Abstract

We discuss the properties of composite (or vector) spatial optical solitons created by the incoherent interaction of two optical beams and associated with higher-order modes guided by a soliton-induced waveguide in a bulk medium. Such stationary (2+1)-dimensional self-trapped localized structures include, in particular, vortex- and dipole-mode vector solitons and also incorporate higher-order multipole spatial solitons in a bulk medium, such as quadrupole solitons and necklace-type composite beams. We overview our theoretical and experimental results for the structure, formation, and stability of these self-trapped composite optical beams and also discuss the effects of anisotropy and of the nonlocality of the photorefractive nonlinearity on their properties. Additionally, we demonstrate, analytically and experimentally, that an array of the dipole-mode vector solitons can be generated as a result of the transverse instability of a quasi-one-dimensional two-hump soliton stripe in a saturable nonlinear optical medium.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription