Abstract

Supercontinuum generation is investigated experimentally and numerically in a highly nonlinear index-guiding photonic crystal optical fiber in a regime in which self-phase modulation of the pump wave makes a negligible contribution to spectral broadening. An ultrabroadband octave-spanning white-light continuum is generated with 60-ps pump pulses of subkilowatt peak power. The primary mechanism of spectral broadening is identified as the combined action of stimulated Raman scattering and parametric four-wave mixing. The observation of a strong anti-Stokes Raman component reveals the importance of the coupling between stimulated Raman scattering and parametric four-wave mixing in highly nonlinear photonic crystal fibers and also indicates that non-phase-matched processes contribute to the continuum. Additionally, the pump input polarization affects the generated continuum through the influence of polarization modulational instability. The experimental results are in good agreement with detailed numerical simulations. These findings demonstrate the importance of index-guiding photonic crystal fibers for the design of picosecond and nanosecond supercontinuum light sources.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, New York, 1989).
  2. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
    [CrossRef]
  3. R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
    [CrossRef]
  4. W. Yu, R. R. Alfano, C. L. Sam, and R. J. Seymour, “Spectral broadening of picosecond 1.06 μm pulse in KBr,” Opt. Commun. 14, 344–347 (1975).
    [CrossRef]
  5. A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
    [CrossRef]
  6. A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
    [CrossRef] [PubMed]
  7. W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H.-J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
    [CrossRef]
  8. A. Penzkofer, A. Laubereau, and W. Kaiser, “Stimulated short-wave radiation due to single-frequency resonances of χ(3),” Phys. Rev. Lett. 31, 863–866 (1973).
    [CrossRef]
  9. W. Lee Smith, P. Liu, and N. Bloembergen, “Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser,” Phys. Rev. A 15, 2396–2403 (1977).
    [CrossRef]
  10. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, “Femtosecond white-light continuum pulses,” Opt. Lett. 8, 1–3 (1983).
    [CrossRef] [PubMed]
  11. P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
    [CrossRef] [PubMed]
  12. J. H. Glownia, J. Misewich, and P. P. Sorokin, “Ultrafast ultraviolet pump–probe apparatus,” J. Opt. Soc. Am. B 3, 1573–1579 (1986).
    [CrossRef]
  13. V. François, F. A. Ilkov, and S. L. Chin, “Experimental study of the supercontinuum spectral width evolution in CO2 gas,” Opt. Commun. 99, 241–246 (1993).
    [CrossRef]
  14. J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J.-P. Wolf, Y.-B. André, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, M. Rodriguez, H. Wille, and L. Wöste, “Infrared extension of the supercontinuum generated by femtosecond terawatt laser pulses propagating in the atmosphere,” Opt. Lett. 25, 1397–1399 (2000).
    [CrossRef]
  15. C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
    [CrossRef]
  16. P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. 5, 1712–1715 (1987).
    [CrossRef]
  17. T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibers,” Electron. Lett. 29, 862–864 (1993).
    [CrossRef]
  18. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  19. K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36, 773–779 (2000).
    [CrossRef]
  20. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
    [CrossRef]
  21. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
    [CrossRef]
  22. P. C. Becker, H. L. Fragnito, R. L. Fork, F. A. Beisser, and C. V. Shank, “Generation of tunable 9 femtosecond optical pulses in the near infrared,” Appl. Phys. Lett. 54, 411–412 (1989).
    [CrossRef]
  23. R. W. Schoenlein, J.-Y. Bigot, M. T. Portella, and C. V. Shank, “Generation of blue–green 10 fs pulses using an excimer pumped dye amplifier,” Appl. Phys. Lett. 58, 801–803 (1991).
    [CrossRef]
  24. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
    [CrossRef]
  25. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [CrossRef] [PubMed]
  26. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
    [CrossRef] [PubMed]
  27. M. Bellini and T. W. Hänsch, “Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer,” Opt. Lett. 25, 1049–1051 (2000).
    [CrossRef]
  28. R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
    [CrossRef] [PubMed]
  29. S. A. Diddams, D. J. Jones, J. Ye, T. M. Fortier, R. S. Windeler, S. T. Cundiff, T. W. Hänsch, and J. L. Hall, “Towards the ultimate control of light: Optical frequency metrology and the phase control of femtosecond pulses,” Opt. Photonics News 11(10), 16–22 (2000).
    [CrossRef]
  30. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [CrossRef] [PubMed]
  31. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding: errata,” Opt. Lett. 22, 484–485 (1997); erratum of Ref. 30.
    [CrossRef] [PubMed]
  32. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
    [CrossRef]
  33. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef] [PubMed]
  34. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
    [CrossRef] [PubMed]
  35. L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
    [CrossRef]
  36. R. R. Alfano, L. L. Hope, and S. L. Shapiro, “Electronic mechanism for production of self-phase modulation,” Phys. Rev. A 6, 433–438 (1972).
    [CrossRef]
  37. J. T. Manassah, R. R. Alfano, and M. Mustafa, “Spectral distribution of an ultrafast supercontinuum laser source,” Phys. Lett. A 107A, 305–309 (1985).
    [CrossRef]
  38. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed., Optics and Photonics Series (Academic, San Diego, Calif., 2001).
  39. P. B. Corkum and C. Rolland, “Femtosecond continua produced in gases,” IEEE J. Quantum Electron. 25, 2634–2639 (1989).
    [CrossRef]
  40. N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8, 285–288 (1973).
    [CrossRef]
  41. N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun. 191, 353–362 (2001).
    [CrossRef]
  42. M. V. D. Vermelho, A. M. Reis, E. A. Gouveia, M. L. Lyra, and A. S. Gouveia-Neto, “Efficient frequency upconversion of 1.319 μm radiation into intense yellow light at 580 nm in pure SiO2-core monomode optical fiber,” Opt. Lett. 18, 1496–1498 (1993).
    [CrossRef]
  43. R. Osborne, “Near-infrared continuum generation with upconversion into the visible in SiO2 single-mode fiber,” Opt. Lett. 19, 1955–1957 (1994).
    [CrossRef] [PubMed]
  44. Y. Fujii, B. S. Kawasaki, K. O. Hill, and D. C. Johnson, “Sum-frequency light generation in optical fibers,” Opt. Lett. 5, 48–50 (1980).
    [CrossRef] [PubMed]
  45. M. Nakazawa, T. Nakashima, and S. Seikai, “Efficient multiple visible light generation in a polarization-preserving optical fiber pumped by a 1.064 μm yttrium aluminum garnet laser,” Appl. Phys. Lett. 45, 823–825 (1984).
    [CrossRef]
  46. C. Lin, W. A. Reed, A. D. Pearson, H.-T. Shang, and P. F. Glodis, “Designing single-mode fibres for near-IR (1.1–1.7 μm) frequency generation by phase-matched four-photon mixing in the minimum chromatic dispersion region,” Electron. Lett. 18, 87–89 (1982).
    [CrossRef]
  47. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air–silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
    [CrossRef]
  48. T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Nearly penalty-free, <4 ps supercontinuum Gbit/s pulse generation over 1535–1560 nm,” Electron. Lett. 30, 790–791 (1994).
    [CrossRef]
  49. K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
    [CrossRef]
  50. H. Sotobayashi and K. Kitayama, “325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,” Electron. Lett. 34, 1336–1337 (1998).
    [CrossRef]
  51. J. Kim, G. A. Nowak, O. Boyraz, and M. N. Islam, “Low energy, enhanced supercontinuum generation in high nonlinearity dispersion-shifted fibers,” in Conference on Lasers and Electro-Optics, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 224–225.
  52. A. L. Gaeta, “Supercontinuum generation in microstructured fibers,” in Conference on Lasers and Electro-Optics, 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 48–49.
  53. J. M. Dudley, J. D. Harvey, and R. Leonhardt, “Coherent pulse propagation in a mode-locked argon laser,” J. Opt. Soc. Am. B 10, 840–851 (1993).
    [CrossRef]
  54. H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17, 603–605 (1981).
    [CrossRef]
  55. R. H. Stolen, C. Lee, and R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984).
    [CrossRef]
  56. R. H. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. QE-11, 100–103 (1975).
    [CrossRef]
  57. R. W. Boyd, Nonlinear Optics (Academic, Boston, Mass., 1992).
  58. N. Bloembergen and Y. R. Shen, “Coupling between vibrations and light waves in Raman laser media,” Phys. Rev. Lett. 12, 504–507 (1964).
    [CrossRef]
  59. Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, 1787–1805 (1965).
    [CrossRef]
  60. S. Coen, D. A. Wardle, and J. D. Harvey, “Measurement of the anti-Stokes growth in stimulated Raman scattering under non-phase-matched conditions,” in Nonlinear Guided Waves and Their Applications, 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD7.
  61. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
    [CrossRef]
  62. R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. 15, 1157–1160 (1979).
    [CrossRef]
  63. S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulation instability in weakly birefringent fibers,” Opt. Lett. 20, 866–868 (1995).
    [CrossRef] [PubMed]
  64. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
    [CrossRef]
  65. S. Trillo and S. Wabnitz, “Bloch wave theory of modulational polarization instabilities in birefringent optical fibers,” Phys. Rev. E 56, 1048–1058 (1997).
    [CrossRef]
  66. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
    [CrossRef]
  67. E. A. Golovchenko and A. N. Pilipetskii, “Unified analysis of four-photon mixing, modulational instability, and stimulated Raman scattering under various polarization conditions in fibers,” J. Opt. Soc. Am. B 11, 92–101 (1994).
    [CrossRef]
  68. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002).
    [CrossRef]

2002 (1)

2001 (2)

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
[CrossRef]

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun. 191, 353–362 (2001).
[CrossRef]

2000 (14)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
[CrossRef]

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36, 773–779 (2000).
[CrossRef]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, T. M. Fortier, R. S. Windeler, S. T. Cundiff, T. W. Hänsch, and J. L. Hall, “Towards the ultimate control of light: Optical frequency metrology and the phase control of femtosecond pulses,” Opt. Photonics News 11(10), 16–22 (2000).
[CrossRef]

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
[CrossRef] [PubMed]

M. Bellini and T. W. Hänsch, “Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer,” Opt. Lett. 25, 1049–1051 (2000).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J.-P. Wolf, Y.-B. André, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, M. Rodriguez, H. Wille, and L. Wöste, “Infrared extension of the supercontinuum generated by femtosecond terawatt laser pulses propagating in the atmosphere,” Opt. Lett. 25, 1397–1399 (2000).
[CrossRef]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air–silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
[CrossRef]

1998 (3)

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

H. Sotobayashi and K. Kitayama, “325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,” Electron. Lett. 34, 1336–1337 (1998).
[CrossRef]

1997 (3)

S. Trillo and S. Wabnitz, “Bloch wave theory of modulational polarization instabilities in birefringent optical fibers,” Phys. Rev. E 56, 1048–1058 (1997).
[CrossRef]

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

1996 (2)

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[CrossRef]

1995 (1)

1994 (3)

1993 (4)

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibers,” Electron. Lett. 29, 862–864 (1993).
[CrossRef]

V. François, F. A. Ilkov, and S. L. Chin, “Experimental study of the supercontinuum spectral width evolution in CO2 gas,” Opt. Commun. 99, 241–246 (1993).
[CrossRef]

M. V. D. Vermelho, A. M. Reis, E. A. Gouveia, M. L. Lyra, and A. S. Gouveia-Neto, “Efficient frequency upconversion of 1.319 μm radiation into intense yellow light at 580 nm in pure SiO2-core monomode optical fiber,” Opt. Lett. 18, 1496–1498 (1993).
[CrossRef]

J. M. Dudley, J. D. Harvey, and R. Leonhardt, “Coherent pulse propagation in a mode-locked argon laser,” J. Opt. Soc. Am. B 10, 840–851 (1993).
[CrossRef]

1991 (1)

R. W. Schoenlein, J.-Y. Bigot, M. T. Portella, and C. V. Shank, “Generation of blue–green 10 fs pulses using an excimer pumped dye amplifier,” Appl. Phys. Lett. 58, 801–803 (1991).
[CrossRef]

1989 (4)

P. C. Becker, H. L. Fragnito, R. L. Fork, F. A. Beisser, and C. V. Shank, “Generation of tunable 9 femtosecond optical pulses in the near infrared,” Appl. Phys. Lett. 54, 411–412 (1989).
[CrossRef]

P. B. Corkum and C. Rolland, “Femtosecond continua produced in gases,” IEEE J. Quantum Electron. 25, 2634–2639 (1989).
[CrossRef]

R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
[CrossRef]

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

1987 (1)

P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. 5, 1712–1715 (1987).
[CrossRef]

1986 (2)

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[CrossRef] [PubMed]

J. H. Glownia, J. Misewich, and P. P. Sorokin, “Ultrafast ultraviolet pump–probe apparatus,” J. Opt. Soc. Am. B 3, 1573–1579 (1986).
[CrossRef]

1985 (1)

J. T. Manassah, R. R. Alfano, and M. Mustafa, “Spectral distribution of an ultrafast supercontinuum laser source,” Phys. Lett. A 107A, 305–309 (1985).
[CrossRef]

1984 (2)

M. Nakazawa, T. Nakashima, and S. Seikai, “Efficient multiple visible light generation in a polarization-preserving optical fiber pumped by a 1.064 μm yttrium aluminum garnet laser,” Appl. Phys. Lett. 45, 823–825 (1984).
[CrossRef]

R. H. Stolen, C. Lee, and R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984).
[CrossRef]

1983 (1)

1982 (1)

C. Lin, W. A. Reed, A. D. Pearson, H.-T. Shang, and P. F. Glodis, “Designing single-mode fibres for near-IR (1.1–1.7 μm) frequency generation by phase-matched four-photon mixing in the minimum chromatic dispersion region,” Electron. Lett. 18, 87–89 (1982).
[CrossRef]

1981 (1)

H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17, 603–605 (1981).
[CrossRef]

1980 (1)

1979 (1)

R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. 15, 1157–1160 (1979).
[CrossRef]

1977 (1)

W. Lee Smith, P. Liu, and N. Bloembergen, “Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser,” Phys. Rev. A 15, 2396–2403 (1977).
[CrossRef]

1976 (1)

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

1975 (2)

W. Yu, R. R. Alfano, C. L. Sam, and R. J. Seymour, “Spectral broadening of picosecond 1.06 μm pulse in KBr,” Opt. Commun. 14, 344–347 (1975).
[CrossRef]

R. H. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. QE-11, 100–103 (1975).
[CrossRef]

1973 (2)

N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8, 285–288 (1973).
[CrossRef]

A. Penzkofer, A. Laubereau, and W. Kaiser, “Stimulated short-wave radiation due to single-frequency resonances of χ(3),” Phys. Rev. Lett. 31, 863–866 (1973).
[CrossRef]

1972 (2)

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H.-J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[CrossRef]

R. R. Alfano, L. L. Hope, and S. L. Shapiro, “Electronic mechanism for production of self-phase modulation,” Phys. Rev. A 6, 433–438 (1972).
[CrossRef]

1970 (2)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[CrossRef]

1965 (1)

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, 1787–1805 (1965).
[CrossRef]

1964 (1)

N. Bloembergen and Y. R. Shen, “Coupling between vibrations and light waves in Raman laser media,” Phys. Rev. Lett. 12, 504–507 (1964).
[CrossRef]

Abe, M.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Aközbek, N.

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun. 191, 353–362 (2001).
[CrossRef]

Alfano, R. R.

P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. 5, 1712–1715 (1987).
[CrossRef]

J. T. Manassah, R. R. Alfano, and M. Mustafa, “Spectral distribution of an ultrafast supercontinuum laser source,” Phys. Lett. A 107A, 305–309 (1985).
[CrossRef]

W. Yu, R. R. Alfano, C. L. Sam, and R. J. Seymour, “Spectral broadening of picosecond 1.06 μm pulse in KBr,” Opt. Commun. 14, 344–347 (1975).
[CrossRef]

R. R. Alfano, L. L. Hope, and S. L. Shapiro, “Electronic mechanism for production of self-phase modulation,” Phys. Rev. A 6, 433–438 (1972).
[CrossRef]

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[CrossRef]

André, Y.-B.

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

Atkin, D. M.

Baldeck, P. L.

P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. 5, 1712–1715 (1987).
[CrossRef]

Becker, P. C.

P. C. Becker, H. L. Fragnito, R. L. Fork, F. A. Beisser, and C. V. Shank, “Generation of tunable 9 femtosecond optical pulses in the near infrared,” Appl. Phys. Lett. 54, 411–412 (1989).
[CrossRef]

Beisser, F. A.

P. C. Becker, H. L. Fragnito, R. L. Fork, F. A. Beisser, and C. V. Shank, “Generation of tunable 9 femtosecond optical pulses in the near infrared,” Appl. Phys. Lett. 54, 411–412 (1989).
[CrossRef]

Bellini, M.

Bigot, J.-Y.

R. W. Schoenlein, J.-Y. Bigot, M. T. Portella, and C. V. Shank, “Generation of blue–green 10 fs pulses using an excimer pumped dye amplifier,” Appl. Phys. Lett. 58, 801–803 (1991).
[CrossRef]

Birks, T. A.

Bloembergen, N.

W. Lee Smith, P. Liu, and N. Bloembergen, “Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser,” Phys. Rev. A 15, 2396–2403 (1977).
[CrossRef]

N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8, 285–288 (1973).
[CrossRef]

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, 1787–1805 (1965).
[CrossRef]

N. Bloembergen and Y. R. Shen, “Coupling between vibrations and light waves in Raman laser media,” Phys. Rev. Lett. 12, 504–507 (1964).
[CrossRef]

Blow, K. J.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

Bowden, C. M.

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun. 191, 353–362 (2001).
[CrossRef]

Brodeur, A.

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[CrossRef]

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

Chin, S. L.

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun. 191, 353–362 (2001).
[CrossRef]

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[CrossRef]

V. François, F. A. Ilkov, and S. L. Chin, “Experimental study of the supercontinuum spectral width evolution in CO2 gas,” Opt. Commun. 99, 241–246 (1993).
[CrossRef]

Coen, S.

Corkum, P. B.

P. B. Corkum and C. Rolland, “Femtosecond continua produced in gases,” IEEE J. Quantum Electron. 25, 2634–2639 (1989).
[CrossRef]

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[CrossRef] [PubMed]

Cundiff, S. T.

S. A. Diddams, D. J. Jones, J. Ye, T. M. Fortier, R. S. Windeler, S. T. Cundiff, T. W. Hänsch, and J. L. Hall, “Towards the ultimate control of light: Optical frequency metrology and the phase control of femtosecond pulses,” Opt. Photonics News 11(10), 16–22 (2000).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Diddams, S. A.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, T. M. Fortier, R. S. Windeler, S. T. Cundiff, T. W. Hänsch, and J. L. Hall, “Towards the ultimate control of light: Optical frequency metrology and the phase control of femtosecond pulses,” Opt. Photonics News 11(10), 16–22 (2000).
[CrossRef]

Dudley, J. M.

Eggleton, B. J.

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002).
[CrossRef]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
[CrossRef]

Fork, R. L.

P. C. Becker, H. L. Fragnito, R. L. Fork, F. A. Beisser, and C. V. Shank, “Generation of tunable 9 femtosecond optical pulses in the near infrared,” Appl. Phys. Lett. 54, 411–412 (1989).
[CrossRef]

R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, “Femtosecond white-light continuum pulses,” Opt. Lett. 8, 1–3 (1983).
[CrossRef] [PubMed]

Fortier, T. M.

S. A. Diddams, D. J. Jones, J. Ye, T. M. Fortier, R. S. Windeler, S. T. Cundiff, T. W. Hänsch, and J. L. Hall, “Towards the ultimate control of light: Optical frequency metrology and the phase control of femtosecond pulses,” Opt. Photonics News 11(10), 16–22 (2000).
[CrossRef]

Fragnito, H. L.

P. C. Becker, H. L. Fragnito, R. L. Fork, F. A. Beisser, and C. V. Shank, “Generation of tunable 9 femtosecond optical pulses in the near infrared,” Appl. Phys. Lett. 54, 411–412 (1989).
[CrossRef]

Franco, M.

François, V.

V. François, F. A. Ilkov, and S. L. Chin, “Experimental study of the supercontinuum spectral width evolution in CO2 gas,” Opt. Commun. 99, 241–246 (1993).
[CrossRef]

Fujii, Y.

Gaeta, A. L.

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
[CrossRef] [PubMed]

Glodis, P. F.

C. Lin, W. A. Reed, A. D. Pearson, H.-T. Shang, and P. F. Glodis, “Designing single-mode fibres for near-IR (1.1–1.7 μm) frequency generation by phase-matched four-photon mixing in the minimum chromatic dispersion region,” Electron. Lett. 18, 87–89 (1982).
[CrossRef]

Glownia, J. H.

Golovchenko, E. A.

Gordon, J. P.

Gouveia, E. A.

Gouveia-Neto, A. S.

Grossard, N.

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002).
[CrossRef]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
[CrossRef]

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, T. M. Fortier, R. S. Windeler, S. T. Cundiff, T. W. Hänsch, and J. L. Hall, “Towards the ultimate control of light: Optical frequency metrology and the phase control of femtosecond pulses,” Opt. Photonics News 11(10), 16–22 (2000).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, T. M. Fortier, R. S. Windeler, S. T. Cundiff, T. W. Hänsch, and J. L. Hall, “Towards the ultimate control of light: Optical frequency metrology and the phase control of femtosecond pulses,” Opt. Photonics News 11(10), 16–22 (2000).
[CrossRef]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

M. Bellini and T. W. Hänsch, “Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer,” Opt. Lett. 25, 1049–1051 (2000).
[CrossRef]

Harvey, J. D.

Haus, H. A.

Hill, K. O.

Hirlimann, C.

Holzwarth, R.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Hope, L. L.

R. R. Alfano, L. L. Hope, and S. L. Shapiro, “Electronic mechanism for production of self-phase modulation,” Phys. Rev. A 6, 433–438 (1972).
[CrossRef]

Ilkov, F. A.

V. François, F. A. Ilkov, and S. L. Chin, “Experimental study of the supercontinuum spectral width evolution in CO2 gas,” Opt. Commun. 99, 241–246 (1993).
[CrossRef]

Inoue, Y.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Jain, R. K.

Johnson, D. C.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, T. M. Fortier, R. S. Windeler, S. T. Cundiff, T. W. Hänsch, and J. L. Hall, “Towards the ultimate control of light: Optical frequency metrology and the phase control of femtosecond pulses,” Opt. Photonics News 11(10), 16–22 (2000).
[CrossRef]

Kaiser, W.

A. Penzkofer, A. Laubereau, and W. Kaiser, “Stimulated short-wave radiation due to single-frequency resonances of χ(3),” Phys. Rev. Lett. 31, 863–866 (1973).
[CrossRef]

Kasparian, J.

Kawanishi, S.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[CrossRef]

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Nearly penalty-free, <4 ps supercontinuum Gbit/s pulse generation over 1535–1560 nm,” Electron. Lett. 30, 790–791 (1994).
[CrossRef]

Kawasaki, B. S.

Kitayama, K.

H. Sotobayashi and K. Kitayama, “325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,” Electron. Lett. 34, 1336–1337 (1998).
[CrossRef]

Knight, J. C.

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

Kubota, H.

K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36, 773–779 (2000).
[CrossRef]

Lau, A.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H.-J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[CrossRef]

Laubereau, A.

A. Penzkofer, A. Laubereau, and W. Kaiser, “Stimulated short-wave radiation due to single-frequency resonances of χ(3),” Phys. Rev. Lett. 31, 863–866 (1973).
[CrossRef]

Lee, C.

Lenz, K.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H.-J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[CrossRef]

Leonhardt, R.

Lin, C.

C. Lin, W. A. Reed, A. D. Pearson, H.-T. Shang, and P. F. Glodis, “Designing single-mode fibres for near-IR (1.1–1.7 μm) frequency generation by phase-matched four-photon mixing in the minimum chromatic dispersion region,” Electron. Lett. 18, 87–89 (1982).
[CrossRef]

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

Liu, P.

W. Lee Smith, P. Liu, and N. Bloembergen, “Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser,” Phys. Rev. A 15, 2396–2403 (1977).
[CrossRef]

Lyra, M. L.

Maillotte, H.

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002).
[CrossRef]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
[CrossRef]

Manassah, J. T.

J. T. Manassah, R. R. Alfano, and M. Mustafa, “Spectral distribution of an ultrafast supercontinuum laser source,” Phys. Lett. A 107A, 305–309 (1985).
[CrossRef]

Mangan, B. J.

Misewich, J.

Mondelain, D.

Mori, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[CrossRef]

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Nearly penalty-free, <4 ps supercontinuum Gbit/s pulse generation over 1535–1560 nm,” Electron. Lett. 30, 790–791 (1994).
[CrossRef]

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibers,” Electron. Lett. 29, 862–864 (1993).
[CrossRef]

Morioka, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[CrossRef]

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Nearly penalty-free, <4 ps supercontinuum Gbit/s pulse generation over 1535–1560 nm,” Electron. Lett. 30, 790–791 (1994).
[CrossRef]

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibers,” Electron. Lett. 29, 862–864 (1993).
[CrossRef]

Murdoch, S. G.

Mustafa, M.

J. T. Manassah, R. R. Alfano, and M. Mustafa, “Spectral distribution of an ultrafast supercontinuum laser source,” Phys. Lett. A 107A, 305–309 (1985).
[CrossRef]

Mysyrowicz, A.

Nakashima, T.

M. Nakazawa, T. Nakashima, and S. Seikai, “Efficient multiple visible light generation in a polarization-preserving optical fiber pumped by a 1.064 μm yttrium aluminum garnet laser,” Appl. Phys. Lett. 45, 823–825 (1984).
[CrossRef]

Nakazawa, M.

K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36, 773–779 (2000).
[CrossRef]

M. Nakazawa, T. Nakashima, and S. Seikai, “Efficient multiple visible light generation in a polarization-preserving optical fiber pumped by a 1.064 μm yttrium aluminum garnet laser,” Appl. Phys. Lett. 45, 823–825 (1984).
[CrossRef]

Niedermeier, S.

Nisoli, M.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[CrossRef]

Ohara, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

Osborne, R.

Pearson, A. D.

C. Lin, W. A. Reed, A. D. Pearson, H.-T. Shang, and P. F. Glodis, “Designing single-mode fibres for near-IR (1.1–1.7 μm) frequency generation by phase-matched four-photon mixing in the minimum chromatic dispersion region,” Electron. Lett. 18, 87–89 (1982).
[CrossRef]

Penzkofer, A.

A. Penzkofer, A. Laubereau, and W. Kaiser, “Stimulated short-wave radiation due to single-frequency resonances of χ(3),” Phys. Rev. Lett. 31, 863–866 (1973).
[CrossRef]

Pfeiffer, M.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H.-J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[CrossRef]

Pilipetskii, A. N.

Portella, M. T.

R. W. Schoenlein, J.-Y. Bigot, M. T. Portella, and C. V. Shank, “Generation of blue–green 10 fs pulses using an excimer pumped dye amplifier,” Appl. Phys. Lett. 58, 801–803 (1991).
[CrossRef]

Prade, B.

Provino, L.

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002).
[CrossRef]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
[CrossRef]

Ranka, J. K.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air–silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Reed, W. A.

C. Lin, W. A. Reed, A. D. Pearson, H.-T. Shang, and P. F. Glodis, “Designing single-mode fibres for near-IR (1.1–1.7 μm) frequency generation by phase-matched four-photon mixing in the minimum chromatic dispersion region,” Electron. Lett. 18, 87–89 (1982).
[CrossRef]

Reis, A. M.

Rodriguez, M.

Rolland, C.

P. B. Corkum and C. Rolland, “Femtosecond continua produced in gases,” IEEE J. Quantum Electron. 25, 2634–2639 (1989).
[CrossRef]

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[CrossRef] [PubMed]

Russell, P. St. J.

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

Sam, C. L.

W. Yu, R. R. Alfano, C. L. Sam, and R. J. Seymour, “Spectral broadening of picosecond 1.06 μm pulse in KBr,” Opt. Commun. 14, 344–347 (1975).
[CrossRef]

Saruwatari, M.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[CrossRef]

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Nearly penalty-free, <4 ps supercontinuum Gbit/s pulse generation over 1535–1560 nm,” Electron. Lett. 30, 790–791 (1994).
[CrossRef]

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibers,” Electron. Lett. 29, 862–864 (1993).
[CrossRef]

Sato, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Sato, K.-I.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Sauerbrey, R.

Scalora, M.

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun. 191, 353–362 (2001).
[CrossRef]

Schoenlein, R. W.

R. W. Schoenlein, J.-Y. Bigot, M. T. Portella, and C. V. Shank, “Generation of blue–green 10 fs pulses using an excimer pumped dye amplifier,” Appl. Phys. Lett. 58, 801–803 (1991).
[CrossRef]

Seikai, S.

M. Nakazawa, T. Nakashima, and S. Seikai, “Efficient multiple visible light generation in a polarization-preserving optical fiber pumped by a 1.064 μm yttrium aluminum garnet laser,” Appl. Phys. Lett. 45, 823–825 (1984).
[CrossRef]

Seymour, R. J.

W. Yu, R. R. Alfano, C. L. Sam, and R. J. Seymour, “Spectral broadening of picosecond 1.06 μm pulse in KBr,” Opt. Commun. 14, 344–347 (1975).
[CrossRef]

Shang, H.-T.

C. Lin, W. A. Reed, A. D. Pearson, H.-T. Shang, and P. F. Glodis, “Designing single-mode fibres for near-IR (1.1–1.7 μm) frequency generation by phase-matched four-photon mixing in the minimum chromatic dispersion region,” Electron. Lett. 18, 87–89 (1982).
[CrossRef]

H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17, 603–605 (1981).
[CrossRef]

Shank, C. V.

R. W. Schoenlein, J.-Y. Bigot, M. T. Portella, and C. V. Shank, “Generation of blue–green 10 fs pulses using an excimer pumped dye amplifier,” Appl. Phys. Lett. 58, 801–803 (1991).
[CrossRef]

P. C. Becker, H. L. Fragnito, R. L. Fork, F. A. Beisser, and C. V. Shank, “Generation of tunable 9 femtosecond optical pulses in the near infrared,” Appl. Phys. Lett. 54, 411–412 (1989).
[CrossRef]

R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, “Femtosecond white-light continuum pulses,” Opt. Lett. 8, 1–3 (1983).
[CrossRef] [PubMed]

Shapiro, S. L.

R. R. Alfano, L. L. Hope, and S. L. Shapiro, “Electronic mechanism for production of self-phase modulation,” Phys. Rev. A 6, 433–438 (1972).
[CrossRef]

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[CrossRef]

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

Shen, Y. R.

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, 1787–1805 (1965).
[CrossRef]

N. Bloembergen and Y. R. Shen, “Coupling between vibrations and light waves in Raman laser media,” Phys. Rev. Lett. 12, 504–507 (1964).
[CrossRef]

Shibata, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Silvestri, S. De

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[CrossRef]

Smith, W. Lee

W. Lee Smith, P. Liu, and N. Bloembergen, “Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser,” Phys. Rev. A 15, 2396–2403 (1977).
[CrossRef]

Sorokin, P. P.

Sotobayashi, H.

H. Sotobayashi and K. Kitayama, “325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,” Electron. Lett. 34, 1336–1337 (1998).
[CrossRef]

Srinivasan-Rao, T.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[CrossRef] [PubMed]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Stentz, A. J.

Stolen, R. H.

R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
[CrossRef]

R. H. Stolen, C. Lee, and R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984).
[CrossRef]

R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. 15, 1157–1160 (1979).
[CrossRef]

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

R. H. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. QE-11, 100–103 (1975).
[CrossRef]

Svelto, O.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[CrossRef]

Takara, H.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[CrossRef]

Tamura, K. R.

K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36, 773–779 (2000).
[CrossRef]

Thuy, C. D.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H.-J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[CrossRef]

Tomlinson, W. J.

Trillo, S.

S. Trillo and S. Wabnitz, “Bloch wave theory of modulational polarization instabilities in birefringent optical fibers,” Phys. Rev. E 56, 1048–1058 (1997).
[CrossRef]

Tzortzakis, S.

Udem, Th.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Vermelho, M. V. D.

Wabnitz, S.

S. Trillo and S. Wabnitz, “Bloch wave theory of modulational polarization instabilities in birefringent optical fibers,” Phys. Rev. E 56, 1048–1058 (1997).
[CrossRef]

Wadsworth, W. J.

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
[CrossRef]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

Weigmann, H.-J.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H.-J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[CrossRef]

Werncke, W.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H.-J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[CrossRef]

Wille, H.

Windeler, R. S.

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002).
[CrossRef]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air–silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, T. M. Fortier, R. S. Windeler, S. T. Cundiff, T. W. Hänsch, and J. L. Hall, “Towards the ultimate control of light: Optical frequency metrology and the phase control of femtosecond pulses,” Opt. Photonics News 11(10), 16–22 (2000).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Wolf, J.-P.

Wood, D.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

Wöste, L.

Yamada, E.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Ye, J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, T. M. Fortier, R. S. Windeler, S. T. Cundiff, T. W. Hänsch, and J. L. Hall, “Towards the ultimate control of light: Optical frequency metrology and the phase control of femtosecond pulses,” Opt. Photonics News 11(10), 16–22 (2000).
[CrossRef]

Yen, R.

Yu, J.

Yu, W.

W. Yu, R. R. Alfano, C. L. Sam, and R. J. Seymour, “Spectral broadening of picosecond 1.06 μm pulse in KBr,” Opt. Commun. 14, 344–347 (1975).
[CrossRef]

Appl. Phys. Lett. (5)

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[CrossRef]

P. C. Becker, H. L. Fragnito, R. L. Fork, F. A. Beisser, and C. V. Shank, “Generation of tunable 9 femtosecond optical pulses in the near infrared,” Appl. Phys. Lett. 54, 411–412 (1989).
[CrossRef]

R. W. Schoenlein, J.-Y. Bigot, M. T. Portella, and C. V. Shank, “Generation of blue–green 10 fs pulses using an excimer pumped dye amplifier,” Appl. Phys. Lett. 58, 801–803 (1991).
[CrossRef]

M. Nakazawa, T. Nakashima, and S. Seikai, “Efficient multiple visible light generation in a polarization-preserving optical fiber pumped by a 1.064 μm yttrium aluminum garnet laser,” Appl. Phys. Lett. 45, 823–825 (1984).
[CrossRef]

Electron. Lett. (8)

C. Lin, W. A. Reed, A. D. Pearson, H.-T. Shang, and P. F. Glodis, “Designing single-mode fibres for near-IR (1.1–1.7 μm) frequency generation by phase-matched four-photon mixing in the minimum chromatic dispersion region,” Electron. Lett. 18, 87–89 (1982).
[CrossRef]

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Nearly penalty-free, <4 ps supercontinuum Gbit/s pulse generation over 1535–1560 nm,” Electron. Lett. 30, 790–791 (1994).
[CrossRef]

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[CrossRef]

H. Sotobayashi and K. Kitayama, “325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,” Electron. Lett. 34, 1336–1337 (1998).
[CrossRef]

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibers,” Electron. Lett. 29, 862–864 (1993).
[CrossRef]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
[CrossRef]

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17, 603–605 (1981).
[CrossRef]

IEEE J. Quantum Electron. (5)

R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. 15, 1157–1160 (1979).
[CrossRef]

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

R. H. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. QE-11, 100–103 (1975).
[CrossRef]

K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36, 773–779 (2000).
[CrossRef]

P. B. Corkum and C. Rolland, “Femtosecond continua produced in gases,” IEEE J. Quantum Electron. 25, 2634–2639 (1989).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
[CrossRef]

J. Lightwave Technol. (1)

P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. 5, 1712–1715 (1987).
[CrossRef]

J. Opt. Soc. Am. B (6)

Opt. Commun. (5)

V. François, F. A. Ilkov, and S. L. Chin, “Experimental study of the supercontinuum spectral width evolution in CO2 gas,” Opt. Commun. 99, 241–246 (1993).
[CrossRef]

W. Yu, R. R. Alfano, C. L. Sam, and R. J. Seymour, “Spectral broadening of picosecond 1.06 μm pulse in KBr,” Opt. Commun. 14, 344–347 (1975).
[CrossRef]

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H.-J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[CrossRef]

N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8, 285–288 (1973).
[CrossRef]

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun. 191, 353–362 (2001).
[CrossRef]

Opt. Lett. (13)

R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, “Femtosecond white-light continuum pulses,” Opt. Lett. 8, 1–3 (1983).
[CrossRef] [PubMed]

M. V. D. Vermelho, A. M. Reis, E. A. Gouveia, M. L. Lyra, and A. S. Gouveia-Neto, “Efficient frequency upconversion of 1.319 μm radiation into intense yellow light at 580 nm in pure SiO2-core monomode optical fiber,” Opt. Lett. 18, 1496–1498 (1993).
[CrossRef]

R. Osborne, “Near-infrared continuum generation with upconversion into the visible in SiO2 single-mode fiber,” Opt. Lett. 19, 1955–1957 (1994).
[CrossRef] [PubMed]

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulation instability in weakly birefringent fibers,” Opt. Lett. 20, 866–868 (1995).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

M. Bellini and T. W. Hänsch, “Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer,” Opt. Lett. 25, 1049–1051 (2000).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J.-P. Wolf, Y.-B. André, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, M. Rodriguez, H. Wille, and L. Wöste, “Infrared extension of the supercontinuum generated by femtosecond terawatt laser pulses propagating in the atmosphere,” Opt. Lett. 25, 1397–1399 (2000).
[CrossRef]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

Y. Fujii, B. S. Kawasaki, K. O. Hill, and D. C. Johnson, “Sum-frequency light generation in optical fibers,” Opt. Lett. 5, 48–50 (1980).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air–silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
[CrossRef]

Opt. Photonics News (1)

S. A. Diddams, D. J. Jones, J. Ye, T. M. Fortier, R. S. Windeler, S. T. Cundiff, T. W. Hänsch, and J. L. Hall, “Towards the ultimate control of light: Optical frequency metrology and the phase control of femtosecond pulses,” Opt. Photonics News 11(10), 16–22 (2000).
[CrossRef]

Phys. Lett. A (1)

J. T. Manassah, R. R. Alfano, and M. Mustafa, “Spectral distribution of an ultrafast supercontinuum laser source,” Phys. Lett. A 107A, 305–309 (1985).
[CrossRef]

Phys. Rev. (1)

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, 1787–1805 (1965).
[CrossRef]

Phys. Rev. A (2)

R. R. Alfano, L. L. Hope, and S. L. Shapiro, “Electronic mechanism for production of self-phase modulation,” Phys. Rev. A 6, 433–438 (1972).
[CrossRef]

W. Lee Smith, P. Liu, and N. Bloembergen, “Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser,” Phys. Rev. A 15, 2396–2403 (1977).
[CrossRef]

Phys. Rev. E (1)

S. Trillo and S. Wabnitz, “Bloch wave theory of modulational polarization instabilities in birefringent optical fibers,” Phys. Rev. E 56, 1048–1058 (1997).
[CrossRef]

Phys. Rev. Lett. (9)

N. Bloembergen and Y. R. Shen, “Coupling between vibrations and light waves in Raman laser media,” Phys. Rev. Lett. 12, 504–507 (1964).
[CrossRef]

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[CrossRef] [PubMed]

A. Penzkofer, A. Laubereau, and W. Kaiser, “Stimulated short-wave radiation due to single-frequency resonances of χ(3),” Phys. Rev. Lett. 31, 863–866 (1973).
[CrossRef]

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[CrossRef]

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
[CrossRef] [PubMed]

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[CrossRef]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Science (2)

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Other (7)

R. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, New York, 1989).

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding: errata,” Opt. Lett. 22, 484–485 (1997); erratum of Ref. 30.
[CrossRef] [PubMed]

J. Kim, G. A. Nowak, O. Boyraz, and M. N. Islam, “Low energy, enhanced supercontinuum generation in high nonlinearity dispersion-shifted fibers,” in Conference on Lasers and Electro-Optics, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 224–225.

A. L. Gaeta, “Supercontinuum generation in microstructured fibers,” in Conference on Lasers and Electro-Optics, 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 48–49.

S. Coen, D. A. Wardle, and J. D. Harvey, “Measurement of the anti-Stokes growth in stimulated Raman scattering under non-phase-matched conditions,” in Nonlinear Guided Waves and Their Applications, 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD7.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed., Optics and Photonics Series (Academic, San Diego, Calif., 2001).

R. W. Boyd, Nonlinear Optics (Academic, Boston, Mass., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) GVD coefficient of the PCF used in our experiments (solid curve) compared with the GVD of bulk silica (dashed curve). (b) Enlarged view of the fiber core.

Fig. 2
Fig. 2

Phase-matching diagram for the process ωp1+ωp2ωs+ωas in our PCF. Both the degenerate case (ωp1=ωp2) and the case for which one pump photon comes from the 647-nm main pump wave are shown. For the dashed curves, the Kerr-induced phase shift has been neglected; for the solid curves we have γ(P1+P2)=100/m.

Fig. 3
Fig. 3

Output spectra with a 10-m-long PCF for approximate input peak powers P=120, 225, 675 W (bottom to top).

Fig. 4
Fig. 4

Output spectra with a 3-m-long PCF for approximate input peak powers P=100, 230, 330, 400 W (bottom to top).

Fig. 5
Fig. 5

Output spectrum with a 0.7-m-long PCF, an input peak power of ∼400 W, and an input polarization that maximizes SRS.

Fig. 6
Fig. 6

Output spectra with a 3-m-long PCF for approximate input peak powers P=90, 160, 240, 350 W (bottom to top) and an input polarization that minimizes spectral broadening.

Fig. 7
Fig. 7

(a) Output spectra with (a) a 0.7-m-long PCF for approximate input peak powers of 200, 280, 400 W and (b) a 3-m-long fiber for approximate input peak powers of 60 and 80 W (bottom to top).

Fig. 8
Fig. 8

Numerical spectra obtained with 30-ps pulses of 400-W peak power for propagation lengths of 43 cm, 1.3 m, and 2.6 m (bottom to top). The input polarization is aligned with (a) the fast axis and (b) the slow axis with a birefringence δn=1.9×10-6. At 43 cm the two linear polarization components are resolved; the lighter curves correspond to polarization that is orthogonal to the pump. For the two other propagating distances, the spectra of the two components are almost the same, and the figure shows only the total intensity of the field.

Fig. 9
Fig. 9

Numerical spectra obtained with 30-ps pulses of 400-W peak power for propagation lengths of 43 cm, 1.3 m, and 2.3 m (bottom to top) and with a scalar model (i.e., no polarization dynamics).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δω(t)=-ω0 n2Lc dI(t)dt,
PaPsγqP2γqP+β2Ω22.
ujz=i δβ2-Δ2 tu3-j-iβ22 2t2+i β36 3t3-β424 4t4+uj+iγ1+iω0 t(1-f)uj×-t χR(3)(t-t)[|u1(t)|2+|u2(t)|2]dt+f23|uj|2+43|u3-j|2uj,j=1, 2,

Metrics