Abstract

We report the experimental observation and numerical simulations of a polarization instability of spatial vector solitons in an AlGaAs slab waveguide. At power levels where the nonlinear index change becomes comparable to the birefringence, the fast soliton becomes unstable. The instability is related to coupling of the fast soliton to the slow radiation modes through phase matching. The combined effects of bifurcation and radiation coupling are the processes ultimately limiting the stability of any single-polarization (fast and slow) Kerr soliton.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
    [Crossref]
  2. V. E. Zakharov and A. B. Shabat, “Exact theory of two dimensional self focusing and one dimensional self modulation of nonlinear waves in nonlinear media,” Zh. Eksp. Teor. Fiz. 61, 118–127 (1971) [Sov. Phys. JETP 34, 62–69 (1972)].
  3. C. R. Menyuk, “Soliton robustness in optical fibers,” J. Opt. Soc. Am. B 10, 1585–1591 (1993).
    [Crossref]
  4. N. J. Zabusky and M. D. Kruskal, “Interaction of solitons in a collisionless plasma and the recurrence of initial states,” Phys. Rev. Lett. 15, 240–243 (1965).
    [Crossref]
  5. V. N. Vlasov, I. A. Petrishev, V. I. Talanov, and Izv. Vuzov, Radiofizika 14, 1353 (1971);J. J. Rasmussen and K. Ripdal, “Blow-up in nonlinear Schrödinger equations. I. A general review,” Phys. Scr. 33, 481–497 (1986).
    [Crossref]
  6. P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiation by ‘solitons’ at zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
    [Crossref] [PubMed]
  7. N. N. Akhmediev and J. M. Soto-Crespo, “Dynamics of solitonlike pulse propagation in birefringent optical fibers,” Phys. Rev. E 49, 5742–5754 (1994).
    [Crossref]
  8. A. V. Buryak and N. N. Akhmediev, “Influence of radiation on soliton dynamics in nonlinear fibre couplers,” Opt. Commun. 110, 287–292 (1994).
    [Crossref]
  9. N. N. Akhmediev, A. Buryak, and J. M. Soto-Crespo, “Elliptically polarized solitons in birefringent optical fibers,” Opt. Commun. 112, 278–282 (1994).
    [Crossref]
  10. W. Wang, R. Barille, and G. Rivoire, “Influence of soliton propagation on the beam-polarization dynamics in a planar waveguide,” J. Opt. Soc. Am. B 15, 2731–2737 (1998).
    [Crossref]
  11. Y. Chen, “Stability criterion of coupled soliton states,” Phys. Rev. E 57, 3542–3550 (1998).
    [Crossref]
  12. D. C. Hutchings, J. M. Arnold, and D. F. Parker, “Stationary mixed-polarization spatial solitons and their stability in semiconductor waveguides,” Phys. Rev. E 58, 6649–6658 (1998).
    [Crossref]
  13. E. A. Ostrovskaja, N. N. Akhmediev, G. I. Stegeman, J. U. Kang, and J. S. Aitchison, “Mixed-mode spatial solitons in semiconductor waveguides,” J. Opt. Soc. Am. B 14, 880–887 (1997).
    [Crossref]
  14. K. J. Blow, N. J. Doran, and D. Wood, “Polarization instabilities for solitons in birefringent fibers,” Opt. Lett. 12, 202–204 (1987).
    [Crossref] [PubMed]
  15. E. M. Wright, G. I. Stegeman, and S. Wabnitz, “Solitary-wave decay and symmetrybreaking instabilities in two-mode fibers,” Phys. Rev. A 40, 4455–4466 (1989).
    [Crossref] [PubMed]
  16. C. M. De Sterke and J. E. Sipe, “Polarization instability in a waveguide geometry,” Opt. Lett. 16, 202–204 (1991).
    [Crossref] [PubMed]
  17. Y. Barad and Y. Silberberg, “Polarization evolution and polarization instability of solitons in a birefringent optical fiber,” Phys. Rev. Lett. 78, 3290–3293 (1997).
    [Crossref]
  18. S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in optical fiber,” Phys. Rev. Lett. 82, 3988–3991 (1999).
    [Crossref]
  19. J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699–3702 (1996).
    [Crossref] [PubMed]
  20. D. C. Hutchings, J. M. Arnold, and J. S. Aitchison, “Theory of mixed-polarization propagation in anisotropic cubic media,” Opt. Quantum Electron. 30, 771–782 (1998).
    [Crossref]
  21. N. N. Akhmediev, A. V. Buryak, J. M. Soto-Crespo, and D. R. Andersen, “Phase-locked stationary soliton states in birefringent nonlinear optical fibers,” J. Opt. Soc. Am. B 12, 434–439 (1995).
    [Crossref]
  22. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, E. Ostrovskaya, and N. Akhmediev, “Power-dependent polarization dynamics of mixed-mode spatial solitary waves in AlGaAs waveguides,” J. Opt. Soc. Am. B 14, 3032–3037 (1997).
    [Crossref]
  23. For completely equivalent discussion for temporal soliton, see G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, 1995).

1999 (1)

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in optical fiber,” Phys. Rev. Lett. 82, 3988–3991 (1999).
[Crossref]

1998 (4)

W. Wang, R. Barille, and G. Rivoire, “Influence of soliton propagation on the beam-polarization dynamics in a planar waveguide,” J. Opt. Soc. Am. B 15, 2731–2737 (1998).
[Crossref]

Y. Chen, “Stability criterion of coupled soliton states,” Phys. Rev. E 57, 3542–3550 (1998).
[Crossref]

D. C. Hutchings, J. M. Arnold, and D. F. Parker, “Stationary mixed-polarization spatial solitons and their stability in semiconductor waveguides,” Phys. Rev. E 58, 6649–6658 (1998).
[Crossref]

D. C. Hutchings, J. M. Arnold, and J. S. Aitchison, “Theory of mixed-polarization propagation in anisotropic cubic media,” Opt. Quantum Electron. 30, 771–782 (1998).
[Crossref]

1997 (3)

1996 (1)

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699–3702 (1996).
[Crossref] [PubMed]

1995 (1)

1994 (3)

N. N. Akhmediev and J. M. Soto-Crespo, “Dynamics of solitonlike pulse propagation in birefringent optical fibers,” Phys. Rev. E 49, 5742–5754 (1994).
[Crossref]

A. V. Buryak and N. N. Akhmediev, “Influence of radiation on soliton dynamics in nonlinear fibre couplers,” Opt. Commun. 110, 287–292 (1994).
[Crossref]

N. N. Akhmediev, A. Buryak, and J. M. Soto-Crespo, “Elliptically polarized solitons in birefringent optical fibers,” Opt. Commun. 112, 278–282 (1994).
[Crossref]

1993 (1)

1991 (1)

1990 (1)

P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiation by ‘solitons’ at zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
[Crossref] [PubMed]

1989 (1)

E. M. Wright, G. I. Stegeman, and S. Wabnitz, “Solitary-wave decay and symmetrybreaking instabilities in two-mode fibers,” Phys. Rev. A 40, 4455–4466 (1989).
[Crossref] [PubMed]

1987 (1)

1971 (2)

V. N. Vlasov, I. A. Petrishev, V. I. Talanov, and Izv. Vuzov, Radiofizika 14, 1353 (1971);J. J. Rasmussen and K. Ripdal, “Blow-up in nonlinear Schrödinger equations. I. A general review,” Phys. Scr. 33, 481–497 (1986).
[Crossref]

V. E. Zakharov and A. B. Shabat, “Exact theory of two dimensional self focusing and one dimensional self modulation of nonlinear waves in nonlinear media,” Zh. Eksp. Teor. Fiz. 61, 118–127 (1971) [Sov. Phys. JETP 34, 62–69 (1972)].

1965 (1)

N. J. Zabusky and M. D. Kruskal, “Interaction of solitons in a collisionless plasma and the recurrence of initial states,” Phys. Rev. Lett. 15, 240–243 (1965).
[Crossref]

1964 (1)

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

Agrawal, G. P.

For completely equivalent discussion for temporal soliton, see G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, 1995).

Aitchison, J. S.

D. C. Hutchings, J. M. Arnold, and J. S. Aitchison, “Theory of mixed-polarization propagation in anisotropic cubic media,” Opt. Quantum Electron. 30, 771–782 (1998).
[Crossref]

E. A. Ostrovskaja, N. N. Akhmediev, G. I. Stegeman, J. U. Kang, and J. S. Aitchison, “Mixed-mode spatial solitons in semiconductor waveguides,” J. Opt. Soc. Am. B 14, 880–887 (1997).
[Crossref]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, E. Ostrovskaya, and N. Akhmediev, “Power-dependent polarization dynamics of mixed-mode spatial solitary waves in AlGaAs waveguides,” J. Opt. Soc. Am. B 14, 3032–3037 (1997).
[Crossref]

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699–3702 (1996).
[Crossref] [PubMed]

Akhmediev, N.

Akhmediev, N. N.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in optical fiber,” Phys. Rev. Lett. 82, 3988–3991 (1999).
[Crossref]

E. A. Ostrovskaja, N. N. Akhmediev, G. I. Stegeman, J. U. Kang, and J. S. Aitchison, “Mixed-mode spatial solitons in semiconductor waveguides,” J. Opt. Soc. Am. B 14, 880–887 (1997).
[Crossref]

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699–3702 (1996).
[Crossref] [PubMed]

N. N. Akhmediev, A. V. Buryak, J. M. Soto-Crespo, and D. R. Andersen, “Phase-locked stationary soliton states in birefringent nonlinear optical fibers,” J. Opt. Soc. Am. B 12, 434–439 (1995).
[Crossref]

N. N. Akhmediev and J. M. Soto-Crespo, “Dynamics of solitonlike pulse propagation in birefringent optical fibers,” Phys. Rev. E 49, 5742–5754 (1994).
[Crossref]

A. V. Buryak and N. N. Akhmediev, “Influence of radiation on soliton dynamics in nonlinear fibre couplers,” Opt. Commun. 110, 287–292 (1994).
[Crossref]

N. N. Akhmediev, A. Buryak, and J. M. Soto-Crespo, “Elliptically polarized solitons in birefringent optical fibers,” Opt. Commun. 112, 278–282 (1994).
[Crossref]

Andersen, D. R.

Arnold, J. M.

D. C. Hutchings, J. M. Arnold, and J. S. Aitchison, “Theory of mixed-polarization propagation in anisotropic cubic media,” Opt. Quantum Electron. 30, 771–782 (1998).
[Crossref]

D. C. Hutchings, J. M. Arnold, and D. F. Parker, “Stationary mixed-polarization spatial solitons and their stability in semiconductor waveguides,” Phys. Rev. E 58, 6649–6658 (1998).
[Crossref]

Barad, Y.

Y. Barad and Y. Silberberg, “Polarization evolution and polarization instability of solitons in a birefringent optical fiber,” Phys. Rev. Lett. 78, 3290–3293 (1997).
[Crossref]

Barille, R.

Bergman, K.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in optical fiber,” Phys. Rev. Lett. 82, 3988–3991 (1999).
[Crossref]

Blow, K. J.

Buryak, A.

N. N. Akhmediev, A. Buryak, and J. M. Soto-Crespo, “Elliptically polarized solitons in birefringent optical fibers,” Opt. Commun. 112, 278–282 (1994).
[Crossref]

Buryak, A. V.

N. N. Akhmediev, A. V. Buryak, J. M. Soto-Crespo, and D. R. Andersen, “Phase-locked stationary soliton states in birefringent nonlinear optical fibers,” J. Opt. Soc. Am. B 12, 434–439 (1995).
[Crossref]

A. V. Buryak and N. N. Akhmediev, “Influence of radiation on soliton dynamics in nonlinear fibre couplers,” Opt. Commun. 110, 287–292 (1994).
[Crossref]

Chen, H. H.

P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiation by ‘solitons’ at zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, “Stability criterion of coupled soliton states,” Phys. Rev. E 57, 3542–3550 (1998).
[Crossref]

Chiao, R. Y.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

Collings, B. C.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in optical fiber,” Phys. Rev. Lett. 82, 3988–3991 (1999).
[Crossref]

Cundiff, S. T.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in optical fiber,” Phys. Rev. Lett. 82, 3988–3991 (1999).
[Crossref]

De Sterke, C. M.

Doran, N. J.

Garmire, E.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

Hutchings, D. C.

D. C. Hutchings, J. M. Arnold, and D. F. Parker, “Stationary mixed-polarization spatial solitons and their stability in semiconductor waveguides,” Phys. Rev. E 58, 6649–6658 (1998).
[Crossref]

D. C. Hutchings, J. M. Arnold, and J. S. Aitchison, “Theory of mixed-polarization propagation in anisotropic cubic media,” Opt. Quantum Electron. 30, 771–782 (1998).
[Crossref]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, E. Ostrovskaya, and N. Akhmediev, “Power-dependent polarization dynamics of mixed-mode spatial solitary waves in AlGaAs waveguides,” J. Opt. Soc. Am. B 14, 3032–3037 (1997).
[Crossref]

Kang, J. U.

Knox, W. H.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in optical fiber,” Phys. Rev. Lett. 82, 3988–3991 (1999).
[Crossref]

Kruskal, M. D.

N. J. Zabusky and M. D. Kruskal, “Interaction of solitons in a collisionless plasma and the recurrence of initial states,” Phys. Rev. Lett. 15, 240–243 (1965).
[Crossref]

Lee, Y. C.

P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiation by ‘solitons’ at zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
[Crossref] [PubMed]

Menyuk, C. R.

Ostrovskaja, E. A.

Ostrovskaya, E.

Parker, D. F.

D. C. Hutchings, J. M. Arnold, and D. F. Parker, “Stationary mixed-polarization spatial solitons and their stability in semiconductor waveguides,” Phys. Rev. E 58, 6649–6658 (1998).
[Crossref]

Petrishev, I. A.

V. N. Vlasov, I. A. Petrishev, V. I. Talanov, and Izv. Vuzov, Radiofizika 14, 1353 (1971);J. J. Rasmussen and K. Ripdal, “Blow-up in nonlinear Schrödinger equations. I. A general review,” Phys. Scr. 33, 481–497 (1986).
[Crossref]

Rivoire, G.

Shabat, A. B.

V. E. Zakharov and A. B. Shabat, “Exact theory of two dimensional self focusing and one dimensional self modulation of nonlinear waves in nonlinear media,” Zh. Eksp. Teor. Fiz. 61, 118–127 (1971) [Sov. Phys. JETP 34, 62–69 (1972)].

Silberberg, Y.

Y. Barad and Y. Silberberg, “Polarization evolution and polarization instability of solitons in a birefringent optical fiber,” Phys. Rev. Lett. 78, 3290–3293 (1997).
[Crossref]

Sipe, J. E.

Soto-Crespo, J. M.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in optical fiber,” Phys. Rev. Lett. 82, 3988–3991 (1999).
[Crossref]

N. N. Akhmediev, A. V. Buryak, J. M. Soto-Crespo, and D. R. Andersen, “Phase-locked stationary soliton states in birefringent nonlinear optical fibers,” J. Opt. Soc. Am. B 12, 434–439 (1995).
[Crossref]

N. N. Akhmediev and J. M. Soto-Crespo, “Dynamics of solitonlike pulse propagation in birefringent optical fibers,” Phys. Rev. E 49, 5742–5754 (1994).
[Crossref]

N. N. Akhmediev, A. Buryak, and J. M. Soto-Crespo, “Elliptically polarized solitons in birefringent optical fibers,” Opt. Commun. 112, 278–282 (1994).
[Crossref]

Stegeman, G. I.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, E. Ostrovskaya, and N. Akhmediev, “Power-dependent polarization dynamics of mixed-mode spatial solitary waves in AlGaAs waveguides,” J. Opt. Soc. Am. B 14, 3032–3037 (1997).
[Crossref]

E. A. Ostrovskaja, N. N. Akhmediev, G. I. Stegeman, J. U. Kang, and J. S. Aitchison, “Mixed-mode spatial solitons in semiconductor waveguides,” J. Opt. Soc. Am. B 14, 880–887 (1997).
[Crossref]

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699–3702 (1996).
[Crossref] [PubMed]

E. M. Wright, G. I. Stegeman, and S. Wabnitz, “Solitary-wave decay and symmetrybreaking instabilities in two-mode fibers,” Phys. Rev. A 40, 4455–4466 (1989).
[Crossref] [PubMed]

Talanov, V. I.

V. N. Vlasov, I. A. Petrishev, V. I. Talanov, and Izv. Vuzov, Radiofizika 14, 1353 (1971);J. J. Rasmussen and K. Ripdal, “Blow-up in nonlinear Schrödinger equations. I. A general review,” Phys. Scr. 33, 481–497 (1986).
[Crossref]

Townes, C. H.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

Vlasov, V. N.

V. N. Vlasov, I. A. Petrishev, V. I. Talanov, and Izv. Vuzov, Radiofizika 14, 1353 (1971);J. J. Rasmussen and K. Ripdal, “Blow-up in nonlinear Schrödinger equations. I. A general review,” Phys. Scr. 33, 481–497 (1986).
[Crossref]

Vuzov, Izv.

V. N. Vlasov, I. A. Petrishev, V. I. Talanov, and Izv. Vuzov, Radiofizika 14, 1353 (1971);J. J. Rasmussen and K. Ripdal, “Blow-up in nonlinear Schrödinger equations. I. A general review,” Phys. Scr. 33, 481–497 (1986).
[Crossref]

Wabnitz, S.

E. M. Wright, G. I. Stegeman, and S. Wabnitz, “Solitary-wave decay and symmetrybreaking instabilities in two-mode fibers,” Phys. Rev. A 40, 4455–4466 (1989).
[Crossref] [PubMed]

Wai, P. K. A.

P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiation by ‘solitons’ at zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
[Crossref] [PubMed]

Wang, W.

Wood, D.

Wright, E. M.

E. M. Wright, G. I. Stegeman, and S. Wabnitz, “Solitary-wave decay and symmetrybreaking instabilities in two-mode fibers,” Phys. Rev. A 40, 4455–4466 (1989).
[Crossref] [PubMed]

Zabusky, N. J.

N. J. Zabusky and M. D. Kruskal, “Interaction of solitons in a collisionless plasma and the recurrence of initial states,” Phys. Rev. Lett. 15, 240–243 (1965).
[Crossref]

Zakharov, V. E.

V. E. Zakharov and A. B. Shabat, “Exact theory of two dimensional self focusing and one dimensional self modulation of nonlinear waves in nonlinear media,” Zh. Eksp. Teor. Fiz. 61, 118–127 (1971) [Sov. Phys. JETP 34, 62–69 (1972)].

J. Opt. Soc. Am. B (5)

Opt. Commun. (2)

A. V. Buryak and N. N. Akhmediev, “Influence of radiation on soliton dynamics in nonlinear fibre couplers,” Opt. Commun. 110, 287–292 (1994).
[Crossref]

N. N. Akhmediev, A. Buryak, and J. M. Soto-Crespo, “Elliptically polarized solitons in birefringent optical fibers,” Opt. Commun. 112, 278–282 (1994).
[Crossref]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

D. C. Hutchings, J. M. Arnold, and J. S. Aitchison, “Theory of mixed-polarization propagation in anisotropic cubic media,” Opt. Quantum Electron. 30, 771–782 (1998).
[Crossref]

Phys. Rev. A (2)

E. M. Wright, G. I. Stegeman, and S. Wabnitz, “Solitary-wave decay and symmetrybreaking instabilities in two-mode fibers,” Phys. Rev. A 40, 4455–4466 (1989).
[Crossref] [PubMed]

P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiation by ‘solitons’ at zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
[Crossref] [PubMed]

Phys. Rev. E (3)

N. N. Akhmediev and J. M. Soto-Crespo, “Dynamics of solitonlike pulse propagation in birefringent optical fibers,” Phys. Rev. E 49, 5742–5754 (1994).
[Crossref]

Y. Chen, “Stability criterion of coupled soliton states,” Phys. Rev. E 57, 3542–3550 (1998).
[Crossref]

D. C. Hutchings, J. M. Arnold, and D. F. Parker, “Stationary mixed-polarization spatial solitons and their stability in semiconductor waveguides,” Phys. Rev. E 58, 6649–6658 (1998).
[Crossref]

Phys. Rev. Lett. (5)

Y. Barad and Y. Silberberg, “Polarization evolution and polarization instability of solitons in a birefringent optical fiber,” Phys. Rev. Lett. 78, 3290–3293 (1997).
[Crossref]

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in optical fiber,” Phys. Rev. Lett. 82, 3988–3991 (1999).
[Crossref]

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699–3702 (1996).
[Crossref] [PubMed]

N. J. Zabusky and M. D. Kruskal, “Interaction of solitons in a collisionless plasma and the recurrence of initial states,” Phys. Rev. Lett. 15, 240–243 (1965).
[Crossref]

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

Radiofizika (1)

V. N. Vlasov, I. A. Petrishev, V. I. Talanov, and Izv. Vuzov, Radiofizika 14, 1353 (1971);J. J. Rasmussen and K. Ripdal, “Blow-up in nonlinear Schrödinger equations. I. A general review,” Phys. Scr. 33, 481–497 (1986).
[Crossref]

Zh. Eksp. Teor. Fiz. (1)

V. E. Zakharov and A. B. Shabat, “Exact theory of two dimensional self focusing and one dimensional self modulation of nonlinear waves in nonlinear media,” Zh. Eksp. Teor. Fiz. 61, 118–127 (1971) [Sov. Phys. JETP 34, 62–69 (1972)].

Other (1)

For completely equivalent discussion for temporal soliton, see G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Growth rate (numerical results) of the instability versus total guided power for TM (dotted curve) or TE (dashed curve) solitons. The power region that is not achievable in the experiment is shown in gray shading. The horizontal axis is given in units of birefringence-normalized power. Q/|β|=1 corresponds to a power of 300 W. (b) Real (dotted) and imaginary (dashed curve) parts of the perturbation eigenmode with the largest growth rate associated with the fast soliton (solid curve) for Q/|β|=4 (shown by the solid dot in the upper plot). The eigenmode has only the slow component. The solid curve shows the transverse profile of the fast soliton.

Fig. 2
Fig. 2

(a) Beam-propagation-method simulation of the evolution of a fast soliton in the region where the radiation-related instability develops. The emergence of a TE component upon propagation simultaneously with the emission of small dispersive waves is clearly seen. (b) Propagation of the slow soliton. This plot shows that the TE mode is stable. A=0.95, B=0.5, C=1, Q/|β|1/2=4.

Fig. 3
Fig. 3

Amount of power contained in the main beam versus normalized propagation distance.

Fig. 4
Fig. 4

Beam profiles (in logarithmic scale) during propagation of the fast soliton initially perturbed in accordance with Eq. (6), at Z=ξ|β|=0, 10, and 20. (a) TE-component and (b) TM component. The beam power Q/|β|=4.

Fig. 5
Fig. 5

Schematic of the birefringence measurement. The input polarization was varied by rotating the half-wave plate, and the transmission after the sample with the polarizer at θ=45° was measured for different wavelengths between 1530 nm and 1630 nm, with a tunable color-center laser as the source.

Fig. 6
Fig. 6

Transmission measurement with and without the waveguide sample for the birefringence measurement.

Fig. 7
Fig. 7

Experimental setup: PBS, polarizing beam splitter; λ/2, half-wave plate; det, detector; cam, camera.

Fig. 8
Fig. 8

Horizontal line scans of the near-field image of the soliton showing the input beam (dots), the shape of a diffracted low-power beam (dashed curve), and the soliton (solid curve) at the end of the sample.

Fig. 9
Fig. 9

Experimental irradiance ratio of weak to strong polarization versus total guided power for a beam launched into the waveguide polarized along the (a) x axis (TE component) or (b) y axis (TM mode).

Fig. 10
Fig. 10

Theoretical irradiance ratio of weak to strong polarization versus total guided power for a TM (dotted curve) and TE (dashed curve) Gaussian beam launched into the waveguide. The power region that is not achievable in the experiment is shown in gray.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

iuξ-βu+12uττ+(C|u|2+A|v|2)u+Bv2u*=0,
ivξ+βv+12vττ+(|v|2+A|u|2)v+Bu2v*=0.
u=n2deffn Ex,v=n2deffn Ey,
U=u|β|,V=v|β|,Z=|β|ξ,X=τ|β|.
iUZ+U+12UXX
+(C|U|2+A|V|2)U+BV2U*=0,
iVZ-V+12VXX
+(|V|2+A|U|2)V+BU2V*=0.
(a)U=0.01V,V=2 sech(2X),
(b)U=2 sech(2X),V=0.01U.
P=deffλ2πn2Q29984QW;
Γ=2πλ(nx-ny)L.

Metrics