Abstract

We show experimentally the existence of bright and dark spatial solitons in semiconductor resonators for excitation above the bandgap energy. These solitons can be switched on, both spontaneously and with address pulses, without the thermal delay found for solitons below the bandgap that is unfavorable for applications. The differences between soliton properties above and below gap energy are discussed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. O. Weiss, M. Vaupel, K. Staliunas, G. Slekys, and V. B. Taranenko, “Solitons and vortices in lasers,” Appl. Phys. B: Lasers Opt. 68, 151–168 (1999).
    [CrossRef]
  2. P. Coullet, L. Gil, and F. Rocca, “Optical vortices,” Opt. Commun. 73, 403–408 (1989).
    [CrossRef]
  3. N. N. Rosanov, “Transverse patterns in wide-aperture non-linear optical systems,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1996), Vol. XXXV, pp. 1–60.
  4. K. Staliunas and V. J. Sanchez-Morcillo, “Spatial localized structures in degenerate optical parametric oscillators,” Phys. Rev. A 57, 1454–1457 (1998).
    [CrossRef]
  5. M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640–643 (1994).
    [CrossRef] [PubMed]
  6. V. B. Taranenko, I. Ganne, R. Kuszelewicz, and C. O. Weiss, “Patterns and localized structures in bistable semiconductor resonators,” Phys. Rev. A 61, 063818–1-5 (2000).
    [CrossRef]
  7. W. J. Firth and A. J. Scroggie, “Spontaneous pattern formation in an absorptive system,” Europhys. Lett. 26, 521–526 (1994).
    [CrossRef]
  8. V. B. Taranenko, I. Ganne, R. Kuszelewicz, and C. O. Weiss, “Spatial solitons in a semiconductor microresonator,” Appl. Phys. B 72, 377–380 (2001).
    [CrossRef]
  9. V. B. Taranenko and C. O. Weiss, “Incoherent optical switching of semiconductor resonator solitons,” Appl. Phys. B 72, 893–895 (2001).
    [CrossRef]
  10. C. Ellmers, M. R. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, W. W. Ruehle, and M. Hilpert, “Optically pumped (GaIn)As/Ga(PAs) vertical-cavity surface-emitting lasers with optimized dynamics,” Appl. Phys. Lett. 74, 1367–1369 (1999).
    [CrossRef]
  11. W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
    [CrossRef] [PubMed]
  12. P. K. Jakobsen, J. V. Moloney, A. C. Newell, and R. Indik, “Space–time dynamics of wide-gain-section lasers,” Phys. Rev. A 45, 8129–8137 (1992).
    [CrossRef] [PubMed]
  13. L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
    [CrossRef]
  14. D. Michaelis, U. Peschel, and F. Lederer, “Multistable localized structures and superlattices in semiconductor optical resonators,” Phys. Rev. A 56, R3366–3369 (1997).
    [CrossRef]
  15. T. Rossler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers,” Phys. Rev. A 58, 3279–3292 (1998).
    [CrossRef]
  16. S. H. Park, J. F. Morhange, A. D. Jeffery, R. A. Morgan, A. Chavez-Pirson, H. M. Gibbs, S. W. Koch, N. Peyghambarian, M. Derstine, A. C. Gossard, J. H. English, and W. Weidmann, “Measurements of room-temperature band-gap-resonant optical nonlinearities of GaAs/AlGaAs multiple quantum wells and bulk GaAs,” Appl. Phys. Lett. 52, 1201–1203 (1988).
    [CrossRef]

2001

V. B. Taranenko, I. Ganne, R. Kuszelewicz, and C. O. Weiss, “Spatial solitons in a semiconductor microresonator,” Appl. Phys. B 72, 377–380 (2001).
[CrossRef]

V. B. Taranenko and C. O. Weiss, “Incoherent optical switching of semiconductor resonator solitons,” Appl. Phys. B 72, 893–895 (2001).
[CrossRef]

2000

V. B. Taranenko, I. Ganne, R. Kuszelewicz, and C. O. Weiss, “Patterns and localized structures in bistable semiconductor resonators,” Phys. Rev. A 61, 063818–1-5 (2000).
[CrossRef]

1999

C. Ellmers, M. R. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, W. W. Ruehle, and M. Hilpert, “Optically pumped (GaIn)As/Ga(PAs) vertical-cavity surface-emitting lasers with optimized dynamics,” Appl. Phys. Lett. 74, 1367–1369 (1999).
[CrossRef]

C. O. Weiss, M. Vaupel, K. Staliunas, G. Slekys, and V. B. Taranenko, “Solitons and vortices in lasers,” Appl. Phys. B: Lasers Opt. 68, 151–168 (1999).
[CrossRef]

1998

K. Staliunas and V. J. Sanchez-Morcillo, “Spatial localized structures in degenerate optical parametric oscillators,” Phys. Rev. A 57, 1454–1457 (1998).
[CrossRef]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
[CrossRef]

T. Rossler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers,” Phys. Rev. A 58, 3279–3292 (1998).
[CrossRef]

1997

D. Michaelis, U. Peschel, and F. Lederer, “Multistable localized structures and superlattices in semiconductor optical resonators,” Phys. Rev. A 56, R3366–3369 (1997).
[CrossRef]

1996

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
[CrossRef] [PubMed]

1994

M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640–643 (1994).
[CrossRef] [PubMed]

W. J. Firth and A. J. Scroggie, “Spontaneous pattern formation in an absorptive system,” Europhys. Lett. 26, 521–526 (1994).
[CrossRef]

1992

P. K. Jakobsen, J. V. Moloney, A. C. Newell, and R. Indik, “Space–time dynamics of wide-gain-section lasers,” Phys. Rev. A 45, 8129–8137 (1992).
[CrossRef] [PubMed]

1989

P. Coullet, L. Gil, and F. Rocca, “Optical vortices,” Opt. Commun. 73, 403–408 (1989).
[CrossRef]

1988

S. H. Park, J. F. Morhange, A. D. Jeffery, R. A. Morgan, A. Chavez-Pirson, H. M. Gibbs, S. W. Koch, N. Peyghambarian, M. Derstine, A. C. Gossard, J. H. English, and W. Weidmann, “Measurements of room-temperature band-gap-resonant optical nonlinearities of GaAs/AlGaAs multiple quantum wells and bulk GaAs,” Appl. Phys. Lett. 52, 1201–1203 (1988).
[CrossRef]

Brambilla, M.

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
[CrossRef]

Chavez-Pirson, A.

S. H. Park, J. F. Morhange, A. D. Jeffery, R. A. Morgan, A. Chavez-Pirson, H. M. Gibbs, S. W. Koch, N. Peyghambarian, M. Derstine, A. C. Gossard, J. H. English, and W. Weidmann, “Measurements of room-temperature band-gap-resonant optical nonlinearities of GaAs/AlGaAs multiple quantum wells and bulk GaAs,” Appl. Phys. Lett. 52, 1201–1203 (1988).
[CrossRef]

Coullet, P.

P. Coullet, L. Gil, and F. Rocca, “Optical vortices,” Opt. Commun. 73, 403–408 (1989).
[CrossRef]

Derstine, M.

S. H. Park, J. F. Morhange, A. D. Jeffery, R. A. Morgan, A. Chavez-Pirson, H. M. Gibbs, S. W. Koch, N. Peyghambarian, M. Derstine, A. C. Gossard, J. H. English, and W. Weidmann, “Measurements of room-temperature band-gap-resonant optical nonlinearities of GaAs/AlGaAs multiple quantum wells and bulk GaAs,” Appl. Phys. Lett. 52, 1201–1203 (1988).
[CrossRef]

Ellmers, C.

C. Ellmers, M. R. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, W. W. Ruehle, and M. Hilpert, “Optically pumped (GaIn)As/Ga(PAs) vertical-cavity surface-emitting lasers with optimized dynamics,” Appl. Phys. Lett. 74, 1367–1369 (1999).
[CrossRef]

English, J. H.

S. H. Park, J. F. Morhange, A. D. Jeffery, R. A. Morgan, A. Chavez-Pirson, H. M. Gibbs, S. W. Koch, N. Peyghambarian, M. Derstine, A. C. Gossard, J. H. English, and W. Weidmann, “Measurements of room-temperature band-gap-resonant optical nonlinearities of GaAs/AlGaAs multiple quantum wells and bulk GaAs,” Appl. Phys. Lett. 52, 1201–1203 (1988).
[CrossRef]

Firth, W. J.

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
[CrossRef] [PubMed]

W. J. Firth and A. J. Scroggie, “Spontaneous pattern formation in an absorptive system,” Europhys. Lett. 26, 521–526 (1994).
[CrossRef]

Ganne, I.

V. B. Taranenko, I. Ganne, R. Kuszelewicz, and C. O. Weiss, “Spatial solitons in a semiconductor microresonator,” Appl. Phys. B 72, 377–380 (2001).
[CrossRef]

V. B. Taranenko, I. Ganne, R. Kuszelewicz, and C. O. Weiss, “Patterns and localized structures in bistable semiconductor resonators,” Phys. Rev. A 61, 063818–1-5 (2000).
[CrossRef]

Gibbs, H. M.

S. H. Park, J. F. Morhange, A. D. Jeffery, R. A. Morgan, A. Chavez-Pirson, H. M. Gibbs, S. W. Koch, N. Peyghambarian, M. Derstine, A. C. Gossard, J. H. English, and W. Weidmann, “Measurements of room-temperature band-gap-resonant optical nonlinearities of GaAs/AlGaAs multiple quantum wells and bulk GaAs,” Appl. Phys. Lett. 52, 1201–1203 (1988).
[CrossRef]

Gil, L.

P. Coullet, L. Gil, and F. Rocca, “Optical vortices,” Opt. Commun. 73, 403–408 (1989).
[CrossRef]

Gossard, A. C.

S. H. Park, J. F. Morhange, A. D. Jeffery, R. A. Morgan, A. Chavez-Pirson, H. M. Gibbs, S. W. Koch, N. Peyghambarian, M. Derstine, A. C. Gossard, J. H. English, and W. Weidmann, “Measurements of room-temperature band-gap-resonant optical nonlinearities of GaAs/AlGaAs multiple quantum wells and bulk GaAs,” Appl. Phys. Lett. 52, 1201–1203 (1988).
[CrossRef]

Harkness, G. K.

T. Rossler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers,” Phys. Rev. A 58, 3279–3292 (1998).
[CrossRef]

Hilpert, M.

C. Ellmers, M. R. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, W. W. Ruehle, and M. Hilpert, “Optically pumped (GaIn)As/Ga(PAs) vertical-cavity surface-emitting lasers with optimized dynamics,” Appl. Phys. Lett. 74, 1367–1369 (1999).
[CrossRef]

Hofmann, M. R.

C. Ellmers, M. R. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, W. W. Ruehle, and M. Hilpert, “Optically pumped (GaIn)As/Ga(PAs) vertical-cavity surface-emitting lasers with optimized dynamics,” Appl. Phys. Lett. 74, 1367–1369 (1999).
[CrossRef]

Indik, R.

P. K. Jakobsen, J. V. Moloney, A. C. Newell, and R. Indik, “Space–time dynamics of wide-gain-section lasers,” Phys. Rev. A 45, 8129–8137 (1992).
[CrossRef] [PubMed]

Indik, R. A.

T. Rossler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers,” Phys. Rev. A 58, 3279–3292 (1998).
[CrossRef]

Jakobsen, P. K.

P. K. Jakobsen, J. V. Moloney, A. C. Newell, and R. Indik, “Space–time dynamics of wide-gain-section lasers,” Phys. Rev. A 45, 8129–8137 (1992).
[CrossRef] [PubMed]

Jeffery, A. D.

S. H. Park, J. F. Morhange, A. D. Jeffery, R. A. Morgan, A. Chavez-Pirson, H. M. Gibbs, S. W. Koch, N. Peyghambarian, M. Derstine, A. C. Gossard, J. H. English, and W. Weidmann, “Measurements of room-temperature band-gap-resonant optical nonlinearities of GaAs/AlGaAs multiple quantum wells and bulk GaAs,” Appl. Phys. Lett. 52, 1201–1203 (1988).
[CrossRef]

Karaiskaj, D.

C. Ellmers, M. R. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, W. W. Ruehle, and M. Hilpert, “Optically pumped (GaIn)As/Ga(PAs) vertical-cavity surface-emitting lasers with optimized dynamics,” Appl. Phys. Lett. 74, 1367–1369 (1999).
[CrossRef]

Koch, S. W.

S. H. Park, J. F. Morhange, A. D. Jeffery, R. A. Morgan, A. Chavez-Pirson, H. M. Gibbs, S. W. Koch, N. Peyghambarian, M. Derstine, A. C. Gossard, J. H. English, and W. Weidmann, “Measurements of room-temperature band-gap-resonant optical nonlinearities of GaAs/AlGaAs multiple quantum wells and bulk GaAs,” Appl. Phys. Lett. 52, 1201–1203 (1988).
[CrossRef]

Kuszelewicz, R.

V. B. Taranenko, I. Ganne, R. Kuszelewicz, and C. O. Weiss, “Spatial solitons in a semiconductor microresonator,” Appl. Phys. B 72, 377–380 (2001).
[CrossRef]

V. B. Taranenko, I. Ganne, R. Kuszelewicz, and C. O. Weiss, “Patterns and localized structures in bistable semiconductor resonators,” Phys. Rev. A 61, 063818–1-5 (2000).
[CrossRef]

Lederer, F.

D. Michaelis, U. Peschel, and F. Lederer, “Multistable localized structures and superlattices in semiconductor optical resonators,” Phys. Rev. A 56, R3366–3369 (1997).
[CrossRef]

Lefever, R.

M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640–643 (1994).
[CrossRef] [PubMed]

Leu, S.

C. Ellmers, M. R. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, W. W. Ruehle, and M. Hilpert, “Optically pumped (GaIn)As/Ga(PAs) vertical-cavity surface-emitting lasers with optimized dynamics,” Appl. Phys. Lett. 74, 1367–1369 (1999).
[CrossRef]

Lugiato, L. A.

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
[CrossRef]

Mandel, P.

M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640–643 (1994).
[CrossRef] [PubMed]

Michaelis, D.

D. Michaelis, U. Peschel, and F. Lederer, “Multistable localized structures and superlattices in semiconductor optical resonators,” Phys. Rev. A 56, R3366–3369 (1997).
[CrossRef]

Moloney, J. V.

T. Rossler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers,” Phys. Rev. A 58, 3279–3292 (1998).
[CrossRef]

P. K. Jakobsen, J. V. Moloney, A. C. Newell, and R. Indik, “Space–time dynamics of wide-gain-section lasers,” Phys. Rev. A 45, 8129–8137 (1992).
[CrossRef] [PubMed]

Morgan, R. A.

S. H. Park, J. F. Morhange, A. D. Jeffery, R. A. Morgan, A. Chavez-Pirson, H. M. Gibbs, S. W. Koch, N. Peyghambarian, M. Derstine, A. C. Gossard, J. H. English, and W. Weidmann, “Measurements of room-temperature band-gap-resonant optical nonlinearities of GaAs/AlGaAs multiple quantum wells and bulk GaAs,” Appl. Phys. Lett. 52, 1201–1203 (1988).
[CrossRef]

Morhange, J. F.

S. H. Park, J. F. Morhange, A. D. Jeffery, R. A. Morgan, A. Chavez-Pirson, H. M. Gibbs, S. W. Koch, N. Peyghambarian, M. Derstine, A. C. Gossard, J. H. English, and W. Weidmann, “Measurements of room-temperature band-gap-resonant optical nonlinearities of GaAs/AlGaAs multiple quantum wells and bulk GaAs,” Appl. Phys. Lett. 52, 1201–1203 (1988).
[CrossRef]

Newell, A. C.

P. K. Jakobsen, J. V. Moloney, A. C. Newell, and R. Indik, “Space–time dynamics of wide-gain-section lasers,” Phys. Rev. A 45, 8129–8137 (1992).
[CrossRef] [PubMed]

Ning, C. Z.

T. Rossler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers,” Phys. Rev. A 58, 3279–3292 (1998).
[CrossRef]

Park, S. H.

S. H. Park, J. F. Morhange, A. D. Jeffery, R. A. Morgan, A. Chavez-Pirson, H. M. Gibbs, S. W. Koch, N. Peyghambarian, M. Derstine, A. C. Gossard, J. H. English, and W. Weidmann, “Measurements of room-temperature band-gap-resonant optical nonlinearities of GaAs/AlGaAs multiple quantum wells and bulk GaAs,” Appl. Phys. Lett. 52, 1201–1203 (1988).
[CrossRef]

Peschel, U.

D. Michaelis, U. Peschel, and F. Lederer, “Multistable localized structures and superlattices in semiconductor optical resonators,” Phys. Rev. A 56, R3366–3369 (1997).
[CrossRef]

Peyghambarian, N.

S. H. Park, J. F. Morhange, A. D. Jeffery, R. A. Morgan, A. Chavez-Pirson, H. M. Gibbs, S. W. Koch, N. Peyghambarian, M. Derstine, A. C. Gossard, J. H. English, and W. Weidmann, “Measurements of room-temperature band-gap-resonant optical nonlinearities of GaAs/AlGaAs multiple quantum wells and bulk GaAs,” Appl. Phys. Lett. 52, 1201–1203 (1988).
[CrossRef]

Prati, F.

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
[CrossRef]

Rocca, F.

P. Coullet, L. Gil, and F. Rocca, “Optical vortices,” Opt. Commun. 73, 403–408 (1989).
[CrossRef]

Rossler, T.

T. Rossler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers,” Phys. Rev. A 58, 3279–3292 (1998).
[CrossRef]

Ruehle, W. W.

C. Ellmers, M. R. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, W. W. Ruehle, and M. Hilpert, “Optically pumped (GaIn)As/Ga(PAs) vertical-cavity surface-emitting lasers with optimized dynamics,” Appl. Phys. Lett. 74, 1367–1369 (1999).
[CrossRef]

Sanchez-Morcillo, V. J.

K. Staliunas and V. J. Sanchez-Morcillo, “Spatial localized structures in degenerate optical parametric oscillators,” Phys. Rev. A 57, 1454–1457 (1998).
[CrossRef]

Scroggie, A. J.

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
[CrossRef] [PubMed]

W. J. Firth and A. J. Scroggie, “Spontaneous pattern formation in an absorptive system,” Europhys. Lett. 26, 521–526 (1994).
[CrossRef]

Slekys, G.

C. O. Weiss, M. Vaupel, K. Staliunas, G. Slekys, and V. B. Taranenko, “Solitons and vortices in lasers,” Appl. Phys. B: Lasers Opt. 68, 151–168 (1999).
[CrossRef]

Spinelli, L.

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
[CrossRef]

Staliunas, K.

C. O. Weiss, M. Vaupel, K. Staliunas, G. Slekys, and V. B. Taranenko, “Solitons and vortices in lasers,” Appl. Phys. B: Lasers Opt. 68, 151–168 (1999).
[CrossRef]

K. Staliunas and V. J. Sanchez-Morcillo, “Spatial localized structures in degenerate optical parametric oscillators,” Phys. Rev. A 57, 1454–1457 (1998).
[CrossRef]

Stolz, W.

C. Ellmers, M. R. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, W. W. Ruehle, and M. Hilpert, “Optically pumped (GaIn)As/Ga(PAs) vertical-cavity surface-emitting lasers with optimized dynamics,” Appl. Phys. Lett. 74, 1367–1369 (1999).
[CrossRef]

Taranenko, V. B.

V. B. Taranenko, I. Ganne, R. Kuszelewicz, and C. O. Weiss, “Spatial solitons in a semiconductor microresonator,” Appl. Phys. B 72, 377–380 (2001).
[CrossRef]

V. B. Taranenko and C. O. Weiss, “Incoherent optical switching of semiconductor resonator solitons,” Appl. Phys. B 72, 893–895 (2001).
[CrossRef]

V. B. Taranenko, I. Ganne, R. Kuszelewicz, and C. O. Weiss, “Patterns and localized structures in bistable semiconductor resonators,” Phys. Rev. A 61, 063818–1-5 (2000).
[CrossRef]

C. O. Weiss, M. Vaupel, K. Staliunas, G. Slekys, and V. B. Taranenko, “Solitons and vortices in lasers,” Appl. Phys. B: Lasers Opt. 68, 151–168 (1999).
[CrossRef]

Tissoni, G.

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
[CrossRef]

Tlidi, M.

M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640–643 (1994).
[CrossRef] [PubMed]

Vaupel, M.

C. O. Weiss, M. Vaupel, K. Staliunas, G. Slekys, and V. B. Taranenko, “Solitons and vortices in lasers,” Appl. Phys. B: Lasers Opt. 68, 151–168 (1999).
[CrossRef]

Weidmann, W.

S. H. Park, J. F. Morhange, A. D. Jeffery, R. A. Morgan, A. Chavez-Pirson, H. M. Gibbs, S. W. Koch, N. Peyghambarian, M. Derstine, A. C. Gossard, J. H. English, and W. Weidmann, “Measurements of room-temperature band-gap-resonant optical nonlinearities of GaAs/AlGaAs multiple quantum wells and bulk GaAs,” Appl. Phys. Lett. 52, 1201–1203 (1988).
[CrossRef]

Weiss, C. O.

V. B. Taranenko and C. O. Weiss, “Incoherent optical switching of semiconductor resonator solitons,” Appl. Phys. B 72, 893–895 (2001).
[CrossRef]

V. B. Taranenko, I. Ganne, R. Kuszelewicz, and C. O. Weiss, “Spatial solitons in a semiconductor microresonator,” Appl. Phys. B 72, 377–380 (2001).
[CrossRef]

V. B. Taranenko, I. Ganne, R. Kuszelewicz, and C. O. Weiss, “Patterns and localized structures in bistable semiconductor resonators,” Phys. Rev. A 61, 063818–1-5 (2000).
[CrossRef]

C. O. Weiss, M. Vaupel, K. Staliunas, G. Slekys, and V. B. Taranenko, “Solitons and vortices in lasers,” Appl. Phys. B: Lasers Opt. 68, 151–168 (1999).
[CrossRef]

Appl. Phys. B

V. B. Taranenko, I. Ganne, R. Kuszelewicz, and C. O. Weiss, “Spatial solitons in a semiconductor microresonator,” Appl. Phys. B 72, 377–380 (2001).
[CrossRef]

V. B. Taranenko and C. O. Weiss, “Incoherent optical switching of semiconductor resonator solitons,” Appl. Phys. B 72, 893–895 (2001).
[CrossRef]

Appl. Phys. B: Lasers Opt.

C. O. Weiss, M. Vaupel, K. Staliunas, G. Slekys, and V. B. Taranenko, “Solitons and vortices in lasers,” Appl. Phys. B: Lasers Opt. 68, 151–168 (1999).
[CrossRef]

Appl. Phys. Lett.

C. Ellmers, M. R. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, W. W. Ruehle, and M. Hilpert, “Optically pumped (GaIn)As/Ga(PAs) vertical-cavity surface-emitting lasers with optimized dynamics,” Appl. Phys. Lett. 74, 1367–1369 (1999).
[CrossRef]

S. H. Park, J. F. Morhange, A. D. Jeffery, R. A. Morgan, A. Chavez-Pirson, H. M. Gibbs, S. W. Koch, N. Peyghambarian, M. Derstine, A. C. Gossard, J. H. English, and W. Weidmann, “Measurements of room-temperature band-gap-resonant optical nonlinearities of GaAs/AlGaAs multiple quantum wells and bulk GaAs,” Appl. Phys. Lett. 52, 1201–1203 (1988).
[CrossRef]

Europhys. Lett.

W. J. Firth and A. J. Scroggie, “Spontaneous pattern formation in an absorptive system,” Europhys. Lett. 26, 521–526 (1994).
[CrossRef]

Opt. Commun.

P. Coullet, L. Gil, and F. Rocca, “Optical vortices,” Opt. Commun. 73, 403–408 (1989).
[CrossRef]

Phys. Rev. A

K. Staliunas and V. J. Sanchez-Morcillo, “Spatial localized structures in degenerate optical parametric oscillators,” Phys. Rev. A 57, 1454–1457 (1998).
[CrossRef]

V. B. Taranenko, I. Ganne, R. Kuszelewicz, and C. O. Weiss, “Patterns and localized structures in bistable semiconductor resonators,” Phys. Rev. A 61, 063818–1-5 (2000).
[CrossRef]

P. K. Jakobsen, J. V. Moloney, A. C. Newell, and R. Indik, “Space–time dynamics of wide-gain-section lasers,” Phys. Rev. A 45, 8129–8137 (1992).
[CrossRef] [PubMed]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
[CrossRef]

D. Michaelis, U. Peschel, and F. Lederer, “Multistable localized structures and superlattices in semiconductor optical resonators,” Phys. Rev. A 56, R3366–3369 (1997).
[CrossRef]

T. Rossler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers,” Phys. Rev. A 58, 3279–3292 (1998).
[CrossRef]

Phys. Rev. Lett.

M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640–643 (1994).
[CrossRef] [PubMed]

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
[CrossRef] [PubMed]

Other

N. N. Rosanov, “Transverse patterns in wide-aperture non-linear optical systems,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1996), Vol. XXXV, pp. 1–60.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Three-dimensional representation of reflectivity: (a), (b), Bright soliton above bandgap due to observation in reflection, the bright soliton appears dark. (a) View from above, (b) from below, (c) dark soliton.

Fig. 2
Fig. 2

Comparison of bright-soliton formation above bandgap (left) and below bandgap (right). (b), (d) Reflectivity on a diameter of the illuminated area as a function of time. (a), (c) Intensity of incident (dotted) and reflected (solid) light, at the center of the soliton as a function of time. Arrows mark the switch on and off.

Fig. 3
Fig. 3

Steady-state plane-wave solution of Eq. (1) above bandgap (a) Re(α)=0.05 and below bandgap (b) Re(α)=-0.05. Other parameters are C=15, Im(α)=0.99, θ=-3, and d=0.1. The soliton solution shown exists for incident intensities corresponding to the shaded areas, in coexistence with homogeneous solutions. For a temperature increase the characteristics together with soliton-existence ranges shift to higher incident intensities. Reflected and incident intensities are normalized to the same value.

Fig. 4
Fig. 4

Bistability characteristics (reflected light intensity versus incident light intensity) measured at the center of an illuminated area of 100-µm diameter, (a) for above-bandgap and (b) below-bandgap excitation.

Fig. 5
Fig. 5

Spontaneous repeated switching on and off of a bright soliton due to thermal dissipation.

Fig. 6
Fig. 6

Switching on an above-bandgap soliton with an address pulse. Arrow marks application of the pulse. Incident light is at the soliton center (dotted); reflected light intensity is at the soliton center (solid).

Fig. 7
Fig. 7

Spontaneous direct switch-on of an above-bandgap soliton that remains stable in the presence of heating. The initial switch-on of the soliton (t=1.8 µs) is fast. The further decrease of reflected intensity (i.e., increase of the intracavity soliton field) follows adiabatically the incident intensity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E/t=Ein-{[1+2C Im(α)(1-N)]+i[θ-2C Re(α)N-2]}E,
 N/t=-γ[N-|E|2(1-N)-d2N],

Metrics