Abstract

We study the generation of supercontinua in air–silica microstructured fibers by both nanosecond and femtosecond pulse excitation. In the nanosecond experiments, a 300-nm broadband visible continuum was generated in a 1.8-m length of fiber pumped at 532 nm by 0.8-ns pulses from a frequency-doubled passively Q-switched Nd:YAG microchip laser. At this wavelength, the dominant mode excited under the conditions of continuum generation is the LP11 mode, and, with nanosecond pumping, self-phase modulation is negligible and the continuum generation is dominated by the interplay of Raman and parametric effects. The spectral extent of the continuum is well explained by calculations of the parametric gain curves for four-wave mixing about the zero-dispersion wavelength of the LP11 mode. In the femtosecond experiments, an 800-nm broadband visible and near-infrared continuum has been generated in a 1-m length of fiber pumped at 780 nm by 100-fs pulses from a Kerr-lens model-locked Ti:sapphire laser. At this wavelength, excitation and continuum generation occur in the LP01 mode, and the spectral width of the observed continuum is shown to be consistent with the phase-matching bandwidth for parametric processes calculated for this fiber mode. In addition, numerical simulations based on an extended nonlinear Schrödinger equation were used to model supercontinuum generation in the femtosecond regime, with the simulation results reproducing the major features of the experimentally observed spectrum.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, R. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, New York, 1989), and references therein.
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  3. J. K. Ranka and R. S. Windeler, “Nonlinear interactions in air–silica microstructure optical fibers,” Opt. Photonics News, 11, 2000, pp. 20–25.
    [CrossRef]
  4. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996); errata 22, 484–485 (1997).
    [CrossRef] [PubMed]
  5. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef] [PubMed]
  6. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664 (1998).
    [CrossRef]
  7. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999).
    [CrossRef]
  8. A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. V. Andrés, “Vector description of higher-order modes in photonic crystal fibers,” J. Opt. Soc. Am. A 17, 1333–1340 (2000).
    [CrossRef]
  9. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. Mater. Devices Syst. 6, 181–191 (2000).
    [CrossRef]
  10. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
    [CrossRef]
  11. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
    [CrossRef]
  12. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [CrossRef] [PubMed]
  13. S. A. Diddams, D. J. Jones, J. Ye, T. M. Fortier, R. S. Windeler, S. T. Cundiff, T. W. Hänsch, and J. L. Hall, “Towards the ultimate control of light: optical frequency metrology and the phase control of femtosecond pulses,” Opt. Photonics News, November 2000, pp. 16–22.
    [CrossRef]
  14. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
    [CrossRef]
  15. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
    [CrossRef]
  16. T. P. M. Man, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Fabrication of indefinitely long tapered fibers for supercontinuum generation,” in Nonlinear Guided Waves and Their Applications (NLGW 2001), 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper WB4, pp. 438–440.
  17. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Single mode white light supercontinuum with 60 ps pump pulses in a photonic crystal fiber,” in Nonlinear Guided Waves and Their Applications (NLGW 2001), 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper TuC6, pp. 405–407.
  18. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
    [CrossRef]
  19. L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on a microchip laser pumped microstructured fiber,” Electron. Lett. 37, 558–560 (2001).
    [CrossRef]
  20. C. Lin and R. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
    [CrossRef]
  21. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air–silica microstructure fibers,” Opt. Lett. 25, 796–798 (2000).
    [CrossRef]
  22. R. H. Stolen and W. N. Leibolt, “Optical fiber modes using stimulated four photon mixing,” Appl. Opt. 15, 239–243 (1976).
    [CrossRef] [PubMed]
  23. L. Provino, J. M. Dudley, H. Maillotte, R. S. Windeler, and B. J. Eggleton, “Compact visible continuum source based on a microchip laser pumped microstructured fiber,” in Nonlinear Guided Waves and Their Applications (NLGW 2001), 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper WB3, pp. 435–437.
  24. A similar interpretation that explains supercontinuum generation in ASMF in the picosecond regime is described in Refs. 17 and 18.
  25. R. H. Stolen, C. Lee, and R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984).
    [CrossRef]
  26. R. R. Alfano, P. L. Baldeck, F. Raccah, and P. P. Ho, “Cross phase modulation measured in optical fibers,” Appl. Opt. 26, 3491–3492 (1987).
    [CrossRef] [PubMed]
  27. P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. LT-5, 1712–1715 (1987).
    [CrossRef]
  28. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).
  29. A. L. Gaeta, “Supercontinuum generation in microstructured fibers,” in Conference on Lasers and Electro-Optics (CLEO 2001), 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper CMK 3, pp. 48–49.
  30. See, for example, Fig. 5(b) of Ref. 3, Fig. 4 of Ref. 13, and Fig. 6 of Ref. 15.
  31. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
    [CrossRef]
  32. E. A. Golovchenko and A. N. Pilipetskii, “Unified analysis of four photon mixing, modulational instability and stimulated Raman scattering under various polarization conditions in fibers,” J. Opt. Soc. Am. B 11, 92–101 (1994).
    [CrossRef]
  33. S. V. Chernikov and P. V. Mamyshev, “Femtosecond soliton propagation in fibers with slowly decreasing dispersion,” J. Opt. Soc. Am. B 8, 1633–1641 (1991).
    [CrossRef]
  34. F. Matera, A. Mecozzi, M. Romagnoli, and M. Settembre, “Sideband instability induced by periodic power variation in long-distance fiber links,” Opt. Lett. 18, 1499–1501 (1993).
    [CrossRef] [PubMed]
  35. W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett. 36, 53–55 (2000).
    [CrossRef]
  36. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
    [CrossRef]
  37. M. W. Kimmel, R. Trebino, J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Measuring the intensity and phase of ultrabroadband continuum,” in Conference on Lasers and Electro-Optics (CLEO 2000), 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C. 2000), Paper CFL7, pp. 622–623.

2001 (4)

2000 (9)

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett. 36, 53–55 (2000).
[CrossRef]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air–silica microstructure fibers,” Opt. Lett. 25, 796–798 (2000).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

J. K. Ranka and R. S. Windeler, “Nonlinear interactions in air–silica microstructure optical fibers,” Opt. Photonics News, 11, 2000, pp. 20–25.
[CrossRef]

A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. V. Andrés, “Vector description of higher-order modes in photonic crystal fibers,” J. Opt. Soc. Am. A 17, 1333–1340 (2000).
[CrossRef]

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. Mater. Devices Syst. 6, 181–191 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
[CrossRef]

1999 (2)

1998 (1)

1997 (1)

1994 (1)

1993 (1)

1991 (1)

1989 (1)

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

1987 (2)

R. R. Alfano, P. L. Baldeck, F. Raccah, and P. P. Ho, “Cross phase modulation measured in optical fibers,” Appl. Opt. 26, 3491–3492 (1987).
[CrossRef] [PubMed]

P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. LT-5, 1712–1715 (1987).
[CrossRef]

1984 (1)

1976 (2)

R. H. Stolen and W. N. Leibolt, “Optical fiber modes using stimulated four photon mixing,” Appl. Opt. 15, 239–243 (1976).
[CrossRef] [PubMed]

C. Lin and R. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

Alfano, R. R.

R. R. Alfano, P. L. Baldeck, F. Raccah, and P. P. Ho, “Cross phase modulation measured in optical fibers,” Appl. Opt. 26, 3491–3492 (1987).
[CrossRef] [PubMed]

P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. LT-5, 1712–1715 (1987).
[CrossRef]

Andrés, M. V.

Andrés, P.

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
[CrossRef]

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett. 36, 53–55 (2000).
[CrossRef]

Baldeck, P. L.

P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. LT-5, 1712–1715 (1987).
[CrossRef]

R. R. Alfano, P. L. Baldeck, F. Raccah, and P. P. Ho, “Cross phase modulation measured in optical fibers,” Appl. Opt. 26, 3491–3492 (1987).
[CrossRef] [PubMed]

Bennett, P. J.

Birks, T. A.

Blow, K. J.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

Brechet, F.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. Mater. Devices Syst. 6, 181–191 (2000).
[CrossRef]

Broderick, N. G. R.

Chandalia, J. K.

Chau, A. H. L.

Chernikov, S. V.

Chudoba, C.

Coen, S.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Dudley, J. M.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on a microchip laser pumped microstructured fiber,” Electron. Lett. 37, 558–560 (2001).
[CrossRef]

Eggleton, B. J.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on a microchip laser pumped microstructured fiber,” Electron. Lett. 37, 558–560 (2001).
[CrossRef]

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
[CrossRef]

Ferrando, A.

Fujimoto, J. G.

Ghanta, R. K.

Golovchenko, E. A.

Grossard, N.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on a microchip laser pumped microstructured fiber,” Electron. Lett. 37, 558–560 (2001).
[CrossRef]

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Hartl, I.

Harvey, J. D.

Ho, P. P.

Jain, R. K.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Knight, J. C.

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
[CrossRef]

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett. 36, 53–55 (2000).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

Knox, W. H.

Ko, T. H.

Kosinski, S. G.

Lee, C.

Leibolt, W. N.

Leonhardt, R.

Li, X. D.

Lin, C.

C. Lin and R. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

Liu, X.

Maillotte, H.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on a microchip laser pumped microstructured fiber,” Electron. Lett. 37, 558–560 (2001).
[CrossRef]

Mamyshev, P. V.

Marcou, J.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. Mater. Devices Syst. 6, 181–191 (2000).
[CrossRef]

Matera, F.

Mecozzi, A.

Miret, J. J.

Mogilevtsev, D.

Monro, T. M.

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
[CrossRef]

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett. 36, 53–55 (2000).
[CrossRef]

Pagnoux, D.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. Mater. Devices Syst. 6, 181–191 (2000).
[CrossRef]

Pilipetskii, A. N.

Provino, L.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on a microchip laser pumped microstructured fiber,” Electron. Lett. 37, 558–560 (2001).
[CrossRef]

Raccah, F.

Ranka, J. K.

Richardson, D. J.

Romagnoli, M.

Roy, P.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. Mater. Devices Syst. 6, 181–191 (2000).
[CrossRef]

Russell, P. St. J.

Settembre, M.

Silvestre, E.

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett. 36, 53–55 (2000).
[CrossRef]

A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. V. Andrés, “Vector description of higher-order modes in photonic crystal fibers,” J. Opt. Soc. Am. A 17, 1333–1340 (2000).
[CrossRef]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Stentz, A. J.

Stolen, R.

C. Lin and R. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

Stolen, R. H.

Wadsworth, W. J.

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
[CrossRef]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
[CrossRef]

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett. 36, 53–55 (2000).
[CrossRef]

Windeler, R. S.

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
[CrossRef]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
[CrossRef]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on a microchip laser pumped microstructured fiber,” Electron. Lett. 37, 558–560 (2001).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air–silica microstructure fibers,” Opt. Lett. 25, 796–798 (2000).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

J. K. Ranka and R. S. Windeler, “Nonlinear interactions in air–silica microstructure optical fibers,” Opt. Photonics News, 11, 2000, pp. 20–25.
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

Wood, D.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

Xu, C.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

C. Lin and R. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

Electron. Lett. (2)

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on a microchip laser pumped microstructured fiber,” Electron. Lett. 37, 558–560 (2001).
[CrossRef]

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett. 36, 53–55 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
[CrossRef]

J. Lightwave Technol. (2)

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999).
[CrossRef]

P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. LT-5, 1712–1715 (1987).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

Opt. Fiber Technol. Mater. Devices Syst. (1)

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. Mater. Devices Syst. 6, 181–191 (2000).
[CrossRef]

Opt. Lett. (10)

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
[CrossRef]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
[CrossRef]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664 (1998).
[CrossRef]

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
[CrossRef]

F. Matera, A. Mecozzi, M. Romagnoli, and M. Settembre, “Sideband instability induced by periodic power variation in long-distance fiber links,” Opt. Lett. 18, 1499–1501 (1993).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air–silica microstructure fibers,” Opt. Lett. 25, 796–798 (2000).
[CrossRef]

Opt. Photonics News (1)

J. K. Ranka and R. S. Windeler, “Nonlinear interactions in air–silica microstructure optical fibers,” Opt. Photonics News, 11, 2000, pp. 20–25.
[CrossRef]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Other (11)

S. A. Diddams, D. J. Jones, J. Ye, T. M. Fortier, R. S. Windeler, S. T. Cundiff, T. W. Hänsch, and J. L. Hall, “Towards the ultimate control of light: optical frequency metrology and the phase control of femtosecond pulses,” Opt. Photonics News, November 2000, pp. 16–22.
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996); errata 22, 484–485 (1997).
[CrossRef] [PubMed]

T. P. M. Man, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Fabrication of indefinitely long tapered fibers for supercontinuum generation,” in Nonlinear Guided Waves and Their Applications (NLGW 2001), 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper WB4, pp. 438–440.

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Single mode white light supercontinuum with 60 ps pump pulses in a photonic crystal fiber,” in Nonlinear Guided Waves and Their Applications (NLGW 2001), 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper TuC6, pp. 405–407.

See, for example, R. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, New York, 1989), and references therein.

L. Provino, J. M. Dudley, H. Maillotte, R. S. Windeler, and B. J. Eggleton, “Compact visible continuum source based on a microchip laser pumped microstructured fiber,” in Nonlinear Guided Waves and Their Applications (NLGW 2001), 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper WB3, pp. 435–437.

A similar interpretation that explains supercontinuum generation in ASMF in the picosecond regime is described in Refs. 17 and 18.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).

A. L. Gaeta, “Supercontinuum generation in microstructured fibers,” in Conference on Lasers and Electro-Optics (CLEO 2001), 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper CMK 3, pp. 48–49.

See, for example, Fig. 5(b) of Ref. 3, Fig. 4 of Ref. 13, and Fig. 6 of Ref. 15.

M. W. Kimmel, R. Trebino, J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Measuring the intensity and phase of ultrabroadband continuum,” in Conference on Lasers and Electro-Optics (CLEO 2000), 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C. 2000), Paper CFL7, pp. 622–623.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Electromicrograph of the Lucent ASMF. (b) Calculated mode profiles at 532 nm, showing their orientation with respect to the ASMF structure. The contours are shown at 11-dB increments.

Fig. 2
Fig. 2

Calculated GVD curves for the LP01 and LP11 fiber modes. Dashed lines, ZDWs.

Fig. 3
Fig. 3

Measured spectra as a function of estimated peak power in the ASMF for the nanosecond regime experiments.

Fig. 4
Fig. 4

(a) FWM phase-matching curves for the LP11 mode of the ASMF for P0=0 W (solid curve) and P0=40 W (dashed curve). (b) Calculated gain curves for the pump wavelengths indicated.

Fig. 5
Fig. 5

(a) Typical supercontinuum spectrum observed in the ASMF with 100-fs pulses at 780 nm. (b) Spectral characteristics from numerical simulations. (c) Temporal characteristics from numerical simulations.

Fig. 6
Fig. 6

FWM phase-matching curves for the LP01 mode of the ASMF for P0=0 W and P0=3 kW.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Az+α2A-k1 ik+1 βkk! kAtk
=iγ1+iω0 tA(z, t)-t R(t)|A(z, t-t)|2dt,

Metrics