Abstract

We report studies of second-harmonic generation (SHG) of femtosecond pulses in long periodically poled lithium niobate waveguides under large conversion conditions. Strong saturation of the SHG efficiency was observed, accompanied by spectral and temporal distortion of the pump pulse. Our simulation studies suggest that the pulse distortions may be caused by the interaction of the phase-matched SHG process and an additional cascaded χ(2) process or processes, leading to a large nonlinear phase modulation. Such additional cascaded χ(2) processes could be caused by the existence of multiple transverse modes in the nonlinear waveguide. These phenomena, which to our knowledge have not been reported previously, may have a significant effect on studies of high-power short-pulse parametric process in waveguide devices and on the design of novel nonlinear optical waveguide devices for such applications.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Glenn, “Second-harmonic generation by picosecond optical pulses,” IEEE J. Quantum Electron. QE-5, 284–290 (1969).
    [CrossRef]
  2. S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, “Nonstationary phenomena and space-time analogy in nonlinear optics,” Sov. Phys. JETP 28, 748–757 (1969).
  3. A. M. Weiner, A. M. Kan’an, and D. E. Leaird, “High-efficiency blue generation by frequency doubling of femtosecond pulses in a thick nonlinear crystal,” Opt. Lett. 23, 1441–1443 (1998).
    [CrossRef]
  4. Z. Zheng, A. M. Weiner, K. R. Parameswaran, M. H. Chou, and M. M. Fejer, “Low power spectral phase correlator using periodically poled LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 13, 376–378 (2001).
    [CrossRef]
  5. Z. Zheng and A. M. Weiner, “Spectral phase correlation of coded femtosecond pulses by second-harmonic generation in thick nonlinear crystals,” Opt. Lett. 25, 984–986 (2000).
    [CrossRef]
  6. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2115 (1995).
    [CrossRef]
  7. M. A. Arbore, M. M. Fejer, M. E. Fermann, A. Hariharan, A. Galvanauskas, and D. Harter, “Frequency doubling of femtosecond erbium-fiber soliton lasers in periodically poled lithium niobate,” Opt. Lett. 22, 13–15 (1997).
    [CrossRef] [PubMed]
  8. G. W. Ross, M. Pollnau, P. G. Smith, W. A. Clarkson, P. E. Britton, and D. C. Hanna, “Generation of high-power blue light in periodically poled LiNbO3,” Opt. Lett. 23, 171–173 (1998).
    [CrossRef]
  9. M. A. Arbore, O. Marco, and M. M. Fejer, “Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,” Opt. Lett. 22, 865–867 (1997).
    [CrossRef] [PubMed]
  10. G. Imeshev, A. Galvanauskas, D. Harter, M. A. Arbore, M. Proctor, and M. M. Fejer, “Engineerable femtosecond pulse shaping by second-harmonic generation with Fourier synthetic quasi-phase-matching gratings,” Opt. Lett. 23, 864–866 (1998).
    [CrossRef]
  11. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, “Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,” J. Opt. Soc. Am. B 17, 304–318 (2000).
    [CrossRef]
  12. M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
    [CrossRef]
  13. K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, “High-efficiency LiNbO3 waveguide second-harmonic generation devices with ferroelectric-domain-inverted gratings fabricated by applying voltage,” J. Lightwave Technol. 14, 462–468 (1996).
    [CrossRef]
  14. Y. Li, D. Guzun, and M. Xiao, “Quantum-noise measurements in high-efficiency single-pass second-harmonic generation with femtosecond pulses,” Opt. Lett. 24, 987–989 (1999).
    [CrossRef]
  15. J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
    [CrossRef]
  16. M. H. Chou, “Optical frequency mixers using three-wave mixing for optical fiber communications,” Ph.D. Dissertation (Stanford University, Stanford, Calif., 1999).
  17. O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Baak, M. D. Levenson, and W. R. Bosenberg, “Continuous-wave frequency tripling and quadrupling by simultaneous three-wave mixings in periodically poled crystals: application to a two-step 1.19–10.71-μm frequency bridge,” Opt. Lett. 22, 1211–1213 (1997).
    [CrossRef] [PubMed]
  18. R. Schiek, Y. Baek, and G. I. Stegeman, “Second-harmonic generation and cascaded nonlinearity in titanium-indiffused lithium niobate channel waveguides,” J. Opt. Soc. Am. B 15, 2255–2268 (1998).
    [CrossRef]
  19. L. Lepetit, G. Cheriaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995).
    [CrossRef]
  20. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
    [CrossRef]
  21. G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, New York, 1997).
  22. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
    [CrossRef]
  23. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, 1995).
  24. C. R. Menyuk, “Stability of solitons in birefringent optical fibers. II Arbitrary amplitudes,” J. Opt. Soc. Am. B 5, 392–402 (1988).
    [CrossRef]
  25. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653–655 (1999).
    [CrossRef]
  26. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
    [CrossRef]
  27. C. B. Clausen, O. Bang, and Y. S. Kivshar, “Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media,” Phys. Rev. Lett. 78, 4749–4752 (1997).
    [CrossRef]
  28. X. Liu, L. J. Qian, and F. Wise, “Effect of local phase-mismatch on frequency doubling of high-power femtosecond laser pulses under quasi-phase-matched conditions,” Opt. Commun. 164, 69–75 (1999).
    [CrossRef]
  29. C. R. Menyuk, R. Schiek, and L. Torner, “Solitary waves due to χ(2)(2) cascading,” J. Opt. Soc. Am. B 11, 2434–2443 (1994).
    [CrossRef]
  30. L. Torner, D. Mazilu, and D. Mihalache, “Walking solitons in quadratic nonlinear media,” Phys. Rev. Lett. 77, 2455–2458 (1996).
    [CrossRef] [PubMed]
  31. T. Iizuka and Y. S. Kivshar, “Optical gap solitons in nonresonant quadratic media,” Phys. Rev. E 59, 7148–7151 (1999).
    [CrossRef]
  32. S. Darmanyan, L. Crasovan, and F. Lederer, “Double-hump solitary waves in quadratically nonlinear media with loss and gain,” Phys. Rev. E 61, 3267–3269 (2000).
    [CrossRef]
  33. K. Koynov and S. Saltiel, “Nonlinear phase shift via multistep χ(2) cascading,” Opt. Commun. 152, 96–100 (1998).
    [CrossRef]
  34. S. Saltiel, K. Koynov, Y. Deyanova, and Y. S. Kivshar, “Nonlinear phase shift resulting from two-color multistep cascading,” J. Opt. Soc. Am. B 17, 959–965 (2000).
    [CrossRef]
  35. S. Saltiel and Y. Deyanova, “Polarization switching as a result of cascading of two simultaneously phase matched quadratic processes,” Opt. Lett. 24, 1296–1298 (1999).
    [CrossRef]
  36. C. N. Ironside, J. S. Aitchison, and J. M. Arnold, “An all-optical switch employing the cascaded second-order nonlinear effect,” IEEE J. Quantum Electron. 29, 2650–2654 (1993).
    [CrossRef]
  37. X. Liu, L. J. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2)(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999).
    [CrossRef]
  38. L. Becouarn, E. Lallier, M. Brevignon, and J. Lehoux, “Cascaded second-harmonic and sum-frequency generation of a CO2 laser by use of a single quasi-phase-matched GaAs crystal,” Opt. Lett. 23, 1508–1510 (1998).
    [CrossRef]
  39. A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
    [CrossRef]

2001 (1)

Z. Zheng, A. M. Weiner, K. R. Parameswaran, M. H. Chou, and M. M. Fejer, “Low power spectral phase correlator using periodically poled LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 13, 376–378 (2001).
[CrossRef]

2000 (4)

1999 (6)

S. Saltiel and Y. Deyanova, “Polarization switching as a result of cascading of two simultaneously phase matched quadratic processes,” Opt. Lett. 24, 1296–1298 (1999).
[CrossRef]

X. Liu, L. J. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2)(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653–655 (1999).
[CrossRef]

X. Liu, L. J. Qian, and F. Wise, “Effect of local phase-mismatch on frequency doubling of high-power femtosecond laser pulses under quasi-phase-matched conditions,” Opt. Commun. 164, 69–75 (1999).
[CrossRef]

Y. Li, D. Guzun, and M. Xiao, “Quantum-noise measurements in high-efficiency single-pass second-harmonic generation with femtosecond pulses,” Opt. Lett. 24, 987–989 (1999).
[CrossRef]

T. Iizuka and Y. S. Kivshar, “Optical gap solitons in nonresonant quadratic media,” Phys. Rev. E 59, 7148–7151 (1999).
[CrossRef]

1998 (6)

1997 (5)

1996 (3)

K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, “High-efficiency LiNbO3 waveguide second-harmonic generation devices with ferroelectric-domain-inverted gratings fabricated by applying voltage,” J. Lightwave Technol. 14, 462–468 (1996).
[CrossRef]

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

L. Torner, D. Mazilu, and D. Mihalache, “Walking solitons in quadratic nonlinear media,” Phys. Rev. Lett. 77, 2455–2458 (1996).
[CrossRef] [PubMed]

1995 (2)

1994 (2)

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
[CrossRef]

C. R. Menyuk, R. Schiek, and L. Torner, “Solitary waves due to χ(2)(2) cascading,” J. Opt. Soc. Am. B 11, 2434–2443 (1994).
[CrossRef]

1993 (1)

C. N. Ironside, J. S. Aitchison, and J. M. Arnold, “An all-optical switch employing the cascaded second-order nonlinear effect,” IEEE J. Quantum Electron. 29, 2650–2654 (1993).
[CrossRef]

1991 (1)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

1990 (1)

J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

1988 (1)

1973 (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
[CrossRef]

1969 (2)

W. H. Glenn, “Second-harmonic generation by picosecond optical pulses,” IEEE J. Quantum Electron. QE-5, 284–290 (1969).
[CrossRef]

S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, “Nonstationary phenomena and space-time analogy in nonlinear optics,” Sov. Phys. JETP 28, 748–757 (1969).

Aitchison, J. S.

C. N. Ironside, J. S. Aitchison, and J. M. Arnold, “An all-optical switch employing the cascaded second-order nonlinear effect,” IEEE J. Quantum Electron. 29, 2650–2654 (1993).
[CrossRef]

Akhmanov, S. A.

S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, “Nonstationary phenomena and space-time analogy in nonlinear optics,” Sov. Phys. JETP 28, 748–757 (1969).

Arbore, M. A.

Arie, A.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

Arnold, J. M.

C. N. Ironside, J. S. Aitchison, and J. M. Arnold, “An all-optical switch employing the cascaded second-order nonlinear effect,” IEEE J. Quantum Electron. 29, 2650–2654 (1993).
[CrossRef]

Baek, Y.

Bang, O.

C. B. Clausen, O. Bang, and Y. S. Kivshar, “Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media,” Phys. Rev. Lett. 78, 4749–4752 (1997).
[CrossRef]

Becouarn, L.

Bortz, M. L.

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
[CrossRef]

Bosenberg, W. R.

Brener, I.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Brevignon, M.

Britton, P. E.

Byer, R. L.

Chaban, E. E.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Cheriaux, G.

Chirkin, A. S.

S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, “Nonstationary phenomena and space-time analogy in nonlinear optics,” Sov. Phys. JETP 28, 748–757 (1969).

Chou, M. H.

Z. Zheng, A. M. Weiner, K. R. Parameswaran, M. H. Chou, and M. M. Fejer, “Low power spectral phase correlator using periodically poled LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 13, 376–378 (2001).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Christman, S. B.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Clarkson, W. A.

Clausen, C. B.

C. B. Clausen, O. Bang, and Y. S. Kivshar, “Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media,” Phys. Rev. Lett. 78, 4749–4752 (1997).
[CrossRef]

Crasovan, L.

S. Darmanyan, L. Crasovan, and F. Lederer, “Double-hump solitary waves in quadratically nonlinear media with loss and gain,” Phys. Rev. E 61, 3267–3269 (2000).
[CrossRef]

Darmanyan, S.

S. Darmanyan, L. Crasovan, and F. Lederer, “Double-hump solitary waves in quadratically nonlinear media with loss and gain,” Phys. Rev. E 61, 3267–3269 (2000).
[CrossRef]

DeSalvo, R.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Deyanova, Y.

Eckardt, R. C.

Eger, D.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

Fejer, M. M.

Z. Zheng, A. M. Weiner, K. R. Parameswaran, M. H. Chou, and M. M. Fejer, “Low power spectral phase correlator using periodically poled LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 13, 376–378 (2001).
[CrossRef]

G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, “Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,” J. Opt. Soc. Am. B 17, 304–318 (2000).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653–655 (1999).
[CrossRef]

G. Imeshev, A. Galvanauskas, D. Harter, M. A. Arbore, M. Proctor, and M. M. Fejer, “Engineerable femtosecond pulse shaping by second-harmonic generation with Fourier synthetic quasi-phase-matching gratings,” Opt. Lett. 23, 864–866 (1998).
[CrossRef]

M. A. Arbore, O. Marco, and M. M. Fejer, “Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,” Opt. Lett. 22, 865–867 (1997).
[CrossRef] [PubMed]

M. A. Arbore, M. M. Fejer, M. E. Fermann, A. Hariharan, A. Galvanauskas, and D. Harter, “Frequency doubling of femtosecond erbium-fiber soliton lasers in periodically poled lithium niobate,” Opt. Lett. 22, 13–15 (1997).
[CrossRef] [PubMed]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2115 (1995).
[CrossRef]

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
[CrossRef]

Fermann, M.

Fermann, M. E.

Field, S. J.

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
[CrossRef]

Fujimura, M.

K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, “High-efficiency LiNbO3 waveguide second-harmonic generation devices with ferroelectric-domain-inverted gratings fabricated by applying voltage,” J. Lightwave Technol. 14, 462–468 (1996).
[CrossRef]

Galvanauskas, A.

Glenn, W. H.

W. H. Glenn, “Second-harmonic generation by picosecond optical pulses,” IEEE J. Quantum Electron. QE-5, 284–290 (1969).
[CrossRef]

Guzun, D.

Hagan, D. J.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

Hanna, D. C.

Hariharan, A.

Harter, D.

Heritage, J. P.

J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

Hollberg, L.

Hutchings, D. C.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

Iizuka, T.

T. Iizuka and Y. S. Kivshar, “Optical gap solitons in nonresonant quadratic media,” Phys. Rev. E 59, 7148–7151 (1999).
[CrossRef]

Imeshev, G.

Ironside, C. N.

C. N. Ironside, J. S. Aitchison, and J. M. Arnold, “An all-optical switch employing the cascaded second-order nonlinear effect,” IEEE J. Quantum Electron. 29, 2650–2654 (1993).
[CrossRef]

Joffre, M.

Kan’an, A. M.

Katz, M.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

Kintaka, K.

K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, “High-efficiency LiNbO3 waveguide second-harmonic generation devices with ferroelectric-domain-inverted gratings fabricated by applying voltage,” J. Lightwave Technol. 14, 462–468 (1996).
[CrossRef]

Kivshar, Y. S.

S. Saltiel, K. Koynov, Y. Deyanova, and Y. S. Kivshar, “Nonlinear phase shift resulting from two-color multistep cascading,” J. Opt. Soc. Am. B 17, 959–965 (2000).
[CrossRef]

T. Iizuka and Y. S. Kivshar, “Optical gap solitons in nonresonant quadratic media,” Phys. Rev. E 59, 7148–7151 (1999).
[CrossRef]

C. B. Clausen, O. Bang, and Y. S. Kivshar, “Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media,” Phys. Rev. Lett. 78, 4749–4752 (1997).
[CrossRef]

Koynov, K.

Lallier, E.

Leaird, D. E.

Lederer, F.

S. Darmanyan, L. Crasovan, and F. Lederer, “Double-hump solitary waves in quadratically nonlinear media with loss and gain,” Phys. Rev. E 61, 3267–3269 (2000).
[CrossRef]

Lehoux, J.

Lepetit, L.

Levenson, M. D.

Li, Y.

Liu, X.

X. Liu, L. J. Qian, and F. Wise, “Effect of local phase-mismatch on frequency doubling of high-power femtosecond laser pulses under quasi-phase-matched conditions,” Opt. Commun. 164, 69–75 (1999).
[CrossRef]

X. Liu, L. J. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2)(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999).
[CrossRef]

Mahal, V.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

Marco, O.

Mazilu, D.

L. Torner, D. Mazilu, and D. Mihalache, “Walking solitons in quadratic nonlinear media,” Phys. Rev. Lett. 77, 2455–2458 (1996).
[CrossRef] [PubMed]

Menyuk, C. R.

Mihalache, D.

L. Torner, D. Mazilu, and D. Mihalache, “Walking solitons in quadratic nonlinear media,” Phys. Rev. Lett. 77, 2455–2458 (1996).
[CrossRef] [PubMed]

Myers, L. E.

Nam, D. W.

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
[CrossRef]

Nishihara, H.

K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, “High-efficiency LiNbO3 waveguide second-harmonic generation devices with ferroelectric-domain-inverted gratings fabricated by applying voltage,” J. Lightwave Technol. 14, 462–468 (1996).
[CrossRef]

Oron, M.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

Parameswaran, K. R.

Z. Zheng, A. M. Weiner, K. R. Parameswaran, M. H. Chou, and M. M. Fejer, “Low power spectral phase correlator using periodically poled LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 13, 376–378 (2001).
[CrossRef]

Pfister, O.

Pierce, J. W.

Pollnau, M.

Proctor, M.

Qian, L. J.

X. Liu, L. J. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2)(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999).
[CrossRef]

X. Liu, L. J. Qian, and F. Wise, “Effect of local phase-mismatch on frequency doubling of high-power femtosecond laser pulses under quasi-phase-matched conditions,” Opt. Commun. 164, 69–75 (1999).
[CrossRef]

Rosenman, G.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

Ross, G. W.

Said, A. A.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Salehi, J. A.

J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

Saltiel, S.

Schiek, R.

Sheik-Bahae, M.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

Skliar, A.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

Smith, P. G.

Stegeman, G. I.

Suhara, T.

K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, “High-efficiency LiNbO3 waveguide second-harmonic generation devices with ferroelectric-domain-inverted gratings fabricated by applying voltage,” J. Lightwave Technol. 14, 462–468 (1996).
[CrossRef]

Sukhorukov, A. P.

S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, “Nonstationary phenomena and space-time analogy in nonlinear optics,” Sov. Phys. JETP 28, 748–757 (1969).

Torner, L.

L. Torner, D. Mazilu, and D. Mihalache, “Walking solitons in quadratic nonlinear media,” Phys. Rev. Lett. 77, 2455–2458 (1996).
[CrossRef] [PubMed]

C. R. Menyuk, R. Schiek, and L. Torner, “Solitary waves due to χ(2)(2) cascading,” J. Opt. Soc. Am. B 11, 2434–2443 (1994).
[CrossRef]

Van Baak, D. A.

Van Stryland, E. W.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

Waarts, R. G.

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
[CrossRef]

Weiner, A. M.

Z. Zheng, A. M. Weiner, K. R. Parameswaran, M. H. Chou, and M. M. Fejer, “Low power spectral phase correlator using periodically poled LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 13, 376–378 (2001).
[CrossRef]

Z. Zheng and A. M. Weiner, “Spectral phase correlation of coded femtosecond pulses by second-harmonic generation in thick nonlinear crystals,” Opt. Lett. 25, 984–986 (2000).
[CrossRef]

A. M. Weiner, A. M. Kan’an, and D. E. Leaird, “High-efficiency blue generation by frequency doubling of femtosecond pulses in a thick nonlinear crystal,” Opt. Lett. 23, 1441–1443 (1998).
[CrossRef]

J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

Welch, D. F.

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
[CrossRef]

Wells, J. S.

Wise, F.

X. Liu, L. J. Qian, and F. Wise, “Effect of local phase-mismatch on frequency doubling of high-power femtosecond laser pulses under quasi-phase-matched conditions,” Opt. Commun. 164, 69–75 (1999).
[CrossRef]

X. Liu, L. J. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2)(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999).
[CrossRef]

Xiao, M.

Yariv, A.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
[CrossRef]

Zheng, Z.

Z. Zheng, A. M. Weiner, K. R. Parameswaran, M. H. Chou, and M. M. Fejer, “Low power spectral phase correlator using periodically poled LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 13, 376–378 (2001).
[CrossRef]

Z. Zheng and A. M. Weiner, “Spectral phase correlation of coded femtosecond pulses by second-harmonic generation in thick nonlinear crystals,” Opt. Lett. 25, 984–986 (2000).
[CrossRef]

Zink, L.

IEEE J. Quantum Electron. (6)

W. H. Glenn, “Second-harmonic generation by picosecond optical pulses,” IEEE J. Quantum Electron. QE-5, 284–290 (1969).
[CrossRef]

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
[CrossRef]

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

C. N. Ironside, J. S. Aitchison, and J. M. Arnold, “An all-optical switch employing the cascaded second-order nonlinear effect,” IEEE J. Quantum Electron. 29, 2650–2654 (1993).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Z. Zheng, A. M. Weiner, K. R. Parameswaran, M. H. Chou, and M. M. Fejer, “Low power spectral phase correlator using periodically poled LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 13, 376–378 (2001).
[CrossRef]

J. Lightwave Technol. (2)

K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, “High-efficiency LiNbO3 waveguide second-harmonic generation devices with ferroelectric-domain-inverted gratings fabricated by applying voltage,” J. Lightwave Technol. 14, 462–468 (1996).
[CrossRef]

J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

J. Opt. Soc. Am. B (7)

Opt. Commun. (3)

X. Liu, L. J. Qian, and F. Wise, “Effect of local phase-mismatch on frequency doubling of high-power femtosecond laser pulses under quasi-phase-matched conditions,” Opt. Commun. 164, 69–75 (1999).
[CrossRef]

K. Koynov and S. Saltiel, “Nonlinear phase shift via multistep χ(2) cascading,” Opt. Commun. 152, 96–100 (1998).
[CrossRef]

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

Opt. Lett. (11)

X. Liu, L. J. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2)(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999).
[CrossRef]

L. Becouarn, E. Lallier, M. Brevignon, and J. Lehoux, “Cascaded second-harmonic and sum-frequency generation of a CO2 laser by use of a single quasi-phase-matched GaAs crystal,” Opt. Lett. 23, 1508–1510 (1998).
[CrossRef]

S. Saltiel and Y. Deyanova, “Polarization switching as a result of cascading of two simultaneously phase matched quadratic processes,” Opt. Lett. 24, 1296–1298 (1999).
[CrossRef]

O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Baak, M. D. Levenson, and W. R. Bosenberg, “Continuous-wave frequency tripling and quadrupling by simultaneous three-wave mixings in periodically poled crystals: application to a two-step 1.19–10.71-μm frequency bridge,” Opt. Lett. 22, 1211–1213 (1997).
[CrossRef] [PubMed]

M. A. Arbore, M. M. Fejer, M. E. Fermann, A. Hariharan, A. Galvanauskas, and D. Harter, “Frequency doubling of femtosecond erbium-fiber soliton lasers in periodically poled lithium niobate,” Opt. Lett. 22, 13–15 (1997).
[CrossRef] [PubMed]

G. W. Ross, M. Pollnau, P. G. Smith, W. A. Clarkson, P. E. Britton, and D. C. Hanna, “Generation of high-power blue light in periodically poled LiNbO3,” Opt. Lett. 23, 171–173 (1998).
[CrossRef]

M. A. Arbore, O. Marco, and M. M. Fejer, “Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,” Opt. Lett. 22, 865–867 (1997).
[CrossRef] [PubMed]

G. Imeshev, A. Galvanauskas, D. Harter, M. A. Arbore, M. Proctor, and M. M. Fejer, “Engineerable femtosecond pulse shaping by second-harmonic generation with Fourier synthetic quasi-phase-matching gratings,” Opt. Lett. 23, 864–866 (1998).
[CrossRef]

Z. Zheng and A. M. Weiner, “Spectral phase correlation of coded femtosecond pulses by second-harmonic generation in thick nonlinear crystals,” Opt. Lett. 25, 984–986 (2000).
[CrossRef]

A. M. Weiner, A. M. Kan’an, and D. E. Leaird, “High-efficiency blue generation by frequency doubling of femtosecond pulses in a thick nonlinear crystal,” Opt. Lett. 23, 1441–1443 (1998).
[CrossRef]

Y. Li, D. Guzun, and M. Xiao, “Quantum-noise measurements in high-efficiency single-pass second-harmonic generation with femtosecond pulses,” Opt. Lett. 24, 987–989 (1999).
[CrossRef]

Phys. Rev. E (2)

T. Iizuka and Y. S. Kivshar, “Optical gap solitons in nonresonant quadratic media,” Phys. Rev. E 59, 7148–7151 (1999).
[CrossRef]

S. Darmanyan, L. Crasovan, and F. Lederer, “Double-hump solitary waves in quadratically nonlinear media with loss and gain,” Phys. Rev. E 61, 3267–3269 (2000).
[CrossRef]

Phys. Rev. Lett. (2)

L. Torner, D. Mazilu, and D. Mihalache, “Walking solitons in quadratic nonlinear media,” Phys. Rev. Lett. 77, 2455–2458 (1996).
[CrossRef] [PubMed]

C. B. Clausen, O. Bang, and Y. S. Kivshar, “Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media,” Phys. Rev. Lett. 78, 4749–4752 (1997).
[CrossRef]

Sov. Phys. JETP (1)

S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, “Nonstationary phenomena and space-time analogy in nonlinear optics,” Sov. Phys. JETP 28, 748–757 (1969).

Other (3)

M. H. Chou, “Optical frequency mixers using three-wave mixing for optical fiber communications,” Ph.D. Dissertation (Stanford University, Stanford, Calif., 1999).

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, 1995).

G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, New York, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Scheme of proposed add–drop multiplexer for code-division multiple-access systems. SH, second harmonic.

Fig. 2
Fig. 2

SHG efficiency versus pump pulse energy. Solid curve, experimental result; Dashed curve, theoretical result.

Fig. 3
Fig. 3

Second-harmonic spectrum shape under low-power pump conditions.

Fig. 4
Fig. 4

Pump pulse temporal shape when it is phase matched for SHG (a) at 0.5-pJ power level, (b) at 10-pJ power level.

Fig. 5
Fig. 5

Pump pulse temporal shape when it is not phase matched for SHG (a) at 0.5-pJ power level, (b) at 10-pJ power level.

Fig. 6
Fig. 6

Pump spectrum variation as the pump power increases.

Fig. 7
Fig. 7

Output pump spectrum under high-power conditions. The center wavelength is varied while the phase-matching wavelength of the sample is fixed at ∼1558 nm. The labels show the center wavelengths of the input pump spectrum.

Fig. 8
Fig. 8

Spectral phase curve of the pump under the phase-matched and high-power input condition. Measured at ∼10 pJ power level.

Fig. 9
Fig. 9

Simulated and experimental second-harmonic spectrum under low input power. Solid curve, simulation result; Dashed curve, experimental result.

Fig. 10
Fig. 10

Simulated pump spectrum under 10 pJ of input power, considering an effective varying phase mismatch and an effective NPM term.

Fig. 11
Fig. 11

Simulated pump pulse shape under 10 pJ of input power, considering an effective varying phase mismatch and an effective NPM term.

Fig. 12
Fig. 12

Simulated (Simu) second-harmonic conversion efficiency versus input pump power, considering the effects of different physical processes.

Fig. 13
Fig. 13

Simulated pump spectrum under high-power input condition and varied phase-matching conditions. The legend shows the difference between the input pump center wavelength and the phase-matching wavelength.

Fig. 14
Fig. 14

Simulated pump spectrum under varied pump power conditions considering a second phase-mismatched SHG process.

Fig. 15
Fig. 15

Simulated pump spectrum and spectral phase curve under a 10-pJ pump power level considering a second phase-mismatched SHG process.

Fig. 16
Fig. 16

Simulated pump pulse shape under a 10-pJ pump power level considering a second phase-mismatched SHG process.

Fig. 17
Fig. 17

Simulated pump spectrum and spectral phase curve under a 10-pJ pump power level considering a second phase-mismatched SHG process, assuming a phase mismatch of sign opposite that assumed in Fig. 16.

Tables (1)

Tables Icon

Table 1 Simulation Parameters

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A1z+1vg,1-1vg,2 A1τ-j2β2,1 2A1τ2
=-jγd(z)A2A1* exp[-jΔk0(z)z]-j n2k1,0n0(|A1|2+2|A2|2)A1-α12A1,
A2z-j2β2,2 2A2τ2
=-jγd(z)A12 exp[jΔk0(z)z]-j n2k2,0n0(|A2|2+2|A1|2)A2-α22A2,
ΔTi=TNizui-zzNipizzui0zui<zzoiTNiz-zoizNipizoi<z.
A1z+1vg,1-1vg,2 A1τ=-jγdA2A1* exp(-jΔk0z)-jγdA2A1* exp(-jΔk0z)-α12A1,
A2z=-jγdA12×exp(jΔk0z)-α22A2,
A2z=-jγdA12×exp(jΔk0z)-α22A2,

Metrics