Abstract

We study experimentally and theoretically the limits of multichannel parametric wavelength conversion imposed by pump depletion in periodically poled LiNbO3 waveguides. As many as 55 channels with 6 dBm of power each can be converted simultaneously with less than a 10-9 error rate by use of 20 dBm of pump power.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
    [CrossRef]
  2. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
    [CrossRef]
  3. I. Brener, M. H. Chou, D. Peale, and M. M. Fejer, “Cascaded χ2 wavelength conversion in LiNbO3 waveguides with counterpropagating beams,” Electron. Lett. 35, 1155–1157 (1999).
    [CrossRef]
  4. I. Brener, M. H. Chou, E. E. Chaban, K. Parameswaran, M. M. Fejer, and S. Kosinski, “Polarization-insensitive parametric wavelength converter based on cascaded nonlinearities in LiNbO3 waveguides,” in Optical Fiber Communication Conference, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper TuF1–3.
  5. I. Brener, B. Mikkelsen, K. Rottwitt, W. Burkett, G. Raybon, J. B. Stark, K. Parameswaran, M. H. Chou, M. M. Fejer, E. E. Chaban, R. Harel, D. L. Philen, and S. Kosinski, “Cancellation of all Kerr nonlinearities in long fiber spans using a LiNbO3 phase conjugator and Raman amplification,” in Optical Fiber Communication Conference, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper PD33–1.
  6. M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991).
    [CrossRef] [PubMed]

1999 (2)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

I. Brener, M. H. Chou, D. Peale, and M. M. Fejer, “Cascaded χ2 wavelength conversion in LiNbO3 waveguides with counterpropagating beams,” Electron. Lett. 35, 1155–1157 (1999).
[CrossRef]

1996 (1)

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
[CrossRef]

1991 (1)

Bortz, M. L.

Brener, I.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

I. Brener, M. H. Chou, D. Peale, and M. M. Fejer, “Cascaded χ2 wavelength conversion in LiNbO3 waveguides with counterpropagating beams,” Electron. Lett. 35, 1155–1157 (1999).
[CrossRef]

Chaban, E. E.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Chou, M. H.

I. Brener, M. H. Chou, D. Peale, and M. M. Fejer, “Cascaded χ2 wavelength conversion in LiNbO3 waveguides with counterpropagating beams,” Electron. Lett. 35, 1155–1157 (1999).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Christman, S. B.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Fejer, M. M.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

I. Brener, M. H. Chou, D. Peale, and M. M. Fejer, “Cascaded χ2 wavelength conversion in LiNbO3 waveguides with counterpropagating beams,” Electron. Lett. 35, 1155–1157 (1999).
[CrossRef]

M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991).
[CrossRef] [PubMed]

Peale, D.

I. Brener, M. H. Chou, D. Peale, and M. M. Fejer, “Cascaded χ2 wavelength conversion in LiNbO3 waveguides with counterpropagating beams,” Electron. Lett. 35, 1155–1157 (1999).
[CrossRef]

Yoo, S. J. B.

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
[CrossRef]

Electron. Lett. (1)

I. Brener, M. H. Chou, D. Peale, and M. M. Fejer, “Cascaded χ2 wavelength conversion in LiNbO3 waveguides with counterpropagating beams,” Electron. Lett. 35, 1155–1157 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

J. Lightwave Technol. (1)

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
[CrossRef]

Opt. Lett. (1)

Other (2)

I. Brener, M. H. Chou, E. E. Chaban, K. Parameswaran, M. M. Fejer, and S. Kosinski, “Polarization-insensitive parametric wavelength converter based on cascaded nonlinearities in LiNbO3 waveguides,” in Optical Fiber Communication Conference, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper TuF1–3.

I. Brener, B. Mikkelsen, K. Rottwitt, W. Burkett, G. Raybon, J. B. Stark, K. Parameswaran, M. H. Chou, M. M. Fejer, E. E. Chaban, R. Harel, D. L. Philen, and S. Kosinski, “Cancellation of all Kerr nonlinearities in long fiber spans using a LiNbO3 phase conjugator and Raman amplification,” in Optical Fiber Communication Conference, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper PD33–1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup: ECL1 represents the tested channel; ECL2 represents additional multiple WDM channels. Both lasers go through a polarization controller before entering the modulators. PRBS, pseudorandom binary sequence; DC, duty cycle; BERT, BER tester.

Fig. 2
Fig. 2

Measured BER of the converted channel at λConv=1563.52 nm when PDep=0 mW. Inset, measured optical spectrum in the presence of PDep.

Fig. 3
Fig. 3

Measured BER (filled squares) and calculated BER (solid curve) as a function of PDep. Inset, calculated PConv as a function of PDep.

Fig. 4
Fig. 4

(a) Predicted BER and (b) the power penalty of a tested channel as a function of the total number of additional channels in the optical network.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

BERN=12 k=0N 12N N!k!(N-k)! BER(PDep=kI0).

Metrics