
[CrossRef]

W. Xu, M. Janos, D. Wong, and S. Fleming, “Thermally poling of boron-codoped germanosilicate fiber,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E82-B, 1283–1286 (1999).

Yang, G. M.

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation,” Appl. Phys. Lett. 74, 2423–2425 (1999).
[CrossRef]

P. G. Kazansky, A. R. Smith, P. St. J. Russell, G. M. Yang, and G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68, 269–271 (1996).
[CrossRef]

Appl. Phys. Lett.

P. G. Kazansky, A. R. Smith, P. St. J. Russell, G. M. Yang, and G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68, 269–271 (1996).
[CrossRef]

V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation,” Appl. Phys. Lett. 74, 2423–2425 (1999).
[CrossRef]

Electron. Lett.

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver-containing electrodes,” Electron. Lett. 36, 1635–1636 (2000).
[CrossRef]

V. Pruneri and P. G. Kazansky, “Frequency doubling of picosecond pulses in periodically poled D-shape silica fibre,” Electron. Lett. 33, 318–319 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

W. Xu, J. Arentoft, D. Wong, and S. Fleming, “Evidence of space-charge effects in thermal poling,” IEEE Photon. Technol. Lett. 11, 1265–1267 (1999).
[CrossRef]

IEICE Trans. Fundam. Electron. Commun. Comput. Sci.

W. Xu, M. Janos, D. Wong, and S. Fleming, “Thermally poling of boron-codoped germanosilicate fiber,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E82-B, 1283–1286 (1999).

J. Appl. Phys.

M. L. von Bibra, A. Roberts, P. Mulvaney, and S. T. Huntington, “Direct imaging of end-of-range compaction in ion beam irradiated silica waveguides by atomic force microscopy,” J. Appl. Phys. 87, 8429–8432 (2000).
[CrossRef]

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. Appl. Phys. 86, 6634–6640 (1999).
[CrossRef]

Opt. Lett.

Proc. SPIE

D. Wong, W. Xu, and S. Fleming, “Charge dynamics and distributions in thermally poled silica fiber,” in Optical Devices for Fiber Communication, M. J. Digonnet, ed., Proc. SPIE 3847, 88–93 (1999).
[CrossRef]

Other

W. Xu, D. Wong, S. Fleming, and P. Blazkiewicz, “Movement of charge layers during thermal poling of silica fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides 1999, E. J. Friebele, R. Kashyap, and T. Erdogan, eds., Vol. 33 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 115–117.

G. M. Sessler, Electrets, 2nd ed. (Springer-Verlag, Berlin, 1987), Chap. 3, p. 95.

P. Blazkiewicz, W. Xu, and S. Fleming, “Thermally stimulated poling and depoling current in thermally poled silica,” in LEOS 2000 Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2000), pp. 659–660.

G. M. Sessler, Electrets (Springer-Verlag, Berlin, 1980), Chap. 2, p. 27.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(A) Poling circuit, (B) depoling circuit.

Fig. 2
Fig. 2

Evolution of (A) poling current, (B) electro-optic coefficient, and (C) heater temperature.

Fig. 3
Fig. 3

Evolution of (A) depoling current (B) electro-optic coefficient, and (C) heater temperature.

Fig. 4
Fig. 4

Twin-hole fiber cross section etched in HF acid after 30 min of thermal poling.

Fig. 5
Fig. 5

Twin-hole fiber cross section etched in HF acid after 60 min of thermal poling.

Fig. 6
Fig. 6

Twin-hole fiber inner etch trench after 30 min of thermal poling.

Fig. 7
Fig. 7

Twin-hole fiber inner etch trench after 60 min of thermal poling.

Metrics