Abstract

Experiments are presented showing that, under dual-frequency, circular polarization pumping, host modulational instability processes can be generated in a single-mode isotropic fiber by careful tuning of the frequency spacing between the pumps.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. E. Zakharov and S. Wabnitz, eds., Optical Solitons: Theoretical Challenges and Industrial Perspectives (Springer-Verlag, Berlin, 1998).
  2. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, 1995).
  3. A. Hasegawa and Y. Kodama, Solitons in Optical Communication (Oxford U. Press, New York, 1995).
  4. S. Wabnitz, “Modulational polarization instability of light in a nonlinear birefringent dispersive medium,” Phys. Rev. A 38, 2018–2021 (1988).
    [CrossRef] [PubMed]
  5. J. E. Rothenberg, “Modulational instability for normal dispersion,” Phys. Rev. A 42, 682–685 (1990).
    [CrossRef] [PubMed]
  6. P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, “Cross-phase modulational instability in high-birefringence fibers,” Opt. Commun. 78, 137–142 (1990).
    [CrossRef]
  7. P. Tchofo Dinda, G. Millot, E. Seve, and M. Haelterman, “Demonstration of nonlinear gap in the modulational instability spectra of wave propagation in highly birefringent fibers,” Opt. Lett. 21, 1640–1642 (1996).
    [CrossRef] [PubMed]
  8. G. Millot, S. Pitois, P. Tchofo Dinda, and M. Haelterman, “Observation of modulational instability induced by velocity-matched cross-phase modulational in a normally dispersive bimodal fiber,” Opt. Lett. 22, 1686–1688 (1997).
    [CrossRef]
  9. S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Beat frequencies of up to 16 THz generated via modulation insta-bility in birefringent fibers,” Opt. Commun. 115, 461–465 (1995).
    [CrossRef]
  10. E. Lantz, D. Gindre, H. Maillotte, and J. Monneret, “Phase matching for parametric amplification in a single-mode birefringent fiber: influence of the non-phase-matched waves,” J. Opt. Soc. Am. B 14, 116–125 (1997).
    [CrossRef]
  11. E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, “Modulational instability and critical regime in a highly birefringent fiber,” Phys. Rev. A 54, 3519–3534 (1996).
    [CrossRef] [PubMed]
  12. S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulational instability in weakly birefringent fibers,” Opt. Lett. 20, 866–868 (1995).
    [CrossRef] [PubMed]
  13. G. Millot, E. Seve, and S. Wabnitz, “Polarization symmetry breaking and pulse train generation from the modulation of light waves,” Phys. Rev. Lett. 79, 661–664 (1997).
    [CrossRef]
  14. P. Kockaert, M. Haelterman, S. Pitois, and G. Millot, “Isotropic polarization modulational instability and domain walls in spun fibers,” Appl. Phys. Lett. 75, 2873–2875 (1999).
    [CrossRef]

1999 (1)

P. Kockaert, M. Haelterman, S. Pitois, and G. Millot, “Isotropic polarization modulational instability and domain walls in spun fibers,” Appl. Phys. Lett. 75, 2873–2875 (1999).
[CrossRef]

1997 (3)

1996 (2)

P. Tchofo Dinda, G. Millot, E. Seve, and M. Haelterman, “Demonstration of nonlinear gap in the modulational instability spectra of wave propagation in highly birefringent fibers,” Opt. Lett. 21, 1640–1642 (1996).
[CrossRef] [PubMed]

E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, “Modulational instability and critical regime in a highly birefringent fiber,” Phys. Rev. A 54, 3519–3534 (1996).
[CrossRef] [PubMed]

1995 (2)

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulational instability in weakly birefringent fibers,” Opt. Lett. 20, 866–868 (1995).
[CrossRef] [PubMed]

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Beat frequencies of up to 16 THz generated via modulation insta-bility in birefringent fibers,” Opt. Commun. 115, 461–465 (1995).
[CrossRef]

1990 (2)

J. E. Rothenberg, “Modulational instability for normal dispersion,” Phys. Rev. A 42, 682–685 (1990).
[CrossRef] [PubMed]

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, “Cross-phase modulational instability in high-birefringence fibers,” Opt. Commun. 78, 137–142 (1990).
[CrossRef]

1988 (1)

S. Wabnitz, “Modulational polarization instability of light in a nonlinear birefringent dispersive medium,” Phys. Rev. A 38, 2018–2021 (1988).
[CrossRef] [PubMed]

Bilbault, J. M.

E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, “Modulational instability and critical regime in a highly birefringent fiber,” Phys. Rev. A 54, 3519–3534 (1996).
[CrossRef] [PubMed]

Dinda, P. Tchofo

Drummond, P. D.

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, “Cross-phase modulational instability in high-birefringence fibers,” Opt. Commun. 78, 137–142 (1990).
[CrossRef]

Dudley, J. M.

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, “Cross-phase modulational instability in high-birefringence fibers,” Opt. Commun. 78, 137–142 (1990).
[CrossRef]

Gindre, D.

Haelterman, M.

P. Kockaert, M. Haelterman, S. Pitois, and G. Millot, “Isotropic polarization modulational instability and domain walls in spun fibers,” Appl. Phys. Lett. 75, 2873–2875 (1999).
[CrossRef]

G. Millot, S. Pitois, P. Tchofo Dinda, and M. Haelterman, “Observation of modulational instability induced by velocity-matched cross-phase modulational in a normally dispersive bimodal fiber,” Opt. Lett. 22, 1686–1688 (1997).
[CrossRef]

P. Tchofo Dinda, G. Millot, E. Seve, and M. Haelterman, “Demonstration of nonlinear gap in the modulational instability spectra of wave propagation in highly birefringent fibers,” Opt. Lett. 21, 1640–1642 (1996).
[CrossRef] [PubMed]

E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, “Modulational instability and critical regime in a highly birefringent fiber,” Phys. Rev. A 54, 3519–3534 (1996).
[CrossRef] [PubMed]

Harvey, J. D.

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Beat frequencies of up to 16 THz generated via modulation insta-bility in birefringent fibers,” Opt. Commun. 115, 461–465 (1995).
[CrossRef]

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulational instability in weakly birefringent fibers,” Opt. Lett. 20, 866–868 (1995).
[CrossRef] [PubMed]

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, “Cross-phase modulational instability in high-birefringence fibers,” Opt. Commun. 78, 137–142 (1990).
[CrossRef]

Kennedy, T. A. B.

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, “Cross-phase modulational instability in high-birefringence fibers,” Opt. Commun. 78, 137–142 (1990).
[CrossRef]

Kockaert, P.

P. Kockaert, M. Haelterman, S. Pitois, and G. Millot, “Isotropic polarization modulational instability and domain walls in spun fibers,” Appl. Phys. Lett. 75, 2873–2875 (1999).
[CrossRef]

Lantz, E.

Leonhardt, R.

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulational instability in weakly birefringent fibers,” Opt. Lett. 20, 866–868 (1995).
[CrossRef] [PubMed]

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Beat frequencies of up to 16 THz generated via modulation insta-bility in birefringent fibers,” Opt. Commun. 115, 461–465 (1995).
[CrossRef]

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, “Cross-phase modulational instability in high-birefringence fibers,” Opt. Commun. 78, 137–142 (1990).
[CrossRef]

Maillotte, H.

Millot, G.

P. Kockaert, M. Haelterman, S. Pitois, and G. Millot, “Isotropic polarization modulational instability and domain walls in spun fibers,” Appl. Phys. Lett. 75, 2873–2875 (1999).
[CrossRef]

G. Millot, S. Pitois, P. Tchofo Dinda, and M. Haelterman, “Observation of modulational instability induced by velocity-matched cross-phase modulational in a normally dispersive bimodal fiber,” Opt. Lett. 22, 1686–1688 (1997).
[CrossRef]

G. Millot, E. Seve, and S. Wabnitz, “Polarization symmetry breaking and pulse train generation from the modulation of light waves,” Phys. Rev. Lett. 79, 661–664 (1997).
[CrossRef]

E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, “Modulational instability and critical regime in a highly birefringent fiber,” Phys. Rev. A 54, 3519–3534 (1996).
[CrossRef] [PubMed]

P. Tchofo Dinda, G. Millot, E. Seve, and M. Haelterman, “Demonstration of nonlinear gap in the modulational instability spectra of wave propagation in highly birefringent fibers,” Opt. Lett. 21, 1640–1642 (1996).
[CrossRef] [PubMed]

Monneret, J.

Murdoch, S. G.

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulational instability in weakly birefringent fibers,” Opt. Lett. 20, 866–868 (1995).
[CrossRef] [PubMed]

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Beat frequencies of up to 16 THz generated via modulation insta-bility in birefringent fibers,” Opt. Commun. 115, 461–465 (1995).
[CrossRef]

Pitois, S.

P. Kockaert, M. Haelterman, S. Pitois, and G. Millot, “Isotropic polarization modulational instability and domain walls in spun fibers,” Appl. Phys. Lett. 75, 2873–2875 (1999).
[CrossRef]

G. Millot, S. Pitois, P. Tchofo Dinda, and M. Haelterman, “Observation of modulational instability induced by velocity-matched cross-phase modulational in a normally dispersive bimodal fiber,” Opt. Lett. 22, 1686–1688 (1997).
[CrossRef]

Remoissenet, M.

E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, “Modulational instability and critical regime in a highly birefringent fiber,” Phys. Rev. A 54, 3519–3534 (1996).
[CrossRef] [PubMed]

Rothenberg, J. E.

J. E. Rothenberg, “Modulational instability for normal dispersion,” Phys. Rev. A 42, 682–685 (1990).
[CrossRef] [PubMed]

Seve, E.

G. Millot, E. Seve, and S. Wabnitz, “Polarization symmetry breaking and pulse train generation from the modulation of light waves,” Phys. Rev. Lett. 79, 661–664 (1997).
[CrossRef]

P. Tchofo Dinda, G. Millot, E. Seve, and M. Haelterman, “Demonstration of nonlinear gap in the modulational instability spectra of wave propagation in highly birefringent fibers,” Opt. Lett. 21, 1640–1642 (1996).
[CrossRef] [PubMed]

E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, “Modulational instability and critical regime in a highly birefringent fiber,” Phys. Rev. A 54, 3519–3534 (1996).
[CrossRef] [PubMed]

Wabnitz, S.

G. Millot, E. Seve, and S. Wabnitz, “Polarization symmetry breaking and pulse train generation from the modulation of light waves,” Phys. Rev. Lett. 79, 661–664 (1997).
[CrossRef]

S. Wabnitz, “Modulational polarization instability of light in a nonlinear birefringent dispersive medium,” Phys. Rev. A 38, 2018–2021 (1988).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

P. Kockaert, M. Haelterman, S. Pitois, and G. Millot, “Isotropic polarization modulational instability and domain walls in spun fibers,” Appl. Phys. Lett. 75, 2873–2875 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, “Cross-phase modulational instability in high-birefringence fibers,” Opt. Commun. 78, 137–142 (1990).
[CrossRef]

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Beat frequencies of up to 16 THz generated via modulation insta-bility in birefringent fibers,” Opt. Commun. 115, 461–465 (1995).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (3)

E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, “Modulational instability and critical regime in a highly birefringent fiber,” Phys. Rev. A 54, 3519–3534 (1996).
[CrossRef] [PubMed]

S. Wabnitz, “Modulational polarization instability of light in a nonlinear birefringent dispersive medium,” Phys. Rev. A 38, 2018–2021 (1988).
[CrossRef] [PubMed]

J. E. Rothenberg, “Modulational instability for normal dispersion,” Phys. Rev. A 42, 682–685 (1990).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

G. Millot, E. Seve, and S. Wabnitz, “Polarization symmetry breaking and pulse train generation from the modulation of light waves,” Phys. Rev. Lett. 79, 661–664 (1997).
[CrossRef]

Other (3)

V. E. Zakharov and S. Wabnitz, eds., Optical Solitons: Theoretical Challenges and Industrial Perspectives (Springer-Verlag, Berlin, 1998).

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, 1995).

A. Hasegawa and Y. Kodama, Solitons in Optical Communication (Oxford U. Press, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the frequency dependence of the wave vectors for the two modes propagating in the fiber: (a) isotropic fiber; (b1), (b2) birefringent fibers with positive and negative GVM, respectively. (ω1, ω2) and (ωPF, ωPS) represent the frequency components of the pump field. I (II) indicates the phase-matched (non-phase-matched) sidebands.

Fig. 2
Fig. 2

Linear gain spectrum for a dual-frequency pumping system as a function of the frequency separation between the pumps; ω2=522 THz, ω1=ω2-Δω. Here β2=60 ps2/km and γ=24 W-1 km-1; P1=P2=100 W.

Fig. 3
Fig. 3

Plots showing MI spectra in the isotropic fiber for Δω=2 THz and various values of the pump power. (a1), (b1) P1=P2=1 W; (a2), (b2) P1=P2=10 W; (a3), (b3) P1=P2=50 W; (a4), (b4) P1=P2=100 W.

Fig. 4
Fig. 4

Plots showing MI spectra in the isotropic fiber for Δω=0.17 THz and various values of the pump power. (a1), (b1) P1=P2=1 W; (a2), (b2) P1=P2=10 W; (a3), (b3) P1=P2=50 W; (a4), (b4) P1=P2=100 W.

Fig. 5
Fig. 5

Theoretical output spectra showing a process of PMI. ω1=ω2=ω0=518.64 THz. At the fiber input, one injects a linearly polarized pump beam of 200 W [which corresponds to P1(ω0)=P2(ω0)=100 W]. (a) Intensity spectrum in the polarization direction of the pump; (b) intensity spectrum in the orthogonal direction with respect to the pump.

Fig. 6
Fig. 6

Schematic diagram of the experimental setup used for recording the MI spectra. P: Glan Foucault polarizers, MOs, microscopic objectives; P1, P2, pump beam powers.

Fig. 7
Fig. 7

Experimental output spectra measured for a dual-frequency pumping system, with Δω=1.37 THz, ω2=522 THz.

Fig. 8
Fig. 8

Experimental output spectra measured for Δω=0.32 THz.

Fig. 9
Fig. 9

Experimental output spectra measured for Δω=0.167 THz.

Fig. 10
Fig. 10

Experimental spectra showing a PMI process. Here ω1=ω2=ω0=518.64 THz. (a) Intensity spectrum in the polarization direction of the pump; (b) intensity spectrum in the orthogonal direction with respect to the pump. R, pump residue.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A+z+12iβ22A+t2=i(2γ/3)(|A+|2+2|A-|2)A+,
A-z+12iβ22A-t2=i(2γ/3)(|A-|2+2|A+|2)A-,
δ1vgS-1vgF.
δ=δ0+(ω2-ω1)β.
Ωopt=δ/β=δ0/β+Δω,
Ω=[2γP0/(3β2)]1/2.

Metrics