Abstract

We propose the use of self-defocusing nonlinearities to control nonlinear phase shifts in soliton fiber lasers. By analogy to dispersion management, we refer to this scheme as nonlinearity management. First we describe a map that can be regarded as a combination of nonlinearity management and dispersion management. The map is designed to support solitons in two segments of alternating sign of nonlinearity and dispersion. Analytical and numerical calculations demonstrate that this map can be essentially free of spectral-sideband generation. Suppressing the spectral sidebands should make possible pulse energies 100 times greater than those of existing soliton fiber lasers. We also discuss the less than ideal case of direct reduction of average nonlinearity by use of self-defocusing nonlinearity segments without optimizing dispersion. The second scheme has the advantage of easier implementation. Practical implementations with existing materials are discussed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription