Abstract

The high-resolution spectroscopic and emission-decay investigation of highly concentrated (up to 9 at. %) Nd:YAG ceramics indicates that the state of the Nd3+ ion in these materials is similar to that of diluted crystals. The increased relative intensities of the spectral satellites connected with ensembles of Nd ions in near-lattice sites at high Nd concentrations CNd is consistent with the predictions of the statistics of the random placement of these ions at the available lattice sites. The room-temperature transmission spectra show that the resonant pump in the emitting level  4F3/2, including the hot-band pump Z2R1 and Z3R2, can be efficient at high CNd, with important effects in the reduction of the pump quantum defect and of the corresponding heat generation under the pump. The accelerated  4F3/2 emission decay at high CNd is consistent with the increased efficiency of the energy transfer, including the contribution of migration-assisted transfer processes. The calculated emission quantum efficiency η and the figure of merit ηCNd indicate that the concentrated Nd:YAG components can be used for construction of efficient solid-state lasers in free-generation or low-storage regimes, and, coupled with the hot-band resonant pump in the emitting level, they could enable the scaling of Nd:YAG lasers to high powers.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhou, “Growth of high quality large Nd:YAG crystals by temperature gradient technique (TGT),” J. Cryst. Growth 78, 31–35 (1986).
    [CrossRef]
  2. P. Gavrilovic, M. S. O’Neill, K. Meehan, J. H. Zarrabi, S. Singh, and W. H. Grodkiewicz, “Temperature-tunable, single frequency microcavity lasers fabricated from flux-grown YCeAG:Nd,” Appl. Phys. Lett. 60, 1652–1654 (1992).
    [CrossRef]
  3. B. Ferrand, D. Pelenc, I. Chartier, and Ch. Wyon, “Growth by LPE of Nd:YAG single crystal layers for waveguide laser applications,” J. Cryst. Growth 128, 965–969 (1993).
    [CrossRef]
  4. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
    [CrossRef]
  5. I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
    [CrossRef]
  6. J. Lu, M. Prabhu, J. C. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
    [CrossRef]
  7. P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, J. E. Williams, W. H. Grodkiewicz, and B. Bruce, “High-power, single frequency diode-pumped Nd:YAG microcavity lasers at 1.3 μm,” Appl. Phys. Lett. 65, 1620–1622 (1994).
    [CrossRef]
  8. Y. Urata, R. Hua, S. Wada, H. Tashiro, and P. Deng, “Characterization of highly neodymium doped yttrium aluminum garnet crystals,” in Advanced Solid State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 494–500.
  9. V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, and P. Nanau, “High-resolution optical spectroscopy of Nd:YAG: a test for structural and distribution models,” Phys. Rev. B 51, 8–17 (1995).
    [CrossRef]
  10. A. Lupei, V. Lupei, and E. Osiac, “Spectral and dynamical effects of octahedral impurities on RE3+ in garnets,” J. Phys. Condens. Matter 10, 9701–9706 (1998).
    [CrossRef]
  11. S. Geller, G. P. Espinosa, L. D. Fullmer, and P. B. Crandall, “Thermal expansion of some garnets,” Mater. Res. Bull. 7, 1219–1224 (1972).
    [CrossRef]
  12. R. Newman, “Excitation of the Nd3+ fluorescence in CaWO4 by recombination radiation in GaAs,” J. Appl. Phys. 34, 437 (1963).
    [CrossRef]
  13. M. Ross, “YAG laser operation by semiconductor laser pumping,” Proc. IEEE 56, 196–197 (1968).
    [CrossRef]
  14. L. J. Rosenkrantz, “Ga As diode-pumped Nd:YAG laser,” J. Appl. Phys. 43, 4603–4605 (1972).
    [CrossRef]
  15. R. Lavi and S. Jackel, “Thermally boosted pumping of neodymium lasers,” Appl. Opt. 39, 3093–3098 (2000).
    [CrossRef]
  16. V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Iketsue, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79, 590–592 (2001).
    [CrossRef]
  17. T. Kushida and J. E. Geusic, “Optical refrigeration in Nd-doped yttrium aluminum garnet,” Phys. Rev. Lett. 21, 1172–1175 (1968).
    [CrossRef]
  18. V. Lupei and A. Lupei, “Emission dynamics of 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61, 8087–8098 (2000).
    [CrossRef]
  19. S. I. Golubov and Yu. K. Konobeev, “Procedure of averaging in the theory of resonance transfer of electron excitation energy,” Sov. Phys. Solid State 13, 2679–2682 (1972).
  20. V. P. Sakun, “Kinetics of energy transfer in a crystal,” Sov. Phys. Solid State 14, 1906–1914 (1973).
  21. Th. Forster, “Zwischenmolekulare Energiewanderung and Fluoreszenz,” Ann. Phys. (Leipzig) 2, 55–75 (1948).
    [CrossRef]
  22. D. L. Dexter, “Theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
    [CrossRef]
  23. M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
    [CrossRef]
  24. A. I. Burshtein, “Concentration quenching of noncoherent excitation in solutions,” Sov. Phys. Usp. 27, 579–606 (1984).
    [CrossRef]
  25. V. Lupei, A. Lupei, S. Georgescu, and C. Ionescu, “Energy transfer between Nd3+ ions in YAG,” Opt. Commun. 60, 59–63 (1986).
    [CrossRef]
  26. A. G. Avanesov, B. I. Denker, V. V. Osiko, S. S. Pirumov, V. P. Sakun, V. A. Smirnov, and I. A. Shcherbakov, “Kinetics of non-radiative relaxation from the upper active level of neodymium in a Y3Al5O12 crystal,” Sov. J. Quantum Electron. 12, 744–747 (1982).
    [CrossRef]
  27. K. K. Deb, R. G. Buser, and J. Paul, “Decay kinetics of 4F3/2 fluorescence of Nd3+ in YAG at room temperature,” Appl. Opt. 20, 1203–1206 (1981).
    [CrossRef] [PubMed]
  28. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
    [CrossRef]
  29. I. Shoji, Y. Sato, S. Kurimura, T. Taira, A. Ikesue, and K. Yoshida, “Thermal birefringence in Nd:YAG ceramics,” presented at the Advanced Solid-State Lasers Conference, Seattle, Wash., January 28–31, 2001, paper ME 14–1.

2001 (1)

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Iketsue, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79, 590–592 (2001).
[CrossRef]

2000 (4)

V. Lupei and A. Lupei, “Emission dynamics of 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61, 8087–8098 (2000).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

J. Lu, M. Prabhu, J. C. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

R. Lavi and S. Jackel, “Thermally boosted pumping of neodymium lasers,” Appl. Opt. 39, 3093–3098 (2000).
[CrossRef]

1998 (1)

A. Lupei, V. Lupei, and E. Osiac, “Spectral and dynamical effects of octahedral impurities on RE3+ in garnets,” J. Phys. Condens. Matter 10, 9701–9706 (1998).
[CrossRef]

1995 (2)

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[CrossRef]

V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, and P. Nanau, “High-resolution optical spectroscopy of Nd:YAG: a test for structural and distribution models,” Phys. Rev. B 51, 8–17 (1995).
[CrossRef]

1994 (1)

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, J. E. Williams, W. H. Grodkiewicz, and B. Bruce, “High-power, single frequency diode-pumped Nd:YAG microcavity lasers at 1.3 μm,” Appl. Phys. Lett. 65, 1620–1622 (1994).
[CrossRef]

1993 (2)

B. Ferrand, D. Pelenc, I. Chartier, and Ch. Wyon, “Growth by LPE of Nd:YAG single crystal layers for waveguide laser applications,” J. Cryst. Growth 128, 965–969 (1993).
[CrossRef]

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[CrossRef]

1992 (1)

P. Gavrilovic, M. S. O’Neill, K. Meehan, J. H. Zarrabi, S. Singh, and W. H. Grodkiewicz, “Temperature-tunable, single frequency microcavity lasers fabricated from flux-grown YCeAG:Nd,” Appl. Phys. Lett. 60, 1652–1654 (1992).
[CrossRef]

1986 (2)

Y. Zhou, “Growth of high quality large Nd:YAG crystals by temperature gradient technique (TGT),” J. Cryst. Growth 78, 31–35 (1986).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, and C. Ionescu, “Energy transfer between Nd3+ ions in YAG,” Opt. Commun. 60, 59–63 (1986).
[CrossRef]

1984 (1)

A. I. Burshtein, “Concentration quenching of noncoherent excitation in solutions,” Sov. Phys. Usp. 27, 579–606 (1984).
[CrossRef]

1982 (1)

A. G. Avanesov, B. I. Denker, V. V. Osiko, S. S. Pirumov, V. P. Sakun, V. A. Smirnov, and I. A. Shcherbakov, “Kinetics of non-radiative relaxation from the upper active level of neodymium in a Y3Al5O12 crystal,” Sov. J. Quantum Electron. 12, 744–747 (1982).
[CrossRef]

1981 (1)

1973 (1)

V. P. Sakun, “Kinetics of energy transfer in a crystal,” Sov. Phys. Solid State 14, 1906–1914 (1973).

1972 (3)

S. I. Golubov and Yu. K. Konobeev, “Procedure of averaging in the theory of resonance transfer of electron excitation energy,” Sov. Phys. Solid State 13, 2679–2682 (1972).

S. Geller, G. P. Espinosa, L. D. Fullmer, and P. B. Crandall, “Thermal expansion of some garnets,” Mater. Res. Bull. 7, 1219–1224 (1972).
[CrossRef]

L. J. Rosenkrantz, “Ga As diode-pumped Nd:YAG laser,” J. Appl. Phys. 43, 4603–4605 (1972).
[CrossRef]

1968 (2)

M. Ross, “YAG laser operation by semiconductor laser pumping,” Proc. IEEE 56, 196–197 (1968).
[CrossRef]

T. Kushida and J. E. Geusic, “Optical refrigeration in Nd-doped yttrium aluminum garnet,” Phys. Rev. Lett. 21, 1172–1175 (1968).
[CrossRef]

1965 (1)

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
[CrossRef]

1963 (1)

R. Newman, “Excitation of the Nd3+ fluorescence in CaWO4 by recombination radiation in GaAs,” J. Appl. Phys. 34, 437 (1963).
[CrossRef]

1953 (1)

D. L. Dexter, “Theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

1948 (1)

Th. Forster, “Zwischenmolekulare Energiewanderung and Fluoreszenz,” Ann. Phys. (Leipzig) 2, 55–75 (1948).
[CrossRef]

Avanesov, A. G.

A. G. Avanesov, B. I. Denker, V. V. Osiko, S. S. Pirumov, V. P. Sakun, V. A. Smirnov, and I. A. Shcherbakov, “Kinetics of non-radiative relaxation from the upper active level of neodymium in a Y3Al5O12 crystal,” Sov. J. Quantum Electron. 12, 744–747 (1982).
[CrossRef]

Bruce, B.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, J. E. Williams, W. H. Grodkiewicz, and B. Bruce, “High-power, single frequency diode-pumped Nd:YAG microcavity lasers at 1.3 μm,” Appl. Phys. Lett. 65, 1620–1622 (1994).
[CrossRef]

Burshtein, A. I.

A. I. Burshtein, “Concentration quenching of noncoherent excitation in solutions,” Sov. Phys. Usp. 27, 579–606 (1984).
[CrossRef]

Buser, R. G.

Chartier, I.

B. Ferrand, D. Pelenc, I. Chartier, and Ch. Wyon, “Growth by LPE of Nd:YAG single crystal layers for waveguide laser applications,” J. Cryst. Growth 128, 965–969 (1993).
[CrossRef]

Crandall, P. B.

S. Geller, G. P. Espinosa, L. D. Fullmer, and P. B. Crandall, “Thermal expansion of some garnets,” Mater. Res. Bull. 7, 1219–1224 (1972).
[CrossRef]

Deb, K. K.

Denker, B. I.

A. G. Avanesov, B. I. Denker, V. V. Osiko, S. S. Pirumov, V. P. Sakun, V. A. Smirnov, and I. A. Shcherbakov, “Kinetics of non-radiative relaxation from the upper active level of neodymium in a Y3Al5O12 crystal,” Sov. J. Quantum Electron. 12, 744–747 (1982).
[CrossRef]

Dexter, D. L.

D. L. Dexter, “Theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

Espinosa, G. P.

S. Geller, G. P. Espinosa, L. D. Fullmer, and P. B. Crandall, “Thermal expansion of some garnets,” Mater. Res. Bull. 7, 1219–1224 (1972).
[CrossRef]

Fan, T. Y.

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[CrossRef]

Ferrand, B.

B. Ferrand, D. Pelenc, I. Chartier, and Ch. Wyon, “Growth by LPE of Nd:YAG single crystal layers for waveguide laser applications,” J. Cryst. Growth 128, 965–969 (1993).
[CrossRef]

Forster, Th.

Th. Forster, “Zwischenmolekulare Energiewanderung and Fluoreszenz,” Ann. Phys. (Leipzig) 2, 55–75 (1948).
[CrossRef]

Fullmer, L. D.

S. Geller, G. P. Espinosa, L. D. Fullmer, and P. B. Crandall, “Thermal expansion of some garnets,” Mater. Res. Bull. 7, 1219–1224 (1972).
[CrossRef]

Gavrilovic, P.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, J. E. Williams, W. H. Grodkiewicz, and B. Bruce, “High-power, single frequency diode-pumped Nd:YAG microcavity lasers at 1.3 μm,” Appl. Phys. Lett. 65, 1620–1622 (1994).
[CrossRef]

P. Gavrilovic, M. S. O’Neill, K. Meehan, J. H. Zarrabi, S. Singh, and W. H. Grodkiewicz, “Temperature-tunable, single frequency microcavity lasers fabricated from flux-grown YCeAG:Nd,” Appl. Phys. Lett. 60, 1652–1654 (1992).
[CrossRef]

Geller, S.

S. Geller, G. P. Espinosa, L. D. Fullmer, and P. B. Crandall, “Thermal expansion of some garnets,” Mater. Res. Bull. 7, 1219–1224 (1972).
[CrossRef]

Georgescu, S.

V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, and P. Nanau, “High-resolution optical spectroscopy of Nd:YAG: a test for structural and distribution models,” Phys. Rev. B 51, 8–17 (1995).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, and C. Ionescu, “Energy transfer between Nd3+ ions in YAG,” Opt. Commun. 60, 59–63 (1986).
[CrossRef]

Geusic, J. E.

T. Kushida and J. E. Geusic, “Optical refrigeration in Nd-doped yttrium aluminum garnet,” Phys. Rev. Lett. 21, 1172–1175 (1968).
[CrossRef]

Golubov, S. I.

S. I. Golubov and Yu. K. Konobeev, “Procedure of averaging in the theory of resonance transfer of electron excitation energy,” Sov. Phys. Solid State 13, 2679–2682 (1972).

Grodkiewicz, W. H.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, J. E. Williams, W. H. Grodkiewicz, and B. Bruce, “High-power, single frequency diode-pumped Nd:YAG microcavity lasers at 1.3 μm,” Appl. Phys. Lett. 65, 1620–1622 (1994).
[CrossRef]

P. Gavrilovic, M. S. O’Neill, K. Meehan, J. H. Zarrabi, S. Singh, and W. H. Grodkiewicz, “Temperature-tunable, single frequency microcavity lasers fabricated from flux-grown YCeAG:Nd,” Appl. Phys. Lett. 60, 1652–1654 (1992).
[CrossRef]

Hirayama, F.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
[CrossRef]

Ikesue, A.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[CrossRef]

Iketsue, A.

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Iketsue, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79, 590–592 (2001).
[CrossRef]

Inokuti, M.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
[CrossRef]

Ionescu, C.

V. Lupei, A. Lupei, S. Georgescu, and C. Ionescu, “Energy transfer between Nd3+ ions in YAG,” Opt. Commun. 60, 59–63 (1986).
[CrossRef]

Jackel, S.

Kamata, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[CrossRef]

Kaminskii, A. A.

J. Lu, M. Prabhu, J. C. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Kinoshita, T.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[CrossRef]

Konobeev, Yu. K.

S. I. Golubov and Yu. K. Konobeev, “Procedure of averaging in the theory of resonance transfer of electron excitation energy,” Sov. Phys. Solid State 13, 2679–2682 (1972).

Kurimura, S.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

Kushida, T.

T. Kushida and J. E. Geusic, “Optical refrigeration in Nd-doped yttrium aluminum garnet,” Phys. Rev. Lett. 21, 1172–1175 (1968).
[CrossRef]

Lavi, R.

Li, C.

J. Lu, M. Prabhu, J. C. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Lu, J.

J. Lu, M. Prabhu, J. C. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Lupei, A.

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Iketsue, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79, 590–592 (2001).
[CrossRef]

V. Lupei and A. Lupei, “Emission dynamics of 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61, 8087–8098 (2000).
[CrossRef]

A. Lupei, V. Lupei, and E. Osiac, “Spectral and dynamical effects of octahedral impurities on RE3+ in garnets,” J. Phys. Condens. Matter 10, 9701–9706 (1998).
[CrossRef]

V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, and P. Nanau, “High-resolution optical spectroscopy of Nd:YAG: a test for structural and distribution models,” Phys. Rev. B 51, 8–17 (1995).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, and C. Ionescu, “Energy transfer between Nd3+ ions in YAG,” Opt. Commun. 60, 59–63 (1986).
[CrossRef]

Lupei, V.

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Iketsue, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79, 590–592 (2001).
[CrossRef]

V. Lupei and A. Lupei, “Emission dynamics of 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61, 8087–8098 (2000).
[CrossRef]

A. Lupei, V. Lupei, and E. Osiac, “Spectral and dynamical effects of octahedral impurities on RE3+ in garnets,” J. Phys. Condens. Matter 10, 9701–9706 (1998).
[CrossRef]

V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, and P. Nanau, “High-resolution optical spectroscopy of Nd:YAG: a test for structural and distribution models,” Phys. Rev. B 51, 8–17 (1995).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, and C. Ionescu, “Energy transfer between Nd3+ ions in YAG,” Opt. Commun. 60, 59–63 (1986).
[CrossRef]

Meehan, K.

P. Gavrilovic, M. S. O’Neill, K. Meehan, J. H. Zarrabi, S. Singh, and W. H. Grodkiewicz, “Temperature-tunable, single frequency microcavity lasers fabricated from flux-grown YCeAG:Nd,” Appl. Phys. Lett. 60, 1652–1654 (1992).
[CrossRef]

Nanau, P.

V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, and P. Nanau, “High-resolution optical spectroscopy of Nd:YAG: a test for structural and distribution models,” Phys. Rev. B 51, 8–17 (1995).
[CrossRef]

Newman, R.

R. Newman, “Excitation of the Nd3+ fluorescence in CaWO4 by recombination radiation in GaAs,” J. Appl. Phys. 34, 437 (1963).
[CrossRef]

O’Neill, M. S.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, J. E. Williams, W. H. Grodkiewicz, and B. Bruce, “High-power, single frequency diode-pumped Nd:YAG microcavity lasers at 1.3 μm,” Appl. Phys. Lett. 65, 1620–1622 (1994).
[CrossRef]

P. Gavrilovic, M. S. O’Neill, K. Meehan, J. H. Zarrabi, S. Singh, and W. H. Grodkiewicz, “Temperature-tunable, single frequency microcavity lasers fabricated from flux-grown YCeAG:Nd,” Appl. Phys. Lett. 60, 1652–1654 (1992).
[CrossRef]

Osiac, E.

A. Lupei, V. Lupei, and E. Osiac, “Spectral and dynamical effects of octahedral impurities on RE3+ in garnets,” J. Phys. Condens. Matter 10, 9701–9706 (1998).
[CrossRef]

Osiko, V. V.

A. G. Avanesov, B. I. Denker, V. V. Osiko, S. S. Pirumov, V. P. Sakun, V. A. Smirnov, and I. A. Shcherbakov, “Kinetics of non-radiative relaxation from the upper active level of neodymium in a Y3Al5O12 crystal,” Sov. J. Quantum Electron. 12, 744–747 (1982).
[CrossRef]

Paul, J.

Pavel, N.

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Iketsue, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79, 590–592 (2001).
[CrossRef]

Pelenc, D.

B. Ferrand, D. Pelenc, I. Chartier, and Ch. Wyon, “Growth by LPE of Nd:YAG single crystal layers for waveguide laser applications,” J. Cryst. Growth 128, 965–969 (1993).
[CrossRef]

Pirumov, S. S.

A. G. Avanesov, B. I. Denker, V. V. Osiko, S. S. Pirumov, V. P. Sakun, V. A. Smirnov, and I. A. Shcherbakov, “Kinetics of non-radiative relaxation from the upper active level of neodymium in a Y3Al5O12 crystal,” Sov. J. Quantum Electron. 12, 744–747 (1982).
[CrossRef]

Prabhu, M.

J. Lu, M. Prabhu, J. C. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Rosenkrantz, L. J.

L. J. Rosenkrantz, “Ga As diode-pumped Nd:YAG laser,” J. Appl. Phys. 43, 4603–4605 (1972).
[CrossRef]

Ross, M.

M. Ross, “YAG laser operation by semiconductor laser pumping,” Proc. IEEE 56, 196–197 (1968).
[CrossRef]

Sakun, V. P.

A. G. Avanesov, B. I. Denker, V. V. Osiko, S. S. Pirumov, V. P. Sakun, V. A. Smirnov, and I. A. Shcherbakov, “Kinetics of non-radiative relaxation from the upper active level of neodymium in a Y3Al5O12 crystal,” Sov. J. Quantum Electron. 12, 744–747 (1982).
[CrossRef]

V. P. Sakun, “Kinetics of energy transfer in a crystal,” Sov. Phys. Solid State 14, 1906–1914 (1973).

Sato, Y.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

Shcherbakov, I. A.

A. G. Avanesov, B. I. Denker, V. V. Osiko, S. S. Pirumov, V. P. Sakun, V. A. Smirnov, and I. A. Shcherbakov, “Kinetics of non-radiative relaxation from the upper active level of neodymium in a Y3Al5O12 crystal,” Sov. J. Quantum Electron. 12, 744–747 (1982).
[CrossRef]

Shoji, I.

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Iketsue, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79, 590–592 (2001).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

Singh, S.

P. Gavrilovic, M. S. O’Neill, K. Meehan, J. H. Zarrabi, S. Singh, and W. H. Grodkiewicz, “Temperature-tunable, single frequency microcavity lasers fabricated from flux-grown YCeAG:Nd,” Appl. Phys. Lett. 60, 1652–1654 (1992).
[CrossRef]

Smirnov, V. A.

A. G. Avanesov, B. I. Denker, V. V. Osiko, S. S. Pirumov, V. P. Sakun, V. A. Smirnov, and I. A. Shcherbakov, “Kinetics of non-radiative relaxation from the upper active level of neodymium in a Y3Al5O12 crystal,” Sov. J. Quantum Electron. 12, 744–747 (1982).
[CrossRef]

Song, J. C.

J. Lu, M. Prabhu, J. C. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Stoicescu, C.

V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, and P. Nanau, “High-resolution optical spectroscopy of Nd:YAG: a test for structural and distribution models,” Phys. Rev. B 51, 8–17 (1995).
[CrossRef]

Taira, T.

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Iketsue, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79, 590–592 (2001).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

Tiseanu, C.

V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, and P. Nanau, “High-resolution optical spectroscopy of Nd:YAG: a test for structural and distribution models,” Phys. Rev. B 51, 8–17 (1995).
[CrossRef]

Ueda, K.

J. Lu, M. Prabhu, J. C. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Williams, J. E.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, J. E. Williams, W. H. Grodkiewicz, and B. Bruce, “High-power, single frequency diode-pumped Nd:YAG microcavity lasers at 1.3 μm,” Appl. Phys. Lett. 65, 1620–1622 (1994).
[CrossRef]

Wyon, Ch.

B. Ferrand, D. Pelenc, I. Chartier, and Ch. Wyon, “Growth by LPE of Nd:YAG single crystal layers for waveguide laser applications,” J. Cryst. Growth 128, 965–969 (1993).
[CrossRef]

Xu, J.

J. Lu, M. Prabhu, J. C. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Yagi, H.

J. Lu, M. Prabhu, J. C. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Yanagitani, T.

J. Lu, M. Prabhu, J. C. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Yoshida, K.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[CrossRef]

Zarrabi, J. H.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, J. E. Williams, W. H. Grodkiewicz, and B. Bruce, “High-power, single frequency diode-pumped Nd:YAG microcavity lasers at 1.3 μm,” Appl. Phys. Lett. 65, 1620–1622 (1994).
[CrossRef]

P. Gavrilovic, M. S. O’Neill, K. Meehan, J. H. Zarrabi, S. Singh, and W. H. Grodkiewicz, “Temperature-tunable, single frequency microcavity lasers fabricated from flux-grown YCeAG:Nd,” Appl. Phys. Lett. 60, 1652–1654 (1992).
[CrossRef]

Zhou, Y.

Y. Zhou, “Growth of high quality large Nd:YAG crystals by temperature gradient technique (TGT),” J. Cryst. Growth 78, 31–35 (1986).
[CrossRef]

Ann. Phys. (Leipzig) (1)

Th. Forster, “Zwischenmolekulare Energiewanderung and Fluoreszenz,” Ann. Phys. (Leipzig) 2, 55–75 (1948).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

J. Lu, M. Prabhu, J. C. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Appl. Phys. Lett. (4)

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, J. E. Williams, W. H. Grodkiewicz, and B. Bruce, “High-power, single frequency diode-pumped Nd:YAG microcavity lasers at 1.3 μm,” Appl. Phys. Lett. 65, 1620–1622 (1994).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

P. Gavrilovic, M. S. O’Neill, K. Meehan, J. H. Zarrabi, S. Singh, and W. H. Grodkiewicz, “Temperature-tunable, single frequency microcavity lasers fabricated from flux-grown YCeAG:Nd,” Appl. Phys. Lett. 60, 1652–1654 (1992).
[CrossRef]

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Iketsue, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79, 590–592 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[CrossRef]

J. Am. Ceram. Soc. (1)

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[CrossRef]

J. Appl. Phys. (2)

R. Newman, “Excitation of the Nd3+ fluorescence in CaWO4 by recombination radiation in GaAs,” J. Appl. Phys. 34, 437 (1963).
[CrossRef]

L. J. Rosenkrantz, “Ga As diode-pumped Nd:YAG laser,” J. Appl. Phys. 43, 4603–4605 (1972).
[CrossRef]

J. Chem. Phys. (2)

D. L. Dexter, “Theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
[CrossRef]

J. Cryst. Growth (2)

Y. Zhou, “Growth of high quality large Nd:YAG crystals by temperature gradient technique (TGT),” J. Cryst. Growth 78, 31–35 (1986).
[CrossRef]

B. Ferrand, D. Pelenc, I. Chartier, and Ch. Wyon, “Growth by LPE of Nd:YAG single crystal layers for waveguide laser applications,” J. Cryst. Growth 128, 965–969 (1993).
[CrossRef]

J. Phys. Condens. Matter (1)

A. Lupei, V. Lupei, and E. Osiac, “Spectral and dynamical effects of octahedral impurities on RE3+ in garnets,” J. Phys. Condens. Matter 10, 9701–9706 (1998).
[CrossRef]

Mater. Res. Bull. (1)

S. Geller, G. P. Espinosa, L. D. Fullmer, and P. B. Crandall, “Thermal expansion of some garnets,” Mater. Res. Bull. 7, 1219–1224 (1972).
[CrossRef]

Opt. Commun. (1)

V. Lupei, A. Lupei, S. Georgescu, and C. Ionescu, “Energy transfer between Nd3+ ions in YAG,” Opt. Commun. 60, 59–63 (1986).
[CrossRef]

Phys. Rev. B (2)

V. Lupei and A. Lupei, “Emission dynamics of 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61, 8087–8098 (2000).
[CrossRef]

V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, and P. Nanau, “High-resolution optical spectroscopy of Nd:YAG: a test for structural and distribution models,” Phys. Rev. B 51, 8–17 (1995).
[CrossRef]

Phys. Rev. Lett. (1)

T. Kushida and J. E. Geusic, “Optical refrigeration in Nd-doped yttrium aluminum garnet,” Phys. Rev. Lett. 21, 1172–1175 (1968).
[CrossRef]

Proc. IEEE (1)

M. Ross, “YAG laser operation by semiconductor laser pumping,” Proc. IEEE 56, 196–197 (1968).
[CrossRef]

Sov. J. Quantum Electron. (1)

A. G. Avanesov, B. I. Denker, V. V. Osiko, S. S. Pirumov, V. P. Sakun, V. A. Smirnov, and I. A. Shcherbakov, “Kinetics of non-radiative relaxation from the upper active level of neodymium in a Y3Al5O12 crystal,” Sov. J. Quantum Electron. 12, 744–747 (1982).
[CrossRef]

Sov. Phys. Solid State (2)

S. I. Golubov and Yu. K. Konobeev, “Procedure of averaging in the theory of resonance transfer of electron excitation energy,” Sov. Phys. Solid State 13, 2679–2682 (1972).

V. P. Sakun, “Kinetics of energy transfer in a crystal,” Sov. Phys. Solid State 14, 1906–1914 (1973).

Sov. Phys. Usp. (1)

A. I. Burshtein, “Concentration quenching of noncoherent excitation in solutions,” Sov. Phys. Usp. 27, 579–606 (1984).
[CrossRef]

Other (2)

I. Shoji, Y. Sato, S. Kurimura, T. Taira, A. Ikesue, and K. Yoshida, “Thermal birefringence in Nd:YAG ceramics,” presented at the Advanced Solid-State Lasers Conference, Seattle, Wash., January 28–31, 2001, paper ME 14–1.

Y. Urata, R. Hua, S. Wada, H. Tashiro, and P. Deng, “Characterization of highly neodymium doped yttrium aluminum garnet crystals,” in Advanced Solid State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 494–500.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Spectral satellites in the transmission spectrum for the transitions (a)  4I9/2(1) 2P1/2 and (b)  4I9/2(1) 4F3/2(1) in 1-at. % Nd:YAG ceramics at 10 K.

Fig. 2
Fig. 2

Spectral satellites in the transmission spectrum for the transitions (a)  4I9/2(1) 2P1/2 and (b)  4I9/2(1) 4F3/2(1) in 9-at. % Nd:YAG ceramics at 10 K.

Fig. 3
Fig. 3

Transmission spectrum  4I9/2 4F3/2 for 9-at. % Nd:YAG ceramics at room temperature.

Fig. 4
Fig. 4

Experimental  4F3/2 decay function P(t)=-[ln(I/I0)+t/τf] for 6.6-at. % Nd:YAG ceramics at room temperature under a low-intensity pump at 532 nm (10-ns pulse duration).

Fig. 5
Fig. 5

Migration-assisted transfer rate W¯ function of CNd2: squares, experimental data measured from the emission decay and line for the calculated dependence; continuous line, the calculated W¯=240 CNd2 dependence.

Fig. 6
Fig. 6

Calculated Nd concentration dependence of the emission quantum efficiency of level  4F3/2 in Nd:YAG at room temperature and low pump intensity. Symbols are for experimental data on η as follows: circles are according to Ref. 27, rectangles are from Ref. 28, and triangles are from Ref. 29.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I(t)=I0 exp(-t/τD)exp[-P(t)],
P(t)=-i ln{1-CNd+r(t)CNd exp(-Wiupt)+[1-r(t)]CNd exp(-Wicrt)}.
P(t)=-i ln[1-CNd+CNd exp(-Wicrt)].
Wiex=τD-1exp[γ(1-Ri/R0)],
Wi(s)=CDARi-s,
I(t)=I0 exp(-t/τD)exp[-P(t)]exp(-W¯t)
η=τD-10I(t)/I0dt.

Metrics