M. Haelterman and A. P. Sheppard, “Vector soliton associated with polarization modulational instability in the normal dispersion regime,” Phys. Rev. E 49, 3389–3399 (1994).

[CrossRef]

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10, 28–35 (1992).

[CrossRef]

M. Jinno and T. Matsumoto, “Nonlinear Sagnac interferometer switch and its applications,” IEEE J. Quantum Electron. 28, 875–882 (1992).

[CrossRef]

N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Exact first-order solutions of the nonlinear Schödinger equation,” Theor. Math. Phys. 72, 809–818 (1987) [Teor. Mat. Fiz. 72, 183–196 (1987)].

[CrossRef]

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986).

[CrossRef]
[PubMed]

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062–1072 (1982).

[CrossRef]

D. Cotter, “Suppression of stimulated Brillouin scattering during transmission of high-power narrowband laser light in monomode fibre,” Electron. Lett. 18, 638–640 (1982).

[CrossRef]

P. Henrotay, “Periodic solutions and recurrence for nonlinear Schrödinger equation: a Fourier-mode approach,” J. Mec. 20, 159–168 (1981).

E. Infeld, “Quantitive theory of the Fermi–Pasta–Ulam recurrence in the nonlinear Schrödinger equation,” Phys. Rev. Lett. 47, 717–718 (1981).

[CrossRef]

H. C. Yuen, J. Warren, and E. Ferguson, “Relationship between Benjamin–Feir instability and recurrence in the nonlinear Schrödinger equation,” Phys. Fluids 21, 1275–1278 (1978).

[CrossRef]

B. M. Lake, H. C. Yuen, H. Rungaldier, and W. E. Ferguson, “Nonlinear deep-water waves: theory and experiment. 2. Evolution of a continuous wave train,” J. Fluid Mech. 83, 49–74 (1977).

[CrossRef]

F. D. Tappert and C. N. Judice, “Recurrence of nonlinear ion acousitc waves,” Phys. Rev. Lett. 29, 1308–1311 (1972).

[CrossRef]

T. Taniuti and H. Washimi, “Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma,” Phys. Rev. Lett. 21, 209–212 (1968).

[CrossRef]

T. B. Benjamin and J. E. Feir, “The disintegration of wave trains on deep water. 1. Theory,” J. Fluid Mech. 27, 417–430 (1967).

[CrossRef]

T. B. Benjamin, “Instability of periodic wavetrains in nonlinear dispersive systems,” Proc. R. Soc. London Ser. A 299, 59–75 (1967).

[CrossRef]

N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Exact first-order solutions of the nonlinear Schödinger equation,” Theor. Math. Phys. 72, 809–818 (1987) [Teor. Mat. Fiz. 72, 183–196 (1987)].

[CrossRef]

T. B. Benjamin and J. E. Feir, “The disintegration of wave trains on deep water. 1. Theory,” J. Fluid Mech. 27, 417–430 (1967).

[CrossRef]

T. B. Benjamin, “Instability of periodic wavetrains in nonlinear dispersive systems,” Proc. R. Soc. London Ser. A 299, 59–75 (1967).

[CrossRef]

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10, 28–35 (1992).

[CrossRef]

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062–1072 (1982).

[CrossRef]

D. Cotter, “Suppression of stimulated Brillouin scattering during transmission of high-power narrowband laser light in monomode fibre,” Electron. Lett. 18, 638–640 (1982).

[CrossRef]

N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Exact first-order solutions of the nonlinear Schödinger equation,” Theor. Math. Phys. 72, 809–818 (1987) [Teor. Mat. Fiz. 72, 183–196 (1987)].

[CrossRef]

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10, 28–35 (1992).

[CrossRef]

T. B. Benjamin and J. E. Feir, “The disintegration of wave trains on deep water. 1. Theory,” J. Fluid Mech. 27, 417–430 (1967).

[CrossRef]

H. C. Yuen, J. Warren, and E. Ferguson, “Relationship between Benjamin–Feir instability and recurrence in the nonlinear Schrödinger equation,” Phys. Fluids 21, 1275–1278 (1978).

[CrossRef]

B. M. Lake, H. C. Yuen, H. Rungaldier, and W. E. Ferguson, “Nonlinear deep-water waves: theory and experiment. 2. Evolution of a continuous wave train,” J. Fluid Mech. 83, 49–74 (1977).

[CrossRef]

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10, 28–35 (1992).

[CrossRef]

M. Haelterman and A. P. Sheppard, “Vector soliton associated with polarization modulational instability in the normal dispersion regime,” Phys. Rev. E 49, 3389–3399 (1994).

[CrossRef]

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Nonlinear dynamics of polarization-modulation instability in optical fiber,” J. Opt. Soc. Am. B 14, 3403–3411 (1997).

[CrossRef]

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulation instability in weakly birefringent fibers,” Opt. Lett. 20, 866–868 (1995).

[CrossRef]
[PubMed]

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986).

[CrossRef]
[PubMed]

P. Henrotay, “Periodic solutions and recurrence for nonlinear Schrödinger equation: a Fourier-mode approach,” J. Mec. 20, 159–168 (1981).

E. Infeld, “Quantitive theory of the Fermi–Pasta–Ulam recurrence in the nonlinear Schrödinger equation,” Phys. Rev. Lett. 47, 717–718 (1981).

[CrossRef]

M. Jinno and T. Matsumoto, “Nonlinear Sagnac interferometer switch and its applications,” IEEE J. Quantum Electron. 28, 875–882 (1992).

[CrossRef]

F. D. Tappert and C. N. Judice, “Recurrence of nonlinear ion acousitc waves,” Phys. Rev. Lett. 29, 1308–1311 (1972).

[CrossRef]

N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Exact first-order solutions of the nonlinear Schödinger equation,” Theor. Math. Phys. 72, 809–818 (1987) [Teor. Mat. Fiz. 72, 183–196 (1987)].

[CrossRef]

B. M. Lake, H. C. Yuen, H. Rungaldier, and W. E. Ferguson, “Nonlinear deep-water waves: theory and experiment. 2. Evolution of a continuous wave train,” J. Fluid Mech. 83, 49–74 (1977).

[CrossRef]

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Nonlinear dynamics of polarization-modulation instability in optical fiber,” J. Opt. Soc. Am. B 14, 3403–3411 (1997).

[CrossRef]

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulation instability in weakly birefringent fibers,” Opt. Lett. 20, 866–868 (1995).

[CrossRef]
[PubMed]

M. Jinno and T. Matsumoto, “Nonlinear Sagnac interferometer switch and its applications,” IEEE J. Quantum Electron. 28, 875–882 (1992).

[CrossRef]

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10, 28–35 (1992).

[CrossRef]

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Nonlinear dynamics of polarization-modulation instability in optical fiber,” J. Opt. Soc. Am. B 14, 3403–3411 (1997).

[CrossRef]

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulation instability in weakly birefringent fibers,” Opt. Lett. 20, 866–868 (1995).

[CrossRef]
[PubMed]

B. M. Lake, H. C. Yuen, H. Rungaldier, and W. E. Ferguson, “Nonlinear deep-water waves: theory and experiment. 2. Evolution of a continuous wave train,” J. Fluid Mech. 83, 49–74 (1977).

[CrossRef]

M. Haelterman and A. P. Sheppard, “Vector soliton associated with polarization modulational instability in the normal dispersion regime,” Phys. Rev. E 49, 3389–3399 (1994).

[CrossRef]

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062–1072 (1982).

[CrossRef]

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986).

[CrossRef]
[PubMed]

T. Taniuti and H. Washimi, “Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma,” Phys. Rev. Lett. 21, 209–212 (1968).

[CrossRef]

F. D. Tappert and C. N. Judice, “Recurrence of nonlinear ion acousitc waves,” Phys. Rev. Lett. 29, 1308–1311 (1972).

[CrossRef]

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986).

[CrossRef]
[PubMed]

H. C. Yuen, J. Warren, and E. Ferguson, “Relationship between Benjamin–Feir instability and recurrence in the nonlinear Schrödinger equation,” Phys. Fluids 21, 1275–1278 (1978).

[CrossRef]

T. Taniuti and H. Washimi, “Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma,” Phys. Rev. Lett. 21, 209–212 (1968).

[CrossRef]

H. C. Yuen, J. Warren, and E. Ferguson, “Relationship between Benjamin–Feir instability and recurrence in the nonlinear Schrödinger equation,” Phys. Fluids 21, 1275–1278 (1978).

[CrossRef]

B. M. Lake, H. C. Yuen, H. Rungaldier, and W. E. Ferguson, “Nonlinear deep-water waves: theory and experiment. 2. Evolution of a continuous wave train,” J. Fluid Mech. 83, 49–74 (1977).

[CrossRef]

D. Cotter, “Suppression of stimulated Brillouin scattering during transmission of high-power narrowband laser light in monomode fibre,” Electron. Lett. 18, 638–640 (1982).

[CrossRef]

M. Jinno and T. Matsumoto, “Nonlinear Sagnac interferometer switch and its applications,” IEEE J. Quantum Electron. 28, 875–882 (1992).

[CrossRef]

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062–1072 (1982).

[CrossRef]

T. B. Benjamin and J. E. Feir, “The disintegration of wave trains on deep water. 1. Theory,” J. Fluid Mech. 27, 417–430 (1967).

[CrossRef]

B. M. Lake, H. C. Yuen, H. Rungaldier, and W. E. Ferguson, “Nonlinear deep-water waves: theory and experiment. 2. Evolution of a continuous wave train,” J. Fluid Mech. 83, 49–74 (1977).

[CrossRef]

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10, 28–35 (1992).

[CrossRef]

P. Henrotay, “Periodic solutions and recurrence for nonlinear Schrödinger equation: a Fourier-mode approach,” J. Mec. 20, 159–168 (1981).

N. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56–58 (1988).

[CrossRef]
[PubMed]

K. J. Blow, N. J. Doran, B. K. Nayar, and B. Nelson, “Two-wavelength operation of the nonlinear fiber loop mirror,” Opt. Lett. 15, 248–250 (1990).

[CrossRef]
[PubMed]

G. Cappellini and S. Trillo, “Energy conversion in degenerate four-photon mixing in birefringent fibers,” Opt. Lett. 16, 895–897 (1991).

[CrossRef]
[PubMed]

S. Trillo and S. Wabnitz, “Dynamics of the nonlinear modulation instability in optical fibers,” Opt. Lett. 16, 986–988 (1991).

[CrossRef]
[PubMed]

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulation instability in weakly birefringent fibers,” Opt. Lett. 20, 866–868 (1995).

[CrossRef]
[PubMed]

H. C. Yuen, J. Warren, and E. Ferguson, “Relationship between Benjamin–Feir instability and recurrence in the nonlinear Schrödinger equation,” Phys. Fluids 21, 1275–1278 (1978).

[CrossRef]

S. Wabnitz, “Modulational polarization instability of light in a nonlinear birefringent dispersive medium,” Phys. Rev. A 38, 2018–2021 (1988).

[CrossRef]
[PubMed]

M. Haelterman and A. P. Sheppard, “Vector soliton associated with polarization modulational instability in the normal dispersion regime,” Phys. Rev. E 49, 3389–3399 (1994).

[CrossRef]

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986).

[CrossRef]
[PubMed]

E. Infeld, “Quantitive theory of the Fermi–Pasta–Ulam recurrence in the nonlinear Schrödinger equation,” Phys. Rev. Lett. 47, 717–718 (1981).

[CrossRef]

T. Taniuti and H. Washimi, “Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma,” Phys. Rev. Lett. 21, 209–212 (1968).

[CrossRef]

F. D. Tappert and C. N. Judice, “Recurrence of nonlinear ion acousitc waves,” Phys. Rev. Lett. 29, 1308–1311 (1972).

[CrossRef]

T. B. Benjamin, “Instability of periodic wavetrains in nonlinear dispersive systems,” Proc. R. Soc. London Ser. A 299, 59–75 (1967).

[CrossRef]

N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Exact first-order solutions of the nonlinear Schödinger equation,” Theor. Math. Phys. 72, 809–818 (1987) [Teor. Mat. Fiz. 72, 183–196 (1987)].

[CrossRef]

N. N. Akhmediev and V. I. Korneev, “Modulation instability and periodic solutions of the nonlinear Schrödinger equation,” Theor. Math. Phys. 69, 1089–1093 (1986) [ Teor. Mat. Fiz. 69, 189–194 (1986)].

[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).

E. Fermi, J. Pasta, and H. C. Ulam, “Studies of nonlinear problems,” in Collected Papers of Enrico Fermi, E. Segrè, ed. (U. Chicago Press, Chicago, Ill., 1965), Vol. 2, pp. 977–988.