Abstract

Pulse propagation in high-gain optical fiber amplifiers with normal group-velocity dispersion has been studied by self-similarity analysis of the nonlinear Schrödinger equation with gain. For an amplifier with a constant distributed gain, an exact asymptotic solution has been found that corresponds to a linearly chirped parabolic pulse that propagates self-similarly in the amplifier, subject to simple scaling rules. The evolution of an arbitrary input pulse to an asymptotic solution is associated with the development of low-amplitude wings on the parabolic pulse whose functional form has also been found by means of self-similarity analysis. These theoretical results have been confirmed with numerical simulations. A series of guidelines for the practical design of fiber amplifiers to operate in the asymptotic parabolic pulse regime has also been developed.

© 2002 Optical Society of America

Full Article  |  PDF Article
Related Articles
Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers

V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey
Opt. Lett. 25(24) 1753-1755 (2000)

Asymptotic characteristics of parabolic similariton pulses in optical fiber amplifiers

Christophe Finot, Guy Millot, and John M. Dudley
Opt. Lett. 29(21) 2533-2535 (2004)

Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime

Christophe Finot, Francesca Parmigiani, Periklis Petropoulos, and David J. Richardson
Opt. Express 14(8) 3161-3170 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (49)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription