Abstract

Experimental results of a study of the switching dynamics of bistable localized states in a single-mirror feedback system with sodium vapor as the nonlinear medium are presented. The type of switching (on or off) is determined by the polarization state of the addressing beam, which gives a robust—because it is phase insensitive—way of controlling the direction of switching. Critical and noncritical slowing down are demonstrated.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. McLaughlin, J. V. Moloney, and A. C. Newell, “Solitary waves as fixed points of infinite-dimensional maps in an optical bistable ring cavity,” Phys. Rev. Lett. 51, 75–78 (1983).
    [CrossRef]
  2. N. N. Rosanov and G. V. Khodova, “Diffractive autosolitons in nonlinear interferometers,” J. Opt. Soc. Am. B 88, 1057–1065 (1988).
  3. G. S. McDonald and W. J. Firth, “Spatial solitary-wave optical memory,” J. Opt. Soc. Am. B 7, 1328–1335 (1990).
    [CrossRef]
  4. M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640–643 (1994).
    [CrossRef] [PubMed]
  5. M. Brambilla, L. A. Lugiato, and M. Stefani, “Interaction and control of optical localized structures,” Europhys. Lett. 34, 109–114 (1996).
    [CrossRef]
  6. W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
    [CrossRef] [PubMed]
  7. M. Kreuzer, H. Gottschilk, T. Tschudi, and R. Neubecker, “Structure formation and self-organization phenomena in bistable optical elements,” Mol. Cryst. Liq. Cryst. 207, 219–230 (1991).
    [CrossRef]
  8. M. Kreuzer, A. Schreiber, and B. Thüring, “Evolution and switching dynamics of solitary spots in nonlinear optical feedback systems,” Mol. Cryst. Liq. Cryst. 282, 91–105 (1996).
    [CrossRef]
  9. A. Schreiber, M. Kreuzer, B. Thüring, and T. Tschudi, “Experimental investigation of solitary structures in a nonlinear optical feedback system,” Opt. Commun. 136, 415–418 (1997).
    [CrossRef]
  10. M. Kreuzer, B. Thüring, and T. Tschudi, “Creation, dynamics and stability of localized states in a nonlinear optical single feedback system,” Asian J. Phys. 7, 678–686 (1998).
  11. P. L. Ramazza, S. Ducci, S. Boccaletti, and F. T. Arecchi, “Localized versus delocalized patterns in a nonlinear optical interferometer,” J. Opt. B 2, 399–405 (2000).
    [CrossRef]
  12. M. Saffman, D. Montgomery, and D. Z. Anderson, “Collapse of a transverse-mode continuum in a self-imaging photorefractively pumped ring resonator,” Opt. Lett. 19, 518–520 (1994).
    [CrossRef] [PubMed]
  13. G. Slekys, K. Staliunas, and C. O. Weiss, “Spatial localized structures in resonators with saturable absorber,” Opt. Commun. 149, 113–116 (1998).
    [CrossRef]
  14. V. Y. Bazhenov, V. B. Taranenko, and M. V. Vasnetsov, “Transverse optical effects in bistable active cavity with nonlinear absorber on bacteriorhodopsin,” in Transverse Patterns in Nonlinear Optics, N. N. Rosanov, ed., Proc. SPIE 1840, 183–193 (1991).
    [CrossRef]
  15. V. B. Taranenko, K. Staliunas, and C. O. Weiss, “Spatial soliton laser: localized structures in a laser with a saturable absorber in a self-imaging resonator,” Phys. Rev. A 56, 1582–1591 (1997).
    [CrossRef]
  16. B. Schäpers, M. Feldmann, T. Ackemann, and W. Lange, “Interaction of localized structures in an optical pattern forming system,” Phys. Rev. Lett. 85, 748–751 (2000).
    [CrossRef]
  17. V. B. Taranenko, I. Ganne, R. J. Kuszelewicz, and C. O. Weiss, “Spatial solitons in a semiconductor microresonator,” Appl. Phys. B 72, 377–380 (2001).
    [CrossRef]
  18. R. Kuszelewicz, I. Ganne, G. Slekys, and I. Sagnes, “Self-organized optical structures in semiconductor microresonators: towards the observation of cavity solitons,” in Physics and Simulation of Optoelectronic Devices IX, Y. Arakawa and P. Blood, eds., Proc. SPIE 4283, 563–576 (2001).
    [CrossRef]
  19. S. Barland, M. Giudici, J. R. Tredicce, L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, “Cavity solitons in one-dimensional semiconductor amplifiers: experiment and theory agree,” in Nonlinear Guided Waves and Their Applications, Vol. 55 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), paper MA1.
  20. N. N. Rosanov, “Switching waves, autosolitons, and parallel digital–analogous optical computing,” in Transverse Patterns in Nonlinear Optics, N. N. Rosanov, ed., Proc. SPIE 1840, 130–143 (1991).
    [CrossRef]
  21. W. J. Firth, “Spatial instabilities in a Kerr medium with single feedback mirror,” J. Mod. Opt. 37, 151–153 (1990).
    [CrossRef]
  22. G. D’Alessandro and W. J. Firth, “Spontaneous hexagon formation in a nonlinear optical medium with feedback mirror,” Phys. Rev. Lett. 66, 2597–2600 (1991).
    [CrossRef] [PubMed]
  23. T. Ackemann and W. Lange, “Optical pattern formation in alkali metal vapors: mechanisms, phenomena and use,” Appl. Phys. B 72, 21–34 (2001).
    [CrossRef]
  24. B. Schäpers, T. Ackemann, and W. Lange, “Characteristics and possible applications of localized structures in an optical pattern-forming system,” in Optical Pulse and Beam Propagation III, Y. B. Brand, ed., Proc. SPIE 4271, 130–137 (2001).
    [CrossRef]
  25. C. Cohen-Tannoudji, “Théorie quantique du cycle de pompage optique,” Ann. Phys. (N.Y.) 7, 423 (1962).
  26. F. Mitschke, R. Deserno, W. Lange, and J. Mlynek, “Magnetically induced optical self-pulsing in a nonlinear resonator,” Phys. Rev. A 33, 3219–3231 (1986).
    [CrossRef] [PubMed]
  27. T. Ackemann, A. Heuer, Y. A. Logvin, and W. Lange, “Light-shift induced level crossing and resonatorless optical bistability in sodium vapor,” Phys. Rev. A 56, 2321–2326 (1997).
    [CrossRef]
  28. W. Lange and T. Ackemann, “Alkaline vapors with single-mirror feedback—a model system for pattern formation,” Asian J. Phys. 7, 439–452 (1998).
  29. W. Lange, T. Ackemann, A. Aumann, E. Büthe, and Y. A. Logvin, “Atomic vapors—a versatile tool in studies of optical pattern formation,” Chaos, Solitons Fractals 10, 617–626 (1999).
  30. S. P. Apanasevich, F. V. Karpushko, and G. V. Sinitsyn, “Spatial hysteresis and switching waves in thin-film semiconductor interferometers,” Sov. J. Quantum Electron. 15, 251–253 (1985).
    [CrossRef]
  31. V. B. Taranenko, I. Ganne, R. J. Kuszelewicz, and C. O. Weiss, “Patterns and localized structures in bistable semiconductor resonators,” Phys. Rev. A 61, 063818 (2000).
    [CrossRef]
  32. G. Slekys, I. Ganne, I. Sagnes, and R. Kuszelewicz, “Switching waves and spatio-temporal dynamics in bistable microresonators,” in International Quantum Electronics Conference (IQEC 2000), 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), p. 218, paper QFA4.
  33. M. Tlidi and P. Mandel, “Spatial patterns in nascent optical bistability,” Chaos, Solitons Fractals 4, 1475–1486 (1994).
    [CrossRef]
  34. M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, and W. J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
    [CrossRef]
  35. L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
    [CrossRef]
  36. B. Schäpers, T. Ackemann, and W. Lange, “Localized structures in a single-mirror feedback system,” in International Quantum Electronics Conference (IQEC 2000), 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), p. 129, paper QThB2.
  37. W. Lange, Y. A. Logvin, and T. Ackemann, “Spontaneous optical patterns in an atomic vapor: observation and simulation,” Physica D 96, 230–241 (1996).
    [CrossRef]
  38. W. J. Firth and G. K. Harkness, “Cavity solitons,” Asian J. Phys. 7, 665–677 (1998).
  39. B. Schäpers, “Lokalisierte Strukturen in einem atomaren Dampf mit optischer Rückkopplung,” Ph.D. dissertation, University of Münster, Münster, Germany (2001).
  40. W. Lange, A. Aumann, T. Ackemann, and E. Büthe, “Polarization patterns in alkaline vapors,” Quantum Semiclassic. Opt. 10, R23–R36 (1998).
    [CrossRef]
  41. T. Ackemann, A. Aumann, E. Grosse Westhoff, Y. A. Logvin, and W. Lange, “Polarization degrees of freedom in optical pattern forming systems: alkali metal vapor in a single-mirror arrangement,” J. Opt. B 3, S124–S132 (2001).
    [CrossRef]
  42. V. B. Taranenko and C. O. Weiss, “Incohent optical switching of semiconductor resonator solitons,” Appl. Phys. B 72, 893–895 (2001).
    [CrossRef]
  43. A. Miller, “In-well and cross-well carrier transport in quantum wells,” in Semiconductor Quantum Optoelectronics: From Quantum Physics to Smart Devices, A. Miller, M. Ebrahimzadeh, and D. M. Finlayson, eds. (SUSSP/Institute of Physics Publishing, Bristol, UK, 1999), pp. 1–24.
  44. D. N. Maywar, G. P. Agrawal, and Y. Nakano, “Robust optical control of an optical-amplifier-based flip-flop,” Opt. Express 6, 75–80 (2000), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  45. F. Mitschke, R. Deserno, J. Mlynek, and W. Lange, “Transients in all-optical bistability using transverse optical pumping: observation of critical slowing down,” Opt. Commun. 46, 135–140 (1983).
    [CrossRef]
  46. D. E. Grant and H. J. Kimble, “Transient response in absorptive bistability,” Opt. Commun. 44, 415–420 (1983).
    [CrossRef]
  47. S. Cribier, E. Giacobino, and G. Grynberg, “Quantitative investigation of critical slowing down in all-optical bistability,” Opt. Commun. 47, 170–172 (1983).
    [CrossRef]
  48. G. Grynberg and S. Cribier, “Critical exponents in dispersive optical bistability,” J. Phys. (Paris) Lett. 44, 449–453 (1983).
    [CrossRef]
  49. P. Mandel, “Scaling properties of switching pulses,” Opt. Commun. 55, 293–296 (1985).
    [CrossRef]
  50. B. Segard, J. Zemmouri, and B. Macke, “Noncritical slowing down in optical bistability,” Opt. Commun. 63, 339–343 (1987).
    [CrossRef]
  51. J. Y. Bigot, A. Daunois, and P. Mandel, “Scaling properties of switching pulses,” Opt. Commun. 55, 293–296 (1985).
    [CrossRef]
  52. F. Mitschke, C. Boden, W. Lange, and P. Mandel, “Exploring the dynamics of the unstable branch of bistable systems,” Opt. Commun. 71, 385–392 (1989).
    [CrossRef]
  53. G. S. McDonald and W. J. Firth, “Switching dynamics of spatial solitary wave pixels,” J. Opt. Soc. Am. B 10, 1081–1089 (1993).
    [CrossRef]

2001

V. B. Taranenko, I. Ganne, R. J. Kuszelewicz, and C. O. Weiss, “Spatial solitons in a semiconductor microresonator,” Appl. Phys. B 72, 377–380 (2001).
[CrossRef]

R. Kuszelewicz, I. Ganne, G. Slekys, and I. Sagnes, “Self-organized optical structures in semiconductor microresonators: towards the observation of cavity solitons,” in Physics and Simulation of Optoelectronic Devices IX, Y. Arakawa and P. Blood, eds., Proc. SPIE 4283, 563–576 (2001).
[CrossRef]

T. Ackemann and W. Lange, “Optical pattern formation in alkali metal vapors: mechanisms, phenomena and use,” Appl. Phys. B 72, 21–34 (2001).
[CrossRef]

B. Schäpers, T. Ackemann, and W. Lange, “Characteristics and possible applications of localized structures in an optical pattern-forming system,” in Optical Pulse and Beam Propagation III, Y. B. Brand, ed., Proc. SPIE 4271, 130–137 (2001).
[CrossRef]

T. Ackemann, A. Aumann, E. Grosse Westhoff, Y. A. Logvin, and W. Lange, “Polarization degrees of freedom in optical pattern forming systems: alkali metal vapor in a single-mirror arrangement,” J. Opt. B 3, S124–S132 (2001).
[CrossRef]

V. B. Taranenko and C. O. Weiss, “Incohent optical switching of semiconductor resonator solitons,” Appl. Phys. B 72, 893–895 (2001).
[CrossRef]

2000

D. N. Maywar, G. P. Agrawal, and Y. Nakano, “Robust optical control of an optical-amplifier-based flip-flop,” Opt. Express 6, 75–80 (2000), http://www.opticsexpress.org.
[CrossRef] [PubMed]

B. Schäpers, M. Feldmann, T. Ackemann, and W. Lange, “Interaction of localized structures in an optical pattern forming system,” Phys. Rev. Lett. 85, 748–751 (2000).
[CrossRef]

V. B. Taranenko, I. Ganne, R. J. Kuszelewicz, and C. O. Weiss, “Patterns and localized structures in bistable semiconductor resonators,” Phys. Rev. A 61, 063818 (2000).
[CrossRef]

P. L. Ramazza, S. Ducci, S. Boccaletti, and F. T. Arecchi, “Localized versus delocalized patterns in a nonlinear optical interferometer,” J. Opt. B 2, 399–405 (2000).
[CrossRef]

1999

W. Lange, T. Ackemann, A. Aumann, E. Büthe, and Y. A. Logvin, “Atomic vapors—a versatile tool in studies of optical pattern formation,” Chaos, Solitons Fractals 10, 617–626 (1999).

1998

W. Lange and T. Ackemann, “Alkaline vapors with single-mirror feedback—a model system for pattern formation,” Asian J. Phys. 7, 439–452 (1998).

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
[CrossRef]

M. Kreuzer, B. Thüring, and T. Tschudi, “Creation, dynamics and stability of localized states in a nonlinear optical single feedback system,” Asian J. Phys. 7, 678–686 (1998).

G. Slekys, K. Staliunas, and C. O. Weiss, “Spatial localized structures in resonators with saturable absorber,” Opt. Commun. 149, 113–116 (1998).
[CrossRef]

W. J. Firth and G. K. Harkness, “Cavity solitons,” Asian J. Phys. 7, 665–677 (1998).

W. Lange, A. Aumann, T. Ackemann, and E. Büthe, “Polarization patterns in alkaline vapors,” Quantum Semiclassic. Opt. 10, R23–R36 (1998).
[CrossRef]

1997

A. Schreiber, M. Kreuzer, B. Thüring, and T. Tschudi, “Experimental investigation of solitary structures in a nonlinear optical feedback system,” Opt. Commun. 136, 415–418 (1997).
[CrossRef]

V. B. Taranenko, K. Staliunas, and C. O. Weiss, “Spatial soliton laser: localized structures in a laser with a saturable absorber in a self-imaging resonator,” Phys. Rev. A 56, 1582–1591 (1997).
[CrossRef]

T. Ackemann, A. Heuer, Y. A. Logvin, and W. Lange, “Light-shift induced level crossing and resonatorless optical bistability in sodium vapor,” Phys. Rev. A 56, 2321–2326 (1997).
[CrossRef]

M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, and W. J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
[CrossRef]

1996

W. Lange, Y. A. Logvin, and T. Ackemann, “Spontaneous optical patterns in an atomic vapor: observation and simulation,” Physica D 96, 230–241 (1996).
[CrossRef]

M. Kreuzer, A. Schreiber, and B. Thüring, “Evolution and switching dynamics of solitary spots in nonlinear optical feedback systems,” Mol. Cryst. Liq. Cryst. 282, 91–105 (1996).
[CrossRef]

M. Brambilla, L. A. Lugiato, and M. Stefani, “Interaction and control of optical localized structures,” Europhys. Lett. 34, 109–114 (1996).
[CrossRef]

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
[CrossRef] [PubMed]

1994

M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640–643 (1994).
[CrossRef] [PubMed]

M. Saffman, D. Montgomery, and D. Z. Anderson, “Collapse of a transverse-mode continuum in a self-imaging photorefractively pumped ring resonator,” Opt. Lett. 19, 518–520 (1994).
[CrossRef] [PubMed]

M. Tlidi and P. Mandel, “Spatial patterns in nascent optical bistability,” Chaos, Solitons Fractals 4, 1475–1486 (1994).
[CrossRef]

1993

1991

G. D’Alessandro and W. J. Firth, “Spontaneous hexagon formation in a nonlinear optical medium with feedback mirror,” Phys. Rev. Lett. 66, 2597–2600 (1991).
[CrossRef] [PubMed]

V. Y. Bazhenov, V. B. Taranenko, and M. V. Vasnetsov, “Transverse optical effects in bistable active cavity with nonlinear absorber on bacteriorhodopsin,” in Transverse Patterns in Nonlinear Optics, N. N. Rosanov, ed., Proc. SPIE 1840, 183–193 (1991).
[CrossRef]

N. N. Rosanov, “Switching waves, autosolitons, and parallel digital–analogous optical computing,” in Transverse Patterns in Nonlinear Optics, N. N. Rosanov, ed., Proc. SPIE 1840, 130–143 (1991).
[CrossRef]

M. Kreuzer, H. Gottschilk, T. Tschudi, and R. Neubecker, “Structure formation and self-organization phenomena in bistable optical elements,” Mol. Cryst. Liq. Cryst. 207, 219–230 (1991).
[CrossRef]

1990

G. S. McDonald and W. J. Firth, “Spatial solitary-wave optical memory,” J. Opt. Soc. Am. B 7, 1328–1335 (1990).
[CrossRef]

W. J. Firth, “Spatial instabilities in a Kerr medium with single feedback mirror,” J. Mod. Opt. 37, 151–153 (1990).
[CrossRef]

1989

F. Mitschke, C. Boden, W. Lange, and P. Mandel, “Exploring the dynamics of the unstable branch of bistable systems,” Opt. Commun. 71, 385–392 (1989).
[CrossRef]

1988

N. N. Rosanov and G. V. Khodova, “Diffractive autosolitons in nonlinear interferometers,” J. Opt. Soc. Am. B 88, 1057–1065 (1988).

1987

B. Segard, J. Zemmouri, and B. Macke, “Noncritical slowing down in optical bistability,” Opt. Commun. 63, 339–343 (1987).
[CrossRef]

1986

F. Mitschke, R. Deserno, W. Lange, and J. Mlynek, “Magnetically induced optical self-pulsing in a nonlinear resonator,” Phys. Rev. A 33, 3219–3231 (1986).
[CrossRef] [PubMed]

1985

S. P. Apanasevich, F. V. Karpushko, and G. V. Sinitsyn, “Spatial hysteresis and switching waves in thin-film semiconductor interferometers,” Sov. J. Quantum Electron. 15, 251–253 (1985).
[CrossRef]

J. Y. Bigot, A. Daunois, and P. Mandel, “Scaling properties of switching pulses,” Opt. Commun. 55, 293–296 (1985).
[CrossRef]

P. Mandel, “Scaling properties of switching pulses,” Opt. Commun. 55, 293–296 (1985).
[CrossRef]

1983

F. Mitschke, R. Deserno, J. Mlynek, and W. Lange, “Transients in all-optical bistability using transverse optical pumping: observation of critical slowing down,” Opt. Commun. 46, 135–140 (1983).
[CrossRef]

D. E. Grant and H. J. Kimble, “Transient response in absorptive bistability,” Opt. Commun. 44, 415–420 (1983).
[CrossRef]

S. Cribier, E. Giacobino, and G. Grynberg, “Quantitative investigation of critical slowing down in all-optical bistability,” Opt. Commun. 47, 170–172 (1983).
[CrossRef]

G. Grynberg and S. Cribier, “Critical exponents in dispersive optical bistability,” J. Phys. (Paris) Lett. 44, 449–453 (1983).
[CrossRef]

D. W. McLaughlin, J. V. Moloney, and A. C. Newell, “Solitary waves as fixed points of infinite-dimensional maps in an optical bistable ring cavity,” Phys. Rev. Lett. 51, 75–78 (1983).
[CrossRef]

1962

C. Cohen-Tannoudji, “Théorie quantique du cycle de pompage optique,” Ann. Phys. (N.Y.) 7, 423 (1962).

Ackemann, T.

T. Ackemann and W. Lange, “Optical pattern formation in alkali metal vapors: mechanisms, phenomena and use,” Appl. Phys. B 72, 21–34 (2001).
[CrossRef]

B. Schäpers, T. Ackemann, and W. Lange, “Characteristics and possible applications of localized structures in an optical pattern-forming system,” in Optical Pulse and Beam Propagation III, Y. B. Brand, ed., Proc. SPIE 4271, 130–137 (2001).
[CrossRef]

T. Ackemann, A. Aumann, E. Grosse Westhoff, Y. A. Logvin, and W. Lange, “Polarization degrees of freedom in optical pattern forming systems: alkali metal vapor in a single-mirror arrangement,” J. Opt. B 3, S124–S132 (2001).
[CrossRef]

B. Schäpers, M. Feldmann, T. Ackemann, and W. Lange, “Interaction of localized structures in an optical pattern forming system,” Phys. Rev. Lett. 85, 748–751 (2000).
[CrossRef]

W. Lange, T. Ackemann, A. Aumann, E. Büthe, and Y. A. Logvin, “Atomic vapors—a versatile tool in studies of optical pattern formation,” Chaos, Solitons Fractals 10, 617–626 (1999).

W. Lange and T. Ackemann, “Alkaline vapors with single-mirror feedback—a model system for pattern formation,” Asian J. Phys. 7, 439–452 (1998).

W. Lange, A. Aumann, T. Ackemann, and E. Büthe, “Polarization patterns in alkaline vapors,” Quantum Semiclassic. Opt. 10, R23–R36 (1998).
[CrossRef]

T. Ackemann, A. Heuer, Y. A. Logvin, and W. Lange, “Light-shift induced level crossing and resonatorless optical bistability in sodium vapor,” Phys. Rev. A 56, 2321–2326 (1997).
[CrossRef]

W. Lange, Y. A. Logvin, and T. Ackemann, “Spontaneous optical patterns in an atomic vapor: observation and simulation,” Physica D 96, 230–241 (1996).
[CrossRef]

Agrawal, G. P.

Anderson, D. Z.

Apanasevich, S. P.

S. P. Apanasevich, F. V. Karpushko, and G. V. Sinitsyn, “Spatial hysteresis and switching waves in thin-film semiconductor interferometers,” Sov. J. Quantum Electron. 15, 251–253 (1985).
[CrossRef]

Arecchi, F. T.

P. L. Ramazza, S. Ducci, S. Boccaletti, and F. T. Arecchi, “Localized versus delocalized patterns in a nonlinear optical interferometer,” J. Opt. B 2, 399–405 (2000).
[CrossRef]

Aumann, A.

T. Ackemann, A. Aumann, E. Grosse Westhoff, Y. A. Logvin, and W. Lange, “Polarization degrees of freedom in optical pattern forming systems: alkali metal vapor in a single-mirror arrangement,” J. Opt. B 3, S124–S132 (2001).
[CrossRef]

W. Lange, T. Ackemann, A. Aumann, E. Büthe, and Y. A. Logvin, “Atomic vapors—a versatile tool in studies of optical pattern formation,” Chaos, Solitons Fractals 10, 617–626 (1999).

W. Lange, A. Aumann, T. Ackemann, and E. Büthe, “Polarization patterns in alkaline vapors,” Quantum Semiclassic. Opt. 10, R23–R36 (1998).
[CrossRef]

Bazhenov, V. Y.

V. Y. Bazhenov, V. B. Taranenko, and M. V. Vasnetsov, “Transverse optical effects in bistable active cavity with nonlinear absorber on bacteriorhodopsin,” in Transverse Patterns in Nonlinear Optics, N. N. Rosanov, ed., Proc. SPIE 1840, 183–193 (1991).
[CrossRef]

Bigot, J. Y.

J. Y. Bigot, A. Daunois, and P. Mandel, “Scaling properties of switching pulses,” Opt. Commun. 55, 293–296 (1985).
[CrossRef]

Boccaletti, S.

P. L. Ramazza, S. Ducci, S. Boccaletti, and F. T. Arecchi, “Localized versus delocalized patterns in a nonlinear optical interferometer,” J. Opt. B 2, 399–405 (2000).
[CrossRef]

Boden, C.

F. Mitschke, C. Boden, W. Lange, and P. Mandel, “Exploring the dynamics of the unstable branch of bistable systems,” Opt. Commun. 71, 385–392 (1989).
[CrossRef]

Brambilla, M.

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
[CrossRef]

M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, and W. J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
[CrossRef]

M. Brambilla, L. A. Lugiato, and M. Stefani, “Interaction and control of optical localized structures,” Europhys. Lett. 34, 109–114 (1996).
[CrossRef]

Büthe, E.

W. Lange, T. Ackemann, A. Aumann, E. Büthe, and Y. A. Logvin, “Atomic vapors—a versatile tool in studies of optical pattern formation,” Chaos, Solitons Fractals 10, 617–626 (1999).

W. Lange, A. Aumann, T. Ackemann, and E. Büthe, “Polarization patterns in alkaline vapors,” Quantum Semiclassic. Opt. 10, R23–R36 (1998).
[CrossRef]

Cohen-Tannoudji, C.

C. Cohen-Tannoudji, “Théorie quantique du cycle de pompage optique,” Ann. Phys. (N.Y.) 7, 423 (1962).

Cribier, S.

S. Cribier, E. Giacobino, and G. Grynberg, “Quantitative investigation of critical slowing down in all-optical bistability,” Opt. Commun. 47, 170–172 (1983).
[CrossRef]

G. Grynberg and S. Cribier, “Critical exponents in dispersive optical bistability,” J. Phys. (Paris) Lett. 44, 449–453 (1983).
[CrossRef]

D’Alessandro, G.

G. D’Alessandro and W. J. Firth, “Spontaneous hexagon formation in a nonlinear optical medium with feedback mirror,” Phys. Rev. Lett. 66, 2597–2600 (1991).
[CrossRef] [PubMed]

Daunois, A.

J. Y. Bigot, A. Daunois, and P. Mandel, “Scaling properties of switching pulses,” Opt. Commun. 55, 293–296 (1985).
[CrossRef]

Deserno, R.

F. Mitschke, R. Deserno, W. Lange, and J. Mlynek, “Magnetically induced optical self-pulsing in a nonlinear resonator,” Phys. Rev. A 33, 3219–3231 (1986).
[CrossRef] [PubMed]

F. Mitschke, R. Deserno, J. Mlynek, and W. Lange, “Transients in all-optical bistability using transverse optical pumping: observation of critical slowing down,” Opt. Commun. 46, 135–140 (1983).
[CrossRef]

Ducci, S.

P. L. Ramazza, S. Ducci, S. Boccaletti, and F. T. Arecchi, “Localized versus delocalized patterns in a nonlinear optical interferometer,” J. Opt. B 2, 399–405 (2000).
[CrossRef]

Feldmann, M.

B. Schäpers, M. Feldmann, T. Ackemann, and W. Lange, “Interaction of localized structures in an optical pattern forming system,” Phys. Rev. Lett. 85, 748–751 (2000).
[CrossRef]

Firth, W. J.

W. J. Firth and G. K. Harkness, “Cavity solitons,” Asian J. Phys. 7, 665–677 (1998).

M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, and W. J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
[CrossRef]

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
[CrossRef] [PubMed]

G. S. McDonald and W. J. Firth, “Switching dynamics of spatial solitary wave pixels,” J. Opt. Soc. Am. B 10, 1081–1089 (1993).
[CrossRef]

G. D’Alessandro and W. J. Firth, “Spontaneous hexagon formation in a nonlinear optical medium with feedback mirror,” Phys. Rev. Lett. 66, 2597–2600 (1991).
[CrossRef] [PubMed]

W. J. Firth, “Spatial instabilities in a Kerr medium with single feedback mirror,” J. Mod. Opt. 37, 151–153 (1990).
[CrossRef]

G. S. McDonald and W. J. Firth, “Spatial solitary-wave optical memory,” J. Opt. Soc. Am. B 7, 1328–1335 (1990).
[CrossRef]

Ganne, I.

V. B. Taranenko, I. Ganne, R. J. Kuszelewicz, and C. O. Weiss, “Spatial solitons in a semiconductor microresonator,” Appl. Phys. B 72, 377–380 (2001).
[CrossRef]

R. Kuszelewicz, I. Ganne, G. Slekys, and I. Sagnes, “Self-organized optical structures in semiconductor microresonators: towards the observation of cavity solitons,” in Physics and Simulation of Optoelectronic Devices IX, Y. Arakawa and P. Blood, eds., Proc. SPIE 4283, 563–576 (2001).
[CrossRef]

V. B. Taranenko, I. Ganne, R. J. Kuszelewicz, and C. O. Weiss, “Patterns and localized structures in bistable semiconductor resonators,” Phys. Rev. A 61, 063818 (2000).
[CrossRef]

Giacobino, E.

S. Cribier, E. Giacobino, and G. Grynberg, “Quantitative investigation of critical slowing down in all-optical bistability,” Opt. Commun. 47, 170–172 (1983).
[CrossRef]

Gottschilk, H.

M. Kreuzer, H. Gottschilk, T. Tschudi, and R. Neubecker, “Structure formation and self-organization phenomena in bistable optical elements,” Mol. Cryst. Liq. Cryst. 207, 219–230 (1991).
[CrossRef]

Grant, D. E.

D. E. Grant and H. J. Kimble, “Transient response in absorptive bistability,” Opt. Commun. 44, 415–420 (1983).
[CrossRef]

Grynberg, G.

S. Cribier, E. Giacobino, and G. Grynberg, “Quantitative investigation of critical slowing down in all-optical bistability,” Opt. Commun. 47, 170–172 (1983).
[CrossRef]

G. Grynberg and S. Cribier, “Critical exponents in dispersive optical bistability,” J. Phys. (Paris) Lett. 44, 449–453 (1983).
[CrossRef]

Harkness, G. K.

W. J. Firth and G. K. Harkness, “Cavity solitons,” Asian J. Phys. 7, 665–677 (1998).

Heuer, A.

T. Ackemann, A. Heuer, Y. A. Logvin, and W. Lange, “Light-shift induced level crossing and resonatorless optical bistability in sodium vapor,” Phys. Rev. A 56, 2321–2326 (1997).
[CrossRef]

Karpushko, F. V.

S. P. Apanasevich, F. V. Karpushko, and G. V. Sinitsyn, “Spatial hysteresis and switching waves in thin-film semiconductor interferometers,” Sov. J. Quantum Electron. 15, 251–253 (1985).
[CrossRef]

Khodova, G. V.

N. N. Rosanov and G. V. Khodova, “Diffractive autosolitons in nonlinear interferometers,” J. Opt. Soc. Am. B 88, 1057–1065 (1988).

Kimble, H. J.

D. E. Grant and H. J. Kimble, “Transient response in absorptive bistability,” Opt. Commun. 44, 415–420 (1983).
[CrossRef]

Kreuzer, M.

M. Kreuzer, B. Thüring, and T. Tschudi, “Creation, dynamics and stability of localized states in a nonlinear optical single feedback system,” Asian J. Phys. 7, 678–686 (1998).

A. Schreiber, M. Kreuzer, B. Thüring, and T. Tschudi, “Experimental investigation of solitary structures in a nonlinear optical feedback system,” Opt. Commun. 136, 415–418 (1997).
[CrossRef]

M. Kreuzer, A. Schreiber, and B. Thüring, “Evolution and switching dynamics of solitary spots in nonlinear optical feedback systems,” Mol. Cryst. Liq. Cryst. 282, 91–105 (1996).
[CrossRef]

M. Kreuzer, H. Gottschilk, T. Tschudi, and R. Neubecker, “Structure formation and self-organization phenomena in bistable optical elements,” Mol. Cryst. Liq. Cryst. 207, 219–230 (1991).
[CrossRef]

Kuszelewicz, R.

R. Kuszelewicz, I. Ganne, G. Slekys, and I. Sagnes, “Self-organized optical structures in semiconductor microresonators: towards the observation of cavity solitons,” in Physics and Simulation of Optoelectronic Devices IX, Y. Arakawa and P. Blood, eds., Proc. SPIE 4283, 563–576 (2001).
[CrossRef]

Kuszelewicz, R. J.

V. B. Taranenko, I. Ganne, R. J. Kuszelewicz, and C. O. Weiss, “Spatial solitons in a semiconductor microresonator,” Appl. Phys. B 72, 377–380 (2001).
[CrossRef]

V. B. Taranenko, I. Ganne, R. J. Kuszelewicz, and C. O. Weiss, “Patterns and localized structures in bistable semiconductor resonators,” Phys. Rev. A 61, 063818 (2000).
[CrossRef]

Lange, W.

T. Ackemann, A. Aumann, E. Grosse Westhoff, Y. A. Logvin, and W. Lange, “Polarization degrees of freedom in optical pattern forming systems: alkali metal vapor in a single-mirror arrangement,” J. Opt. B 3, S124–S132 (2001).
[CrossRef]

T. Ackemann and W. Lange, “Optical pattern formation in alkali metal vapors: mechanisms, phenomena and use,” Appl. Phys. B 72, 21–34 (2001).
[CrossRef]

B. Schäpers, T. Ackemann, and W. Lange, “Characteristics and possible applications of localized structures in an optical pattern-forming system,” in Optical Pulse and Beam Propagation III, Y. B. Brand, ed., Proc. SPIE 4271, 130–137 (2001).
[CrossRef]

B. Schäpers, M. Feldmann, T. Ackemann, and W. Lange, “Interaction of localized structures in an optical pattern forming system,” Phys. Rev. Lett. 85, 748–751 (2000).
[CrossRef]

W. Lange, T. Ackemann, A. Aumann, E. Büthe, and Y. A. Logvin, “Atomic vapors—a versatile tool in studies of optical pattern formation,” Chaos, Solitons Fractals 10, 617–626 (1999).

W. Lange and T. Ackemann, “Alkaline vapors with single-mirror feedback—a model system for pattern formation,” Asian J. Phys. 7, 439–452 (1998).

W. Lange, A. Aumann, T. Ackemann, and E. Büthe, “Polarization patterns in alkaline vapors,” Quantum Semiclassic. Opt. 10, R23–R36 (1998).
[CrossRef]

T. Ackemann, A. Heuer, Y. A. Logvin, and W. Lange, “Light-shift induced level crossing and resonatorless optical bistability in sodium vapor,” Phys. Rev. A 56, 2321–2326 (1997).
[CrossRef]

W. Lange, Y. A. Logvin, and T. Ackemann, “Spontaneous optical patterns in an atomic vapor: observation and simulation,” Physica D 96, 230–241 (1996).
[CrossRef]

F. Mitschke, C. Boden, W. Lange, and P. Mandel, “Exploring the dynamics of the unstable branch of bistable systems,” Opt. Commun. 71, 385–392 (1989).
[CrossRef]

F. Mitschke, R. Deserno, W. Lange, and J. Mlynek, “Magnetically induced optical self-pulsing in a nonlinear resonator,” Phys. Rev. A 33, 3219–3231 (1986).
[CrossRef] [PubMed]

F. Mitschke, R. Deserno, J. Mlynek, and W. Lange, “Transients in all-optical bistability using transverse optical pumping: observation of critical slowing down,” Opt. Commun. 46, 135–140 (1983).
[CrossRef]

Lefever, R.

M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640–643 (1994).
[CrossRef] [PubMed]

Logvin, Y. A.

T. Ackemann, A. Aumann, E. Grosse Westhoff, Y. A. Logvin, and W. Lange, “Polarization degrees of freedom in optical pattern forming systems: alkali metal vapor in a single-mirror arrangement,” J. Opt. B 3, S124–S132 (2001).
[CrossRef]

W. Lange, T. Ackemann, A. Aumann, E. Büthe, and Y. A. Logvin, “Atomic vapors—a versatile tool in studies of optical pattern formation,” Chaos, Solitons Fractals 10, 617–626 (1999).

T. Ackemann, A. Heuer, Y. A. Logvin, and W. Lange, “Light-shift induced level crossing and resonatorless optical bistability in sodium vapor,” Phys. Rev. A 56, 2321–2326 (1997).
[CrossRef]

W. Lange, Y. A. Logvin, and T. Ackemann, “Spontaneous optical patterns in an atomic vapor: observation and simulation,” Physica D 96, 230–241 (1996).
[CrossRef]

Lugiato, L. A.

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
[CrossRef]

M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, and W. J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
[CrossRef]

M. Brambilla, L. A. Lugiato, and M. Stefani, “Interaction and control of optical localized structures,” Europhys. Lett. 34, 109–114 (1996).
[CrossRef]

Macke, B.

B. Segard, J. Zemmouri, and B. Macke, “Noncritical slowing down in optical bistability,” Opt. Commun. 63, 339–343 (1987).
[CrossRef]

Mandel, P.

M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640–643 (1994).
[CrossRef] [PubMed]

M. Tlidi and P. Mandel, “Spatial patterns in nascent optical bistability,” Chaos, Solitons Fractals 4, 1475–1486 (1994).
[CrossRef]

F. Mitschke, C. Boden, W. Lange, and P. Mandel, “Exploring the dynamics of the unstable branch of bistable systems,” Opt. Commun. 71, 385–392 (1989).
[CrossRef]

J. Y. Bigot, A. Daunois, and P. Mandel, “Scaling properties of switching pulses,” Opt. Commun. 55, 293–296 (1985).
[CrossRef]

P. Mandel, “Scaling properties of switching pulses,” Opt. Commun. 55, 293–296 (1985).
[CrossRef]

Maywar, D. N.

McDonald, G. S.

McLaughlin, D. W.

D. W. McLaughlin, J. V. Moloney, and A. C. Newell, “Solitary waves as fixed points of infinite-dimensional maps in an optical bistable ring cavity,” Phys. Rev. Lett. 51, 75–78 (1983).
[CrossRef]

Mitschke, F.

F. Mitschke, C. Boden, W. Lange, and P. Mandel, “Exploring the dynamics of the unstable branch of bistable systems,” Opt. Commun. 71, 385–392 (1989).
[CrossRef]

F. Mitschke, R. Deserno, W. Lange, and J. Mlynek, “Magnetically induced optical self-pulsing in a nonlinear resonator,” Phys. Rev. A 33, 3219–3231 (1986).
[CrossRef] [PubMed]

F. Mitschke, R. Deserno, J. Mlynek, and W. Lange, “Transients in all-optical bistability using transverse optical pumping: observation of critical slowing down,” Opt. Commun. 46, 135–140 (1983).
[CrossRef]

Mlynek, J.

F. Mitschke, R. Deserno, W. Lange, and J. Mlynek, “Magnetically induced optical self-pulsing in a nonlinear resonator,” Phys. Rev. A 33, 3219–3231 (1986).
[CrossRef] [PubMed]

F. Mitschke, R. Deserno, J. Mlynek, and W. Lange, “Transients in all-optical bistability using transverse optical pumping: observation of critical slowing down,” Opt. Commun. 46, 135–140 (1983).
[CrossRef]

Moloney, J. V.

D. W. McLaughlin, J. V. Moloney, and A. C. Newell, “Solitary waves as fixed points of infinite-dimensional maps in an optical bistable ring cavity,” Phys. Rev. Lett. 51, 75–78 (1983).
[CrossRef]

Montgomery, D.

Nakano, Y.

Neubecker, R.

M. Kreuzer, H. Gottschilk, T. Tschudi, and R. Neubecker, “Structure formation and self-organization phenomena in bistable optical elements,” Mol. Cryst. Liq. Cryst. 207, 219–230 (1991).
[CrossRef]

Newell, A. C.

D. W. McLaughlin, J. V. Moloney, and A. C. Newell, “Solitary waves as fixed points of infinite-dimensional maps in an optical bistable ring cavity,” Phys. Rev. Lett. 51, 75–78 (1983).
[CrossRef]

Prati, F.

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
[CrossRef]

M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, and W. J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
[CrossRef]

Ramazza, P. L.

P. L. Ramazza, S. Ducci, S. Boccaletti, and F. T. Arecchi, “Localized versus delocalized patterns in a nonlinear optical interferometer,” J. Opt. B 2, 399–405 (2000).
[CrossRef]

Rosanov, N. N.

N. N. Rosanov, “Switching waves, autosolitons, and parallel digital–analogous optical computing,” in Transverse Patterns in Nonlinear Optics, N. N. Rosanov, ed., Proc. SPIE 1840, 130–143 (1991).
[CrossRef]

N. N. Rosanov and G. V. Khodova, “Diffractive autosolitons in nonlinear interferometers,” J. Opt. Soc. Am. B 88, 1057–1065 (1988).

Saffman, M.

Sagnes, I.

R. Kuszelewicz, I. Ganne, G. Slekys, and I. Sagnes, “Self-organized optical structures in semiconductor microresonators: towards the observation of cavity solitons,” in Physics and Simulation of Optoelectronic Devices IX, Y. Arakawa and P. Blood, eds., Proc. SPIE 4283, 563–576 (2001).
[CrossRef]

Schäpers, B.

B. Schäpers, T. Ackemann, and W. Lange, “Characteristics and possible applications of localized structures in an optical pattern-forming system,” in Optical Pulse and Beam Propagation III, Y. B. Brand, ed., Proc. SPIE 4271, 130–137 (2001).
[CrossRef]

B. Schäpers, M. Feldmann, T. Ackemann, and W. Lange, “Interaction of localized structures in an optical pattern forming system,” Phys. Rev. Lett. 85, 748–751 (2000).
[CrossRef]

Schreiber, A.

A. Schreiber, M. Kreuzer, B. Thüring, and T. Tschudi, “Experimental investigation of solitary structures in a nonlinear optical feedback system,” Opt. Commun. 136, 415–418 (1997).
[CrossRef]

M. Kreuzer, A. Schreiber, and B. Thüring, “Evolution and switching dynamics of solitary spots in nonlinear optical feedback systems,” Mol. Cryst. Liq. Cryst. 282, 91–105 (1996).
[CrossRef]

Scroggie, A. J.

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
[CrossRef] [PubMed]

Segard, B.

B. Segard, J. Zemmouri, and B. Macke, “Noncritical slowing down in optical bistability,” Opt. Commun. 63, 339–343 (1987).
[CrossRef]

Sinitsyn, G. V.

S. P. Apanasevich, F. V. Karpushko, and G. V. Sinitsyn, “Spatial hysteresis and switching waves in thin-film semiconductor interferometers,” Sov. J. Quantum Electron. 15, 251–253 (1985).
[CrossRef]

Slekys, G.

R. Kuszelewicz, I. Ganne, G. Slekys, and I. Sagnes, “Self-organized optical structures in semiconductor microresonators: towards the observation of cavity solitons,” in Physics and Simulation of Optoelectronic Devices IX, Y. Arakawa and P. Blood, eds., Proc. SPIE 4283, 563–576 (2001).
[CrossRef]

G. Slekys, K. Staliunas, and C. O. Weiss, “Spatial localized structures in resonators with saturable absorber,” Opt. Commun. 149, 113–116 (1998).
[CrossRef]

Spinelli, L.

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
[CrossRef]

M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, and W. J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
[CrossRef]

Staliunas, K.

G. Slekys, K. Staliunas, and C. O. Weiss, “Spatial localized structures in resonators with saturable absorber,” Opt. Commun. 149, 113–116 (1998).
[CrossRef]

V. B. Taranenko, K. Staliunas, and C. O. Weiss, “Spatial soliton laser: localized structures in a laser with a saturable absorber in a self-imaging resonator,” Phys. Rev. A 56, 1582–1591 (1997).
[CrossRef]

Stefani, M.

M. Brambilla, L. A. Lugiato, and M. Stefani, “Interaction and control of optical localized structures,” Europhys. Lett. 34, 109–114 (1996).
[CrossRef]

Taranenko, V. B.

V. B. Taranenko, I. Ganne, R. J. Kuszelewicz, and C. O. Weiss, “Spatial solitons in a semiconductor microresonator,” Appl. Phys. B 72, 377–380 (2001).
[CrossRef]

V. B. Taranenko and C. O. Weiss, “Incohent optical switching of semiconductor resonator solitons,” Appl. Phys. B 72, 893–895 (2001).
[CrossRef]

V. B. Taranenko, I. Ganne, R. J. Kuszelewicz, and C. O. Weiss, “Patterns and localized structures in bistable semiconductor resonators,” Phys. Rev. A 61, 063818 (2000).
[CrossRef]

V. B. Taranenko, K. Staliunas, and C. O. Weiss, “Spatial soliton laser: localized structures in a laser with a saturable absorber in a self-imaging resonator,” Phys. Rev. A 56, 1582–1591 (1997).
[CrossRef]

V. Y. Bazhenov, V. B. Taranenko, and M. V. Vasnetsov, “Transverse optical effects in bistable active cavity with nonlinear absorber on bacteriorhodopsin,” in Transverse Patterns in Nonlinear Optics, N. N. Rosanov, ed., Proc. SPIE 1840, 183–193 (1991).
[CrossRef]

Thüring, B.

M. Kreuzer, B. Thüring, and T. Tschudi, “Creation, dynamics and stability of localized states in a nonlinear optical single feedback system,” Asian J. Phys. 7, 678–686 (1998).

A. Schreiber, M. Kreuzer, B. Thüring, and T. Tschudi, “Experimental investigation of solitary structures in a nonlinear optical feedback system,” Opt. Commun. 136, 415–418 (1997).
[CrossRef]

M. Kreuzer, A. Schreiber, and B. Thüring, “Evolution and switching dynamics of solitary spots in nonlinear optical feedback systems,” Mol. Cryst. Liq. Cryst. 282, 91–105 (1996).
[CrossRef]

Tissoni, G.

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
[CrossRef]

Tlidi, M.

M. Tlidi and P. Mandel, “Spatial patterns in nascent optical bistability,” Chaos, Solitons Fractals 4, 1475–1486 (1994).
[CrossRef]

M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640–643 (1994).
[CrossRef] [PubMed]

Tschudi, T.

M. Kreuzer, B. Thüring, and T. Tschudi, “Creation, dynamics and stability of localized states in a nonlinear optical single feedback system,” Asian J. Phys. 7, 678–686 (1998).

A. Schreiber, M. Kreuzer, B. Thüring, and T. Tschudi, “Experimental investigation of solitary structures in a nonlinear optical feedback system,” Opt. Commun. 136, 415–418 (1997).
[CrossRef]

M. Kreuzer, H. Gottschilk, T. Tschudi, and R. Neubecker, “Structure formation and self-organization phenomena in bistable optical elements,” Mol. Cryst. Liq. Cryst. 207, 219–230 (1991).
[CrossRef]

Vasnetsov, M. V.

V. Y. Bazhenov, V. B. Taranenko, and M. V. Vasnetsov, “Transverse optical effects in bistable active cavity with nonlinear absorber on bacteriorhodopsin,” in Transverse Patterns in Nonlinear Optics, N. N. Rosanov, ed., Proc. SPIE 1840, 183–193 (1991).
[CrossRef]

Weiss, C. O.

V. B. Taranenko, I. Ganne, R. J. Kuszelewicz, and C. O. Weiss, “Spatial solitons in a semiconductor microresonator,” Appl. Phys. B 72, 377–380 (2001).
[CrossRef]

V. B. Taranenko and C. O. Weiss, “Incohent optical switching of semiconductor resonator solitons,” Appl. Phys. B 72, 893–895 (2001).
[CrossRef]

V. B. Taranenko, I. Ganne, R. J. Kuszelewicz, and C. O. Weiss, “Patterns and localized structures in bistable semiconductor resonators,” Phys. Rev. A 61, 063818 (2000).
[CrossRef]

G. Slekys, K. Staliunas, and C. O. Weiss, “Spatial localized structures in resonators with saturable absorber,” Opt. Commun. 149, 113–116 (1998).
[CrossRef]

V. B. Taranenko, K. Staliunas, and C. O. Weiss, “Spatial soliton laser: localized structures in a laser with a saturable absorber in a self-imaging resonator,” Phys. Rev. A 56, 1582–1591 (1997).
[CrossRef]

Westhoff, E. Grosse

T. Ackemann, A. Aumann, E. Grosse Westhoff, Y. A. Logvin, and W. Lange, “Polarization degrees of freedom in optical pattern forming systems: alkali metal vapor in a single-mirror arrangement,” J. Opt. B 3, S124–S132 (2001).
[CrossRef]

Zemmouri, J.

B. Segard, J. Zemmouri, and B. Macke, “Noncritical slowing down in optical bistability,” Opt. Commun. 63, 339–343 (1987).
[CrossRef]

Ann. Phys. (N.Y.)

C. Cohen-Tannoudji, “Théorie quantique du cycle de pompage optique,” Ann. Phys. (N.Y.) 7, 423 (1962).

Appl. Phys. B

T. Ackemann and W. Lange, “Optical pattern formation in alkali metal vapors: mechanisms, phenomena and use,” Appl. Phys. B 72, 21–34 (2001).
[CrossRef]

V. B. Taranenko, I. Ganne, R. J. Kuszelewicz, and C. O. Weiss, “Spatial solitons in a semiconductor microresonator,” Appl. Phys. B 72, 377–380 (2001).
[CrossRef]

V. B. Taranenko and C. O. Weiss, “Incohent optical switching of semiconductor resonator solitons,” Appl. Phys. B 72, 893–895 (2001).
[CrossRef]

Asian J. Phys.

M. Kreuzer, B. Thüring, and T. Tschudi, “Creation, dynamics and stability of localized states in a nonlinear optical single feedback system,” Asian J. Phys. 7, 678–686 (1998).

W. Lange and T. Ackemann, “Alkaline vapors with single-mirror feedback—a model system for pattern formation,” Asian J. Phys. 7, 439–452 (1998).

W. J. Firth and G. K. Harkness, “Cavity solitons,” Asian J. Phys. 7, 665–677 (1998).

Chaos, Solitons Fractals

M. Tlidi and P. Mandel, “Spatial patterns in nascent optical bistability,” Chaos, Solitons Fractals 4, 1475–1486 (1994).
[CrossRef]

W. Lange, T. Ackemann, A. Aumann, E. Büthe, and Y. A. Logvin, “Atomic vapors—a versatile tool in studies of optical pattern formation,” Chaos, Solitons Fractals 10, 617–626 (1999).

Europhys. Lett.

M. Brambilla, L. A. Lugiato, and M. Stefani, “Interaction and control of optical localized structures,” Europhys. Lett. 34, 109–114 (1996).
[CrossRef]

J. Mod. Opt.

W. J. Firth, “Spatial instabilities in a Kerr medium with single feedback mirror,” J. Mod. Opt. 37, 151–153 (1990).
[CrossRef]

J. Opt. B

P. L. Ramazza, S. Ducci, S. Boccaletti, and F. T. Arecchi, “Localized versus delocalized patterns in a nonlinear optical interferometer,” J. Opt. B 2, 399–405 (2000).
[CrossRef]

T. Ackemann, A. Aumann, E. Grosse Westhoff, Y. A. Logvin, and W. Lange, “Polarization degrees of freedom in optical pattern forming systems: alkali metal vapor in a single-mirror arrangement,” J. Opt. B 3, S124–S132 (2001).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. (Paris) Lett.

G. Grynberg and S. Cribier, “Critical exponents in dispersive optical bistability,” J. Phys. (Paris) Lett. 44, 449–453 (1983).
[CrossRef]

Mol. Cryst. Liq. Cryst.

M. Kreuzer, H. Gottschilk, T. Tschudi, and R. Neubecker, “Structure formation and self-organization phenomena in bistable optical elements,” Mol. Cryst. Liq. Cryst. 207, 219–230 (1991).
[CrossRef]

M. Kreuzer, A. Schreiber, and B. Thüring, “Evolution and switching dynamics of solitary spots in nonlinear optical feedback systems,” Mol. Cryst. Liq. Cryst. 282, 91–105 (1996).
[CrossRef]

Opt. Commun.

A. Schreiber, M. Kreuzer, B. Thüring, and T. Tschudi, “Experimental investigation of solitary structures in a nonlinear optical feedback system,” Opt. Commun. 136, 415–418 (1997).
[CrossRef]

G. Slekys, K. Staliunas, and C. O. Weiss, “Spatial localized structures in resonators with saturable absorber,” Opt. Commun. 149, 113–116 (1998).
[CrossRef]

P. Mandel, “Scaling properties of switching pulses,” Opt. Commun. 55, 293–296 (1985).
[CrossRef]

B. Segard, J. Zemmouri, and B. Macke, “Noncritical slowing down in optical bistability,” Opt. Commun. 63, 339–343 (1987).
[CrossRef]

J. Y. Bigot, A. Daunois, and P. Mandel, “Scaling properties of switching pulses,” Opt. Commun. 55, 293–296 (1985).
[CrossRef]

F. Mitschke, C. Boden, W. Lange, and P. Mandel, “Exploring the dynamics of the unstable branch of bistable systems,” Opt. Commun. 71, 385–392 (1989).
[CrossRef]

F. Mitschke, R. Deserno, J. Mlynek, and W. Lange, “Transients in all-optical bistability using transverse optical pumping: observation of critical slowing down,” Opt. Commun. 46, 135–140 (1983).
[CrossRef]

D. E. Grant and H. J. Kimble, “Transient response in absorptive bistability,” Opt. Commun. 44, 415–420 (1983).
[CrossRef]

S. Cribier, E. Giacobino, and G. Grynberg, “Quantitative investigation of critical slowing down in all-optical bistability,” Opt. Commun. 47, 170–172 (1983).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

V. B. Taranenko, K. Staliunas, and C. O. Weiss, “Spatial soliton laser: localized structures in a laser with a saturable absorber in a self-imaging resonator,” Phys. Rev. A 56, 1582–1591 (1997).
[CrossRef]

F. Mitschke, R. Deserno, W. Lange, and J. Mlynek, “Magnetically induced optical self-pulsing in a nonlinear resonator,” Phys. Rev. A 33, 3219–3231 (1986).
[CrossRef] [PubMed]

T. Ackemann, A. Heuer, Y. A. Logvin, and W. Lange, “Light-shift induced level crossing and resonatorless optical bistability in sodium vapor,” Phys. Rev. A 56, 2321–2326 (1997).
[CrossRef]

V. B. Taranenko, I. Ganne, R. J. Kuszelewicz, and C. O. Weiss, “Patterns and localized structures in bistable semiconductor resonators,” Phys. Rev. A 61, 063818 (2000).
[CrossRef]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
[CrossRef]

Phys. Rev. Lett.

M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, and W. J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
[CrossRef]

G. D’Alessandro and W. J. Firth, “Spontaneous hexagon formation in a nonlinear optical medium with feedback mirror,” Phys. Rev. Lett. 66, 2597–2600 (1991).
[CrossRef] [PubMed]

B. Schäpers, M. Feldmann, T. Ackemann, and W. Lange, “Interaction of localized structures in an optical pattern forming system,” Phys. Rev. Lett. 85, 748–751 (2000).
[CrossRef]

D. W. McLaughlin, J. V. Moloney, and A. C. Newell, “Solitary waves as fixed points of infinite-dimensional maps in an optical bistable ring cavity,” Phys. Rev. Lett. 51, 75–78 (1983).
[CrossRef]

M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640–643 (1994).
[CrossRef] [PubMed]

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
[CrossRef] [PubMed]

Physica D

W. Lange, Y. A. Logvin, and T. Ackemann, “Spontaneous optical patterns in an atomic vapor: observation and simulation,” Physica D 96, 230–241 (1996).
[CrossRef]

Proc. SPIE

N. N. Rosanov, “Switching waves, autosolitons, and parallel digital–analogous optical computing,” in Transverse Patterns in Nonlinear Optics, N. N. Rosanov, ed., Proc. SPIE 1840, 130–143 (1991).
[CrossRef]

R. Kuszelewicz, I. Ganne, G. Slekys, and I. Sagnes, “Self-organized optical structures in semiconductor microresonators: towards the observation of cavity solitons,” in Physics and Simulation of Optoelectronic Devices IX, Y. Arakawa and P. Blood, eds., Proc. SPIE 4283, 563–576 (2001).
[CrossRef]

V. Y. Bazhenov, V. B. Taranenko, and M. V. Vasnetsov, “Transverse optical effects in bistable active cavity with nonlinear absorber on bacteriorhodopsin,” in Transverse Patterns in Nonlinear Optics, N. N. Rosanov, ed., Proc. SPIE 1840, 183–193 (1991).
[CrossRef]

B. Schäpers, T. Ackemann, and W. Lange, “Characteristics and possible applications of localized structures in an optical pattern-forming system,” in Optical Pulse and Beam Propagation III, Y. B. Brand, ed., Proc. SPIE 4271, 130–137 (2001).
[CrossRef]

Quantum Semiclassic. Opt.

W. Lange, A. Aumann, T. Ackemann, and E. Büthe, “Polarization patterns in alkaline vapors,” Quantum Semiclassic. Opt. 10, R23–R36 (1998).
[CrossRef]

Sov. J. Quantum Electron.

S. P. Apanasevich, F. V. Karpushko, and G. V. Sinitsyn, “Spatial hysteresis and switching waves in thin-film semiconductor interferometers,” Sov. J. Quantum Electron. 15, 251–253 (1985).
[CrossRef]

Other

G. Slekys, I. Ganne, I. Sagnes, and R. Kuszelewicz, “Switching waves and spatio-temporal dynamics in bistable microresonators,” in International Quantum Electronics Conference (IQEC 2000), 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), p. 218, paper QFA4.

B. Schäpers, T. Ackemann, and W. Lange, “Localized structures in a single-mirror feedback system,” in International Quantum Electronics Conference (IQEC 2000), 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), p. 129, paper QThB2.

B. Schäpers, “Lokalisierte Strukturen in einem atomaren Dampf mit optischer Rückkopplung,” Ph.D. dissertation, University of Münster, Münster, Germany (2001).

S. Barland, M. Giudici, J. R. Tredicce, L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, “Cavity solitons in one-dimensional semiconductor amplifiers: experiment and theory agree,” in Nonlinear Guided Waves and Their Applications, Vol. 55 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), paper MA1.

A. Miller, “In-well and cross-well carrier transport in quantum wells,” in Semiconductor Quantum Optoelectronics: From Quantum Physics to Smart Devices, A. Miller, M. Ebrahimzadeh, and D. M. Finlayson, eds. (SUSSP/Institute of Physics Publishing, Bristol, UK, 1999), pp. 1–24.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup: QW, quarter-wave plate; HW, half-wave plate; AOM, acousto-optic modulator; Na+N2, sodium cell; B, magnetic field; d between sodium cell and mirror.

Fig. 2
Fig. 2

Modified Kastler diagram of a J=1/2J=1/2 transition for blue-detuned excitation with σ+ light. For simplicity, the splitting of the excited state is not shown. Dashed line, position of the ground state of the bare atom.

Fig. 3
Fig. 3

Characteristic curve for the homogeneous, steady-state solution for the steady state of w (orientation versus input pump rate). Parameters: Ωx=1.2×105 rad/s, Ωz=9.0×105 rad/s, Δ=10.0 GHz, d=70 mm, N=7.0×1013 cm-3, D=237 mm2/s, γ=1.5 s-1, Γ2/(2π)=1.6 GHz, L=15 mm, R=0.915.

Fig. 4
Fig. 4

Dependence of the transmission at beam center on input power. The high noise level for small powers occurs because the ratio of two small digitized signals is calculated. Parameters: d=320 mm; Δ=4.8 GHz; B=1.3 µT; Bz=28 µT; cell temperature, 312 °C; pN2=300 hPa. The large distance between cell center and mirror is chosen to discourage the spontaneous emergence of spatial structures because their size scales as d. 22,23

Fig. 5
Fig. 5

Ignition and erasure of a localized state with the addressing beam. Top, schematic of the amplitude of the addressing beam; bottom, near-field intensity distribution of the beam reentering the medium. Parameters: d=70 mm; Δ=8.2 GHz; B=2.59 µT; Bz=19.2 µT; cell temperature, 312.3 °C; pN2=197 hPa; Pin=100 mW. The images are plotted on a linear gray-level scale with white denoting high intensity. The absolute scale was adjusted such that the background beam is always clearly visible; therefore the center of the LS is overexposed. Frame size, 2.6 mm×2.6 mm.

Fig. 6
Fig. 6

Sequence of images illustrating the possibility of igniting several LSs. The location of the addressing beam is chosen such that the emerging LS is not stationary at this point but drifts away owing to gradient forces. Parameters: d=70 mm; Δ=16 GHz; B=2.38 µT; Bz=13.0 µT; cell temperature, 321 °C; pN2=363 hPa; Pin=123 mW. Frame size, 2.4 mm×2.4 mm.

Fig. 7
Fig. 7

Characteristic curve for the homogeneous, steady-state solution (orientation versus input pump rate). Dotted parts are unstable against periodic perturbations at a finite transverse wave number. The branch originating at P0=100,600 s-1 denotes the maximum orientation of the LS. Again, the dashed part is unstable. Parameters: Ωx=1.2×105 rad/s; Ωz=9.0×105 rad/s; Δ=10.0 GHz; d=70 mm; N=3.0×1013 cm-3; D=237 mm2/s; γ=1.5 s-1; Γ2/(2π)=1.6 GHz; L=15 mm; R=0.915.

Fig. 8
Fig. 8

Transverse cut through the center of a calculated LS for a plane-wave background beam. Pump rate of the reflected field versus one transverse coordinate. Parameters: P0=0.96×105 s-1; otherwise as in Fig. 7.

Fig. 9
Fig. 9

(a) Temporal evolution of locally transmitted power during ignition of a LS (upper trace) if the addressing beam is switched on (lower trace). (b) Dependence of the distribution of switching times on the intensity of the addressing beam. Parameters: d=70 mm; Δ=8.9 GHz; B=2.35 µT; Bz=24.7 µT; cell temperature, 313.2 °C; pN2=200 hPa; Pin=99 mW.

Fig. 10
Fig. 10

(a) Temporal evolution of transmitted power during ignition of a LS (solid curve) after an addressing pulse is applied (dashed curve). (b) Dependence of the distribution of switching times on control parameter (see text). The spread in switching times, which is apparent near 0.1, is partly due to the fact that more measurements were performed at this value of pulse area. Furthermore, sometimes the system did not switch to the soliton state in spite of the fact that is positive. We attribute this property to perturbations of parameters. The runs with very large switching delays (>45 µs) that are present for 0.1 are all adjacent to such runs with a complete failure. This suggests that they are already affected by these perturbations. Parameters: d=70 mm; Δ=8.9 GHz; B=2.35 µT; Bz=15.1 µT; cell temperature, 313.2 °C; pN2=200 hPa; Pin=76 mW.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

tm=-(γ-DΔ+P)m-m×Ω+eˆzP,
P=316|μ|242Γ2(Δ¯2+1)(|E0|2+|Eb|2),
χ=-N|μ|220Γ2Δ¯+iΔ¯2+1(1-w)χlin(1-w),
Et=E0 exp(-iχkL/2),
Eb=R exp(-idΔ/k)Et.
ws=Psγ+Ps(Ωz-Δ¯Ps)2+(γ+Ps)2(Ωz-Δ¯Ps)2+(γ+Ps)2+Ωz2,
tm=-(γ-DΔ+P++P-)m-m×Ω+eˆz(P+-P-),

Metrics