Abstract

We report picosecond pulsed experiments and numerical simulations of spatially induced modulational instability, which we used to form stable periodic arrays of bright soliton beams in a planar Kerr-like CS2 waveguide. We have found that the generation stage of these arrays is accurately described by the usual nonlinear Schrödinger wave equation, whereas the temporal dynamics of the nonlinearity is beneficial for subsequent stable propagation of the soliton arrays. In the picosecond regime the finite molecular relaxation time of the reorientational nonlinear index inhibits the Fermi–Pasta–Ulam recurrence predicted for an instantaneous Kerr nonlinearity. Moreover, the inhibition is associated with a novel spatiotemporal dynamics confirmed by numeric and streak-camera recordings.

© 2002 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription