Abstract

It is shown that a uniaxial crystal (cut along the optical axis) placed inside a telescope may compensate for thermally induced birefringence in laser-active elements. Depolarization was reduced in an experiment by an order of magnitude.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering (Springer, New York, 1999).
  2. Y. Liao, R. J. D. Miller, and M. R. Armstrong, “Pressure tuning of thermal lensing for high-power scaling,” Opt. Lett. 24, 1343–1345 (1999).
    [CrossRef]
  3. E. Khazanov, N. Andreev, O. Palashov, and D. Reitze, “Use of mechanical stress in design of a Faraday isolator for high power radiation,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 321–322.
  4. N. F. Andreev, A. A. Babin, E. A. Khazanov, S. B. Paperny, and G. A. Pasmanik, “Pulse-repetition solid-state laser with SBS cells,” Laser Phys. 2, 1–19 (1992).
  5. D. A. Rockwell, “A review of phase-conjugate solid-state laser,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
    [CrossRef]
  6. W. A. Clarkson, N. S. Felgate, and D. C. Hanna, “Simple method for reducing the depolarization loss resulting from thermally induced birefringence in solid-state lasers,” Opt. Lett. 24, 820–822 (1999).
    [CrossRef]
  7. R. Hua, S. Wada, and H. Tashiro, “Principles and limitations of a quarter-wave plate for reducing the depolariza- tion loss from thermally induced birefringence in Nd:YAG lasers,” Opt. Commun. 175, 189–200 (2000).
    [CrossRef]
  8. R. Kandasamy, M. Yamanaka, Y. Izawa, and S. Nakui, “Analysis of birefringence compensation using a quarter-wave plate in solid-state lasers,” Opt. Rev. 7, 149–151 (2000).
    [CrossRef]
  9. E. A. Lundstrom, “Waveplate for correcting thermally induced stress birefringence in solid state lasers,” U.S. patent 4, 408, 334 (October 4, 1983).
  10. G. Giuliani and P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
    [CrossRef]
  11. M. Martinelly, “A universal compensator for polarization changes induced birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
    [CrossRef]
  12. N. Andreev, S. V. Kuznetsov, O. Palashov, G. Pasmanik, and E. Khazanov, “Four-pass YAG–Nd laser amplifier with compensation for aberration and polarization distortions of the wave front,” Sov. J. Quantum Electron. 22, 800–802 (1992) [Kvant. Elektron. (Moscow) 19, 862–864 (1992)].
    [CrossRef]
  13. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
    [CrossRef]
  14. E. A. Khazanov, “New Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001) [Kvant. Elektron. (Moscow) 31, (2001)].
    [CrossRef]
  15. W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
    [CrossRef]
  16. N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, and G. Pasmanik, “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991) [Kvant. Elektron. (Moscow) 18, 1154–1160 (1991)].
  17. D. Pohl, “Operation of ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
    [CrossRef]
  18. L. N. Soms and A. A. Tarasov, “Thermal deformation in color-center laser active elements. 1. Theory,” Sov. J. Quantum Electron. 9, 1506–1508 (1979) [Kvant. Elektron. 6, 2546–2551 (1979)].
  19. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. Reitze, “Effect of TGG crystal orientation on the isolation ratio of the Faraday isolator at a high average power,” Appl. Opt. 41, 483–492 (2002).
    [CrossRef] [PubMed]
  20. G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970).
    [CrossRef]
  21. J. F. Nye, Physical Properties of Crystals (Oxford University, London, 1964).
  22. N. Pavel, Y. Hirano, S. Yamamoto, Y. Koyata, and T. Tajime, “Improved pump-beam distribution in a diode side-pumped solid-state laser with a highly diffuse, cross-axis beam delivery system,” Appl. Opt. 39, 986–992 (2000).
    [CrossRef]
  23. N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Poteomkin, D. Reitze, A. M. Sergeev, and E. A. Khazanov, “Use of crystal quartz for compensation of thermally induced depolarization in Faraday isolators,” Kvant. Elektron. (Moscow) 32, 91–94 (2002).
    [CrossRef]

2002

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. Reitze, “Effect of TGG crystal orientation on the isolation ratio of the Faraday isolator at a high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef] [PubMed]

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Poteomkin, D. Reitze, A. M. Sergeev, and E. A. Khazanov, “Use of crystal quartz for compensation of thermally induced depolarization in Faraday isolators,” Kvant. Elektron. (Moscow) 32, 91–94 (2002).
[CrossRef]

2001

E. A. Khazanov, “New Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001) [Kvant. Elektron. (Moscow) 31, (2001)].
[CrossRef]

2000

R. Hua, S. Wada, and H. Tashiro, “Principles and limitations of a quarter-wave plate for reducing the depolariza- tion loss from thermally induced birefringence in Nd:YAG lasers,” Opt. Commun. 175, 189–200 (2000).
[CrossRef]

R. Kandasamy, M. Yamanaka, Y. Izawa, and S. Nakui, “Analysis of birefringence compensation using a quarter-wave plate in solid-state lasers,” Opt. Rev. 7, 149–151 (2000).
[CrossRef]

N. Pavel, Y. Hirano, S. Yamamoto, Y. Koyata, and T. Tajime, “Improved pump-beam distribution in a diode side-pumped solid-state laser with a highly diffuse, cross-axis beam delivery system,” Appl. Opt. 39, 986–992 (2000).
[CrossRef]

1999

1992

N. F. Andreev, A. A. Babin, E. A. Khazanov, S. B. Paperny, and G. A. Pasmanik, “Pulse-repetition solid-state laser with SBS cells,” Laser Phys. 2, 1–19 (1992).

1991

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, and G. Pasmanik, “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991) [Kvant. Elektron. (Moscow) 18, 1154–1160 (1991)].

1989

M. Martinelly, “A universal compensator for polarization changes induced birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
[CrossRef]

1988

D. A. Rockwell, “A review of phase-conjugate solid-state laser,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
[CrossRef]

1980

G. Giuliani and P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
[CrossRef]

1979

L. N. Soms and A. A. Tarasov, “Thermal deformation in color-center laser active elements. 1. Theory,” Sov. J. Quantum Electron. 9, 1506–1508 (1979) [Kvant. Elektron. 6, 2546–2551 (1979)].

1972

D. Pohl, “Operation of ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
[CrossRef]

1971

W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

1970

G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970).
[CrossRef]

Andreev, N.

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. Reitze, “Effect of TGG crystal orientation on the isolation ratio of the Faraday isolator at a high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef] [PubMed]

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, and G. Pasmanik, “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991) [Kvant. Elektron. (Moscow) 18, 1154–1160 (1991)].

Andreev, N. F.

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Poteomkin, D. Reitze, A. M. Sergeev, and E. A. Khazanov, “Use of crystal quartz for compensation of thermally induced depolarization in Faraday isolators,” Kvant. Elektron. (Moscow) 32, 91–94 (2002).
[CrossRef]

N. F. Andreev, A. A. Babin, E. A. Khazanov, S. B. Paperny, and G. A. Pasmanik, “Pulse-repetition solid-state laser with SBS cells,” Laser Phys. 2, 1–19 (1992).

Armstrong, M. R.

Babin, A. A.

N. F. Andreev, A. A. Babin, E. A. Khazanov, S. B. Paperny, and G. A. Pasmanik, “Pulse-repetition solid-state laser with SBS cells,” Laser Phys. 2, 1–19 (1992).

Bondarenco, N. G.

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, and G. Pasmanik, “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991) [Kvant. Elektron. (Moscow) 18, 1154–1160 (1991)].

Clarkson, W. A.

de Wit, M.

W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

Eremina, I. V.

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, and G. Pasmanik, “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991) [Kvant. Elektron. (Moscow) 18, 1154–1160 (1991)].

Felgate, N. S.

Giuliani, G.

G. Giuliani and P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
[CrossRef]

Hanna, D. C.

Hirano, Y.

Hua, R.

R. Hua, S. Wada, and H. Tashiro, “Principles and limitations of a quarter-wave plate for reducing the depolariza- tion loss from thermally induced birefringence in Nd:YAG lasers,” Opt. Commun. 175, 189–200 (2000).
[CrossRef]

Izawa, Y.

R. Kandasamy, M. Yamanaka, Y. Izawa, and S. Nakui, “Analysis of birefringence compensation using a quarter-wave plate in solid-state lasers,” Opt. Rev. 7, 149–151 (2000).
[CrossRef]

Kandasamy, R.

R. Kandasamy, M. Yamanaka, Y. Izawa, and S. Nakui, “Analysis of birefringence compensation using a quarter-wave plate in solid-state lasers,” Opt. Rev. 7, 149–151 (2000).
[CrossRef]

Katin, E. V.

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Poteomkin, D. Reitze, A. M. Sergeev, and E. A. Khazanov, “Use of crystal quartz for compensation of thermally induced depolarization in Faraday isolators,” Kvant. Elektron. (Moscow) 32, 91–94 (2002).
[CrossRef]

Khazanov, E.

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. Reitze, “Effect of TGG crystal orientation on the isolation ratio of the Faraday isolator at a high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef] [PubMed]

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, and G. Pasmanik, “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991) [Kvant. Elektron. (Moscow) 18, 1154–1160 (1991)].

Khazanov, E. A.

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Poteomkin, D. Reitze, A. M. Sergeev, and E. A. Khazanov, “Use of crystal quartz for compensation of thermally induced depolarization in Faraday isolators,” Kvant. Elektron. (Moscow) 32, 91–94 (2002).
[CrossRef]

E. A. Khazanov, “New Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001) [Kvant. Elektron. (Moscow) 31, (2001)].
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

N. F. Andreev, A. A. Babin, E. A. Khazanov, S. B. Paperny, and G. A. Pasmanik, “Pulse-repetition solid-state laser with SBS cells,” Laser Phys. 2, 1–19 (1992).

Koyata, Y.

Kulagin, O. V.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Kuznetsov, S. V.

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, and G. Pasmanik, “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991) [Kvant. Elektron. (Moscow) 18, 1154–1160 (1991)].

Liao, Y.

Martinelly, M.

M. Martinelly, “A universal compensator for polarization changes induced birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
[CrossRef]

Massey, G. A.

G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970).
[CrossRef]

Mehl, O.

Miller, R. J. D.

Nakui, S.

R. Kandasamy, M. Yamanaka, Y. Izawa, and S. Nakui, “Analysis of birefringence compensation using a quarter-wave plate in solid-state lasers,” Opt. Rev. 7, 149–151 (2000).
[CrossRef]

Palashov, O.

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. Reitze, “Effect of TGG crystal orientation on the isolation ratio of the Faraday isolator at a high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef] [PubMed]

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, and G. Pasmanik, “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991) [Kvant. Elektron. (Moscow) 18, 1154–1160 (1991)].

Palashov, O. V.

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Poteomkin, D. Reitze, A. M. Sergeev, and E. A. Khazanov, “Use of crystal quartz for compensation of thermally induced depolarization in Faraday isolators,” Kvant. Elektron. (Moscow) 32, 91–94 (2002).
[CrossRef]

Paperny, S. B.

N. F. Andreev, A. A. Babin, E. A. Khazanov, S. B. Paperny, and G. A. Pasmanik, “Pulse-repetition solid-state laser with SBS cells,” Laser Phys. 2, 1–19 (1992).

Pasmanik, G.

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, and G. Pasmanik, “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991) [Kvant. Elektron. (Moscow) 18, 1154–1160 (1991)].

Pasmanik, G. A.

N. F. Andreev, A. A. Babin, E. A. Khazanov, S. B. Paperny, and G. A. Pasmanik, “Pulse-repetition solid-state laser with SBS cells,” Laser Phys. 2, 1–19 (1992).

Pavel, N.

Pohl, D.

D. Pohl, “Operation of ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
[CrossRef]

Poteomkin, A.

Poteomkin, A. K.

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Poteomkin, D. Reitze, A. M. Sergeev, and E. A. Khazanov, “Use of crystal quartz for compensation of thermally induced depolarization in Faraday isolators,” Kvant. Elektron. (Moscow) 32, 91–94 (2002).
[CrossRef]

Reitze, D.

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Poteomkin, D. Reitze, A. M. Sergeev, and E. A. Khazanov, “Use of crystal quartz for compensation of thermally induced depolarization in Faraday isolators,” Kvant. Elektron. (Moscow) 32, 91–94 (2002).
[CrossRef]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. Reitze, “Effect of TGG crystal orientation on the isolation ratio of the Faraday isolator at a high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef] [PubMed]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Ristori, P.

G. Giuliani and P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
[CrossRef]

Rockwell, D. A.

D. A. Rockwell, “A review of phase-conjugate solid-state laser,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
[CrossRef]

Scott, W. C.

W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

Sergeev, A.

Sergeev, A. M.

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Poteomkin, D. Reitze, A. M. Sergeev, and E. A. Khazanov, “Use of crystal quartz for compensation of thermally induced depolarization in Faraday isolators,” Kvant. Elektron. (Moscow) 32, 91–94 (2002).
[CrossRef]

Soms, L. N.

L. N. Soms and A. A. Tarasov, “Thermal deformation in color-center laser active elements. 1. Theory,” Sov. J. Quantum Electron. 9, 1506–1508 (1979) [Kvant. Elektron. 6, 2546–2551 (1979)].

Tajime, T.

Tanner, D.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Tarasov, A. A.

L. N. Soms and A. A. Tarasov, “Thermal deformation in color-center laser active elements. 1. Theory,” Sov. J. Quantum Electron. 9, 1506–1508 (1979) [Kvant. Elektron. 6, 2546–2551 (1979)].

Tashiro, H.

R. Hua, S. Wada, and H. Tashiro, “Principles and limitations of a quarter-wave plate for reducing the depolariza- tion loss from thermally induced birefringence in Nd:YAG lasers,” Opt. Commun. 175, 189–200 (2000).
[CrossRef]

Wada, S.

R. Hua, S. Wada, and H. Tashiro, “Principles and limitations of a quarter-wave plate for reducing the depolariza- tion loss from thermally induced birefringence in Nd:YAG lasers,” Opt. Commun. 175, 189–200 (2000).
[CrossRef]

Yamamoto, S.

Yamanaka, M.

R. Kandasamy, M. Yamanaka, Y. Izawa, and S. Nakui, “Analysis of birefringence compensation using a quarter-wave plate in solid-state lasers,” Opt. Rev. 7, 149–151 (2000).
[CrossRef]

Yoshida, S.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970).
[CrossRef]

W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

D. Pohl, “Operation of ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
[CrossRef]

IEEE J. Quantum Electron.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

D. A. Rockwell, “A review of phase-conjugate solid-state laser,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
[CrossRef]

Kvant. Elektron.

L. N. Soms and A. A. Tarasov, “Thermal deformation in color-center laser active elements. 1. Theory,” Sov. J. Quantum Electron. 9, 1506–1508 (1979) [Kvant. Elektron. 6, 2546–2551 (1979)].

Kvant. Elektron. (Moscow)

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, and G. Pasmanik, “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991) [Kvant. Elektron. (Moscow) 18, 1154–1160 (1991)].

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Poteomkin, D. Reitze, A. M. Sergeev, and E. A. Khazanov, “Use of crystal quartz for compensation of thermally induced depolarization in Faraday isolators,” Kvant. Elektron. (Moscow) 32, 91–94 (2002).
[CrossRef]

Laser Phys.

N. F. Andreev, A. A. Babin, E. A. Khazanov, S. B. Paperny, and G. A. Pasmanik, “Pulse-repetition solid-state laser with SBS cells,” Laser Phys. 2, 1–19 (1992).

Opt. Commun.

R. Hua, S. Wada, and H. Tashiro, “Principles and limitations of a quarter-wave plate for reducing the depolariza- tion loss from thermally induced birefringence in Nd:YAG lasers,” Opt. Commun. 175, 189–200 (2000).
[CrossRef]

G. Giuliani and P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
[CrossRef]

M. Martinelly, “A universal compensator for polarization changes induced birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
[CrossRef]

Opt. Lett.

Opt. Rev.

R. Kandasamy, M. Yamanaka, Y. Izawa, and S. Nakui, “Analysis of birefringence compensation using a quarter-wave plate in solid-state lasers,” Opt. Rev. 7, 149–151 (2000).
[CrossRef]

Quantum Electron.

E. A. Khazanov, “New Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001) [Kvant. Elektron. (Moscow) 31, (2001)].
[CrossRef]

Other

N. Andreev, S. V. Kuznetsov, O. Palashov, G. Pasmanik, and E. Khazanov, “Four-pass YAG–Nd laser amplifier with compensation for aberration and polarization distortions of the wave front,” Sov. J. Quantum Electron. 22, 800–802 (1992) [Kvant. Elektron. (Moscow) 19, 862–864 (1992)].
[CrossRef]

E. A. Lundstrom, “Waveplate for correcting thermally induced stress birefringence in solid state lasers,” U.S. patent 4, 408, 334 (October 4, 1983).

E. Khazanov, N. Andreev, O. Palashov, and D. Reitze, “Use of mechanical stress in design of a Faraday isolator for high power radiation,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 321–322.

W. Koechner, Solid-State Laser Engineering (Springer, New York, 1999).

J. F. Nye, Physical Properties of Crystals (Oxford University, London, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Uniaxial crystal in a convergent beam: Eo,e, ordinary and extraordinary polarization; θ, angle between crystal optical axis and wave vector; r, polar radius.

Fig. 2
Fig. 2

Experimental setup: CW, calcite wedges; S, sample; PMs, powermeters; QR, 90° quartz rotator; Ls, lenses.

Fig. 3
Fig. 3

Intensity distribution in (a) laser beam and (b) depolarized beam; (c) theoretical dependences of δc (1), -δa (2), δa+δc (3), Gaussian beam intensity (4), and depolarized beam intensity (5) versus radius.

Fig. 4
Fig. 4

Depolarization versus power dependences: noncompensated γa (squares, curve 1) and compensated γ at F=46 cm (open circles, curve 2), F=33.5 cm (triangles, curve 3), and F=21 cm (crosses, curve 4). Filled circles show γ(Pa) when the pinhole cuts the beam to a 1/e2 intensity level and F=46 cm is used.

Fig. 5
Fig. 5

Dependences Gmax versus ρ at pa=3 (1), pa=1 (2), and pa1 (3). The last dependence is plotted by formula (6).

Fig. 6
Fig. 6

Double-pass depolarization without compensation γ2a (1), with λ/4 compensation6 γ4 (2), and with compensation by suggested technique γ2 min (3). Thin curves correspond to ρ=1, dashed curves to ρ=0.25, and thick curves to ρ=0.09.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

γ=1πr0  sin2δa+δc2sin2(2φ)exp-r2r02ds,
δa=4pa1-rp21-exp(-r2/rρ2)r21-exp-2r02rp2-1,
pa=1+2ξa12Qaλκa1-exp-2r02rp2Pa,
ξa=2pa44pa11-pa12,
Qa=1LadLadTna341+νa1-νa(pa11-pa12),
1-exp-2r02rp2Pa
δc=2πLλ(ne-no)θ2=2πLλ(ne-no)4r2F2(no+ne)2,
γ=120 sin2ρy-1+exp(-ρy)[1-exp(-2ρ)]ρy2pa+ypc×exp(-y)dy,
pc=πLλro2F2nonne2(ne-no),ρ=r02rp2.
γa=γ(pc=0).
γ2(pa)=γ(2pa),γ2a(pa)=γa(2pa).
γ2a(ρ0)=pa21+4pa2.
Gmax(pa1)=1-12(1+ρ)2A1(ρ)-1,
A1(ρ)=0ρy-1+exp(-ρy)ρ2y2 exp(-y)dy,
γ4=1πr02  sin4δa2sin2(4φ)exp-r2r0ds.
γ4=34pa4(pa2+1)(4pa2+1).

Metrics