Abstract

A novel scheme of an all-solid-state low-threshold passively Q-switched erbium fiber laser with a Co2+:ZnSe saturable absorber is demonstrated experimentally and simulated numerically.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Chandonet and G. Larose, “High-power Q-switched erbium fiber laser using an all-fiber intensity modulator,” Opt. Eng. 32, 2031–2035 (1993).
    [CrossRef]
  2. J. M. Sousa and O. G. Okhotnikov, “Multiple wavelength Q-switched fiber laser,” IEEE Photonics Technol. Lett. 11, 1117–1119 (1999).
    [CrossRef]
  3. G. P. Lees, D. Taverner, D. J. Richardson, and L. Dong, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393–394 (1997).
    [CrossRef]
  4. P. Roy, D. Pagnoux, L. Mouneu, and T. Midavaine, “High efficiency 1.53 μm all-fibre pulsed source based on a Q-switched erbium doped fibre ring laser,” Electron. Lett. 33, 1317–1318 (1997).
    [CrossRef]
  5. Z. J. Chen, A. B. Grudinin, J. Porta, and J. D. Minelly, “Enhanced Q switching in double-clad fiber lasers,” Opt. Lett. 23, 454–456 (1998).
    [CrossRef]
  6. S. V. Chernikov, Y. Zhu, J. R. Tailor, and V. P. Gapontsev, “Supercontinuum self-Q-switched ytterbium fiber laser,” Opt. Lett. 22, 298–300 (1997).
    [CrossRef] [PubMed]
  7. P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
    [CrossRef]
  8. R. Paschotta, R. Haring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, “Passively Q-switched 0.1-mJ fiber laser system at 1.53 μm,” Opt. Lett. 24, 388–400 (1999).
    [CrossRef]
  9. R. D. Stultz, H. Bruesselbach, D. S. Sumida, M. B. Camargo, and M. Birnbaum, “Passive Q switching of an erbium fiber laser using uranium-doped fluoride crystal Q switches,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 451–453.
  10. V. N. Filippov, A. N. Starodumov, and A. V. Kir’yanov, “All-fiber passively Q-switched low-threshold erbium laser,” Opt. Lett. 26, 343–345 (2001).
    [CrossRef]
  11. T.-Y. Tsai and M. Birnbaum, “Co2+:ZnS and Co2+:ZnSe saturable absorber Q switches,” J. Appl. Phys. 87, 25–29 (2000).
    [CrossRef]
  12. A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. P. Mikhailov, V. I. Levchenko, and V. N. Yakimovich, “Cr2+:ZnSe and Co2+:ZnSe saturable-absorber Q switches for 1.54-μm Er:glass lasers,” Opt. Lett. 24, 960–962 (1999).
    [CrossRef]
  13. A. V. Podlipensky, V. G. Shcherbitsky, V. P. Mikhailov, N. V. Kuleshov, V. I. Levchenko, and V. N. Yakimovich, “Passive Q-switching of Er:glass laser Cr 2+ :ZnSe and Co 2+ :ZnSe saturable absorbers,” in Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 249–253.
  14. M. B. Camargo, R. D. Stiltz, and M. Birnbaum, “Co2+:YSGG saturable absorber Q switch for infrared erbium lasers,” Opt. Lett. 20, 339–341 (1995).
    [CrossRef] [PubMed]
  15. D. Marcuse, “Pulsing behavior of a three-level laser with saturable absorber,” IEEE J. Quantum Electron. 29, 2390–2396 (1993).
    [CrossRef]
  16. A. V. Podlipensky, V. G. Shcherbitsky, M. I. Demchuk, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, S. Girard, and R. Moncorge, “Cr2+:CdMnTe crystal as a new saturable absorber for 2 μm lasers,” Opt. Commun. 192, 65–68 (2001).
    [CrossRef]
  17. L. Luo and P. L. Chu, “Passive Q-switched erbium-doped fibre laser with saturable absorber,” Opt. Commun. 161, 257–263 (1999).
    [CrossRef]
  18. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1976), pp. 28, 399, 401.
  19. A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
    [CrossRef]
  20. A. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 669, 1024.
  21. J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
    [CrossRef]
  22. J. T. Lin and W. A. Gambling, “Polarization effects in fiber lasers,” Proc. SPIE 1373, 42–48 (1990).
    [CrossRef]
  23. N. N. Il’ichev, A. V. Kir’yanov, E. S. Gulyamova, and P. P. Pashinin, “Polarization of a neodymium laser with a passive switch based on a Cr4+:YAG crystal,” Quantum Electron. 28, 17–20 (1998).
    [CrossRef]
  24. M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by Cr4+:yttrium aluminum garnet absorbers,” Phys. Rev. A 60, 4052–4058 (1999).
    [CrossRef]
  25. S. Colin, E. Contesse, P. LeBoudec, G. Stephan, and F. Sanchez, “Evidence of a saturable-absorption effect in heavily erbium-doped fibers,” Opt. Lett. 21, 1987–1989 (1996).
    [CrossRef] [PubMed]
  26. F. T. Arecchi, in Instabilities and Chaos in Quantum Optics, F. T. Arecchi and R. G. Harrison, eds., Vol. 34 of Springer Series on Synergetics (Springer, Berlin, 1987), pp. 9–48.
  27. Y.-K. Kuo, W. Chen, R. D. Stultz, and M. Birnbaum, “Dy2+:CaF2 saturable absorber Q switch for the ruby laser,” Appl. Opt. 33, 6348–6351 (1994).
    [CrossRef] [PubMed]
  28. N. N. Il’ichev, A. V. Kir’yanov, and P. P. Pashinin, “Model of passive Q switching taking account of the anisotropy of nonlinear absorption in a crystal switch with phototropic centers,” Quantum Electron. 28, 147–151 (1998).
    [CrossRef]
  29. E. Desurvire, Erbium-Doped Fiber Amplifiers. Principles and Applications (Wiley, New York, 1994), pp. 224, 254, 264.
  30. N. N. Il’ichev, E. S. Gulyamova, and P. P. Pashinin, “Passive Q switching of a neodymium laser by a Cr4+:YAG switch,” Quantum Electron. 27, 972–977 (1997).
    [CrossRef]

2001 (2)

V. N. Filippov, A. N. Starodumov, and A. V. Kir’yanov, “All-fiber passively Q-switched low-threshold erbium laser,” Opt. Lett. 26, 343–345 (2001).
[CrossRef]

A. V. Podlipensky, V. G. Shcherbitsky, M. I. Demchuk, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, S. Girard, and R. Moncorge, “Cr2+:CdMnTe crystal as a new saturable absorber for 2 μm lasers,” Opt. Commun. 192, 65–68 (2001).
[CrossRef]

2000 (1)

T.-Y. Tsai and M. Birnbaum, “Co2+:ZnS and Co2+:ZnSe saturable absorber Q switches,” J. Appl. Phys. 87, 25–29 (2000).
[CrossRef]

1999 (6)

A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. P. Mikhailov, V. I. Levchenko, and V. N. Yakimovich, “Cr2+:ZnSe and Co2+:ZnSe saturable-absorber Q switches for 1.54-μm Er:glass lasers,” Opt. Lett. 24, 960–962 (1999).
[CrossRef]

J. M. Sousa and O. G. Okhotnikov, “Multiple wavelength Q-switched fiber laser,” IEEE Photonics Technol. Lett. 11, 1117–1119 (1999).
[CrossRef]

L. Luo and P. L. Chu, “Passive Q-switched erbium-doped fibre laser with saturable absorber,” Opt. Commun. 161, 257–263 (1999).
[CrossRef]

P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
[CrossRef]

R. Paschotta, R. Haring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, “Passively Q-switched 0.1-mJ fiber laser system at 1.53 μm,” Opt. Lett. 24, 388–400 (1999).
[CrossRef]

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by Cr4+:yttrium aluminum garnet absorbers,” Phys. Rev. A 60, 4052–4058 (1999).
[CrossRef]

1998 (3)

N. N. Il’ichev, A. V. Kir’yanov, and P. P. Pashinin, “Model of passive Q switching taking account of the anisotropy of nonlinear absorption in a crystal switch with phototropic centers,” Quantum Electron. 28, 147–151 (1998).
[CrossRef]

N. N. Il’ichev, A. V. Kir’yanov, E. S. Gulyamova, and P. P. Pashinin, “Polarization of a neodymium laser with a passive switch based on a Cr4+:YAG crystal,” Quantum Electron. 28, 17–20 (1998).
[CrossRef]

Z. J. Chen, A. B. Grudinin, J. Porta, and J. D. Minelly, “Enhanced Q switching in double-clad fiber lasers,” Opt. Lett. 23, 454–456 (1998).
[CrossRef]

1997 (4)

S. V. Chernikov, Y. Zhu, J. R. Tailor, and V. P. Gapontsev, “Supercontinuum self-Q-switched ytterbium fiber laser,” Opt. Lett. 22, 298–300 (1997).
[CrossRef] [PubMed]

G. P. Lees, D. Taverner, D. J. Richardson, and L. Dong, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393–394 (1997).
[CrossRef]

P. Roy, D. Pagnoux, L. Mouneu, and T. Midavaine, “High efficiency 1.53 μm all-fibre pulsed source based on a Q-switched erbium doped fibre ring laser,” Electron. Lett. 33, 1317–1318 (1997).
[CrossRef]

N. N. Il’ichev, E. S. Gulyamova, and P. P. Pashinin, “Passive Q switching of a neodymium laser by a Cr4+:YAG switch,” Quantum Electron. 27, 972–977 (1997).
[CrossRef]

1996 (1)

1995 (1)

1994 (1)

1993 (2)

D. Marcuse, “Pulsing behavior of a three-level laser with saturable absorber,” IEEE J. Quantum Electron. 29, 2390–2396 (1993).
[CrossRef]

A. Chandonet and G. Larose, “High-power Q-switched erbium fiber laser using an all-fiber intensity modulator,” Opt. Eng. 32, 2031–2035 (1993).
[CrossRef]

1990 (1)

J. T. Lin and W. A. Gambling, “Polarization effects in fiber lasers,” Proc. SPIE 1373, 42–48 (1990).
[CrossRef]

1989 (1)

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[CrossRef]

1965 (1)

A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
[CrossRef]

Birnbaum, M.

Bretenaker, F.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by Cr4+:yttrium aluminum garnet absorbers,” Phys. Rev. A 60, 4052–4058 (1999).
[CrossRef]

Brunel, M.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by Cr4+:yttrium aluminum garnet absorbers,” Phys. Rev. A 60, 4052–4058 (1999).
[CrossRef]

Camargo, M. B.

Chandonet, A.

A. Chandonet and G. Larose, “High-power Q-switched erbium fiber laser using an all-fiber intensity modulator,” Opt. Eng. 32, 2031–2035 (1993).
[CrossRef]

Chen, W.

Chen, Z. J.

Chernikov, S. V.

Chu, P. L.

L. Luo and P. L. Chu, “Passive Q-switched erbium-doped fibre laser with saturable absorber,” Opt. Commun. 161, 257–263 (1999).
[CrossRef]

Colin, S.

Contesse, E.

Degnan, J. J.

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[CrossRef]

Demchuk, M. I.

A. V. Podlipensky, V. G. Shcherbitsky, M. I. Demchuk, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, S. Girard, and R. Moncorge, “Cr2+:CdMnTe crystal as a new saturable absorber for 2 μm lasers,” Opt. Commun. 192, 65–68 (2001).
[CrossRef]

Dhanjal, S.

P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
[CrossRef]

Dong, L.

G. P. Lees, D. Taverner, D. J. Richardson, and L. Dong, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393–394 (1997).
[CrossRef]

Emile, O.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by Cr4+:yttrium aluminum garnet absorbers,” Phys. Rev. A 60, 4052–4058 (1999).
[CrossRef]

Ferrand, B.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by Cr4+:yttrium aluminum garnet absorbers,” Phys. Rev. A 60, 4052–4058 (1999).
[CrossRef]

Filippov, V. N.

Fulbert, L.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by Cr4+:yttrium aluminum garnet absorbers,” Phys. Rev. A 60, 4052–4058 (1999).
[CrossRef]

Gambling, W. A.

J. T. Lin and W. A. Gambling, “Polarization effects in fiber lasers,” Proc. SPIE 1373, 42–48 (1990).
[CrossRef]

Gapontsev, V. P.

Gini, E.

Girard, S.

A. V. Podlipensky, V. G. Shcherbitsky, M. I. Demchuk, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, S. Girard, and R. Moncorge, “Cr2+:CdMnTe crystal as a new saturable absorber for 2 μm lasers,” Opt. Commun. 192, 65–68 (2001).
[CrossRef]

Grudinin, A. B.

Gulyamova, E. S.

N. N. Il’ichev, A. V. Kir’yanov, E. S. Gulyamova, and P. P. Pashinin, “Polarization of a neodymium laser with a passive switch based on a Cr4+:YAG crystal,” Quantum Electron. 28, 17–20 (1998).
[CrossRef]

N. N. Il’ichev, E. S. Gulyamova, and P. P. Pashinin, “Passive Q switching of a neodymium laser by a Cr4+:YAG switch,” Quantum Electron. 27, 972–977 (1997).
[CrossRef]

Haring, R.

Il’ichev, N. N.

N. N. Il’ichev, A. V. Kir’yanov, E. S. Gulyamova, and P. P. Pashinin, “Polarization of a neodymium laser with a passive switch based on a Cr4+:YAG crystal,” Quantum Electron. 28, 17–20 (1998).
[CrossRef]

N. N. Il’ichev, A. V. Kir’yanov, and P. P. Pashinin, “Model of passive Q switching taking account of the anisotropy of nonlinear absorption in a crystal switch with phototropic centers,” Quantum Electron. 28, 147–151 (1998).
[CrossRef]

N. N. Il’ichev, E. S. Gulyamova, and P. P. Pashinin, “Passive Q switching of a neodymium laser by a Cr4+:YAG switch,” Quantum Electron. 27, 972–977 (1997).
[CrossRef]

Keller, U.

Kir’yanov, A. V.

V. N. Filippov, A. N. Starodumov, and A. V. Kir’yanov, “All-fiber passively Q-switched low-threshold erbium laser,” Opt. Lett. 26, 343–345 (2001).
[CrossRef]

N. N. Il’ichev, A. V. Kir’yanov, and P. P. Pashinin, “Model of passive Q switching taking account of the anisotropy of nonlinear absorption in a crystal switch with phototropic centers,” Quantum Electron. 28, 147–151 (1998).
[CrossRef]

N. N. Il’ichev, A. V. Kir’yanov, E. S. Gulyamova, and P. P. Pashinin, “Polarization of a neodymium laser with a passive switch based on a Cr4+:YAG crystal,” Quantum Electron. 28, 17–20 (1998).
[CrossRef]

Kuleshov, N. V.

A. V. Podlipensky, V. G. Shcherbitsky, M. I. Demchuk, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, S. Girard, and R. Moncorge, “Cr2+:CdMnTe crystal as a new saturable absorber for 2 μm lasers,” Opt. Commun. 192, 65–68 (2001).
[CrossRef]

A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. P. Mikhailov, V. I. Levchenko, and V. N. Yakimovich, “Cr2+:ZnSe and Co2+:ZnSe saturable-absorber Q switches for 1.54-μm Er:glass lasers,” Opt. Lett. 24, 960–962 (1999).
[CrossRef]

Kuo, Y.-K.

Larose, G.

A. Chandonet and G. Larose, “High-power Q-switched erbium fiber laser using an all-fiber intensity modulator,” Opt. Eng. 32, 2031–2035 (1993).
[CrossRef]

Le Floch, A.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by Cr4+:yttrium aluminum garnet absorbers,” Phys. Rev. A 60, 4052–4058 (1999).
[CrossRef]

LeBoudec, P.

Lees, G. P.

G. P. Lees, D. Taverner, D. J. Richardson, and L. Dong, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393–394 (1997).
[CrossRef]

Levchenko, V. I.

A. V. Podlipensky, V. G. Shcherbitsky, M. I. Demchuk, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, S. Girard, and R. Moncorge, “Cr2+:CdMnTe crystal as a new saturable absorber for 2 μm lasers,” Opt. Commun. 192, 65–68 (2001).
[CrossRef]

A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. P. Mikhailov, V. I. Levchenko, and V. N. Yakimovich, “Cr2+:ZnSe and Co2+:ZnSe saturable-absorber Q switches for 1.54-μm Er:glass lasers,” Opt. Lett. 24, 960–962 (1999).
[CrossRef]

Lin, J. T.

J. T. Lin and W. A. Gambling, “Polarization effects in fiber lasers,” Proc. SPIE 1373, 42–48 (1990).
[CrossRef]

Luo, L.

L. Luo and P. L. Chu, “Passive Q-switched erbium-doped fibre laser with saturable absorber,” Opt. Commun. 161, 257–263 (1999).
[CrossRef]

Marcuse, D.

D. Marcuse, “Pulsing behavior of a three-level laser with saturable absorber,” IEEE J. Quantum Electron. 29, 2390–2396 (1993).
[CrossRef]

Marty, J.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by Cr4+:yttrium aluminum garnet absorbers,” Phys. Rev. A 60, 4052–4058 (1999).
[CrossRef]

Melchior, H.

Midavaine, T.

P. Roy, D. Pagnoux, L. Mouneu, and T. Midavaine, “High efficiency 1.53 μm all-fibre pulsed source based on a Q-switched erbium doped fibre ring laser,” Electron. Lett. 33, 1317–1318 (1997).
[CrossRef]

Mikhailov, V. P.

Minelly, J. D.

Molva, E.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by Cr4+:yttrium aluminum garnet absorbers,” Phys. Rev. A 60, 4052–4058 (1999).
[CrossRef]

Moncorge, R.

A. V. Podlipensky, V. G. Shcherbitsky, M. I. Demchuk, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, S. Girard, and R. Moncorge, “Cr2+:CdMnTe crystal as a new saturable absorber for 2 μm lasers,” Opt. Commun. 192, 65–68 (2001).
[CrossRef]

Mouneu, L.

P. Roy, D. Pagnoux, L. Mouneu, and T. Midavaine, “High efficiency 1.53 μm all-fibre pulsed source based on a Q-switched erbium doped fibre ring laser,” Electron. Lett. 33, 1317–1318 (1997).
[CrossRef]

Offerhaus, H. L.

P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
[CrossRef]

R. Paschotta, R. Haring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, “Passively Q-switched 0.1-mJ fiber laser system at 1.53 μm,” Opt. Lett. 24, 388–400 (1999).
[CrossRef]

Okhotnikov, O. G.

J. M. Sousa and O. G. Okhotnikov, “Multiple wavelength Q-switched fiber laser,” IEEE Photonics Technol. Lett. 11, 1117–1119 (1999).
[CrossRef]

Pagnoux, D.

P. Roy, D. Pagnoux, L. Mouneu, and T. Midavaine, “High efficiency 1.53 μm all-fibre pulsed source based on a Q-switched erbium doped fibre ring laser,” Electron. Lett. 33, 1317–1318 (1997).
[CrossRef]

Paschotta, R.

Pashinin, P. P.

N. N. Il’ichev, A. V. Kir’yanov, and P. P. Pashinin, “Model of passive Q switching taking account of the anisotropy of nonlinear absorption in a crystal switch with phototropic centers,” Quantum Electron. 28, 147–151 (1998).
[CrossRef]

N. N. Il’ichev, A. V. Kir’yanov, E. S. Gulyamova, and P. P. Pashinin, “Polarization of a neodymium laser with a passive switch based on a Cr4+:YAG crystal,” Quantum Electron. 28, 17–20 (1998).
[CrossRef]

N. N. Il’ichev, E. S. Gulyamova, and P. P. Pashinin, “Passive Q switching of a neodymium laser by a Cr4+:YAG switch,” Quantum Electron. 27, 972–977 (1997).
[CrossRef]

Petropoulos, P.

P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
[CrossRef]

Podlipensky, A. V.

A. V. Podlipensky, V. G. Shcherbitsky, M. I. Demchuk, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, S. Girard, and R. Moncorge, “Cr2+:CdMnTe crystal as a new saturable absorber for 2 μm lasers,” Opt. Commun. 192, 65–68 (2001).
[CrossRef]

A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. P. Mikhailov, V. I. Levchenko, and V. N. Yakimovich, “Cr2+:ZnSe and Co2+:ZnSe saturable-absorber Q switches for 1.54-μm Er:glass lasers,” Opt. Lett. 24, 960–962 (1999).
[CrossRef]

Porta, J.

Richardson, D. J.

R. Paschotta, R. Haring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, “Passively Q-switched 0.1-mJ fiber laser system at 1.53 μm,” Opt. Lett. 24, 388–400 (1999).
[CrossRef]

P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
[CrossRef]

G. P. Lees, D. Taverner, D. J. Richardson, and L. Dong, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393–394 (1997).
[CrossRef]

Roy, P.

P. Roy, D. Pagnoux, L. Mouneu, and T. Midavaine, “High efficiency 1.53 μm all-fibre pulsed source based on a Q-switched erbium doped fibre ring laser,” Electron. Lett. 33, 1317–1318 (1997).
[CrossRef]

Sanchez, F.

Shcherbitsky, V. G.

A. V. Podlipensky, V. G. Shcherbitsky, M. I. Demchuk, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, S. Girard, and R. Moncorge, “Cr2+:CdMnTe crystal as a new saturable absorber for 2 μm lasers,” Opt. Commun. 192, 65–68 (2001).
[CrossRef]

A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. P. Mikhailov, V. I. Levchenko, and V. N. Yakimovich, “Cr2+:ZnSe and Co2+:ZnSe saturable-absorber Q switches for 1.54-μm Er:glass lasers,” Opt. Lett. 24, 960–962 (1999).
[CrossRef]

Sousa, J. M.

J. M. Sousa and O. G. Okhotnikov, “Multiple wavelength Q-switched fiber laser,” IEEE Photonics Technol. Lett. 11, 1117–1119 (1999).
[CrossRef]

Starodumov, A. N.

Stein, R. A.

A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
[CrossRef]

Stephan, G.

Stiltz, R. D.

Stultz, R. D.

Szabo, A.

A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
[CrossRef]

Tailor, J. R.

Taverner, D.

G. P. Lees, D. Taverner, D. J. Richardson, and L. Dong, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393–394 (1997).
[CrossRef]

Tsai, T.-Y.

T.-Y. Tsai and M. Birnbaum, “Co2+:ZnS and Co2+:ZnSe saturable absorber Q switches,” J. Appl. Phys. 87, 25–29 (2000).
[CrossRef]

Vallet, M.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by Cr4+:yttrium aluminum garnet absorbers,” Phys. Rev. A 60, 4052–4058 (1999).
[CrossRef]

Yakimovich, V. N.

A. V. Podlipensky, V. G. Shcherbitsky, M. I. Demchuk, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, S. Girard, and R. Moncorge, “Cr2+:CdMnTe crystal as a new saturable absorber for 2 μm lasers,” Opt. Commun. 192, 65–68 (2001).
[CrossRef]

A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. P. Mikhailov, V. I. Levchenko, and V. N. Yakimovich, “Cr2+:ZnSe and Co2+:ZnSe saturable-absorber Q switches for 1.54-μm Er:glass lasers,” Opt. Lett. 24, 960–962 (1999).
[CrossRef]

Zheludev, N. I.

P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
[CrossRef]

Zhu, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
[CrossRef]

Electron. Lett. (2)

G. P. Lees, D. Taverner, D. J. Richardson, and L. Dong, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393–394 (1997).
[CrossRef]

P. Roy, D. Pagnoux, L. Mouneu, and T. Midavaine, “High efficiency 1.53 μm all-fibre pulsed source based on a Q-switched erbium doped fibre ring laser,” Electron. Lett. 33, 1317–1318 (1997).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. Marcuse, “Pulsing behavior of a three-level laser with saturable absorber,” IEEE J. Quantum Electron. 29, 2390–2396 (1993).
[CrossRef]

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

J. M. Sousa and O. G. Okhotnikov, “Multiple wavelength Q-switched fiber laser,” IEEE Photonics Technol. Lett. 11, 1117–1119 (1999).
[CrossRef]

J. Appl. Phys. (2)

T.-Y. Tsai and M. Birnbaum, “Co2+:ZnS and Co2+:ZnSe saturable absorber Q switches,” J. Appl. Phys. 87, 25–29 (2000).
[CrossRef]

A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
[CrossRef]

Opt. Commun. (2)

A. V. Podlipensky, V. G. Shcherbitsky, M. I. Demchuk, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, S. Girard, and R. Moncorge, “Cr2+:CdMnTe crystal as a new saturable absorber for 2 μm lasers,” Opt. Commun. 192, 65–68 (2001).
[CrossRef]

L. Luo and P. L. Chu, “Passive Q-switched erbium-doped fibre laser with saturable absorber,” Opt. Commun. 161, 257–263 (1999).
[CrossRef]

Opt. Eng. (1)

A. Chandonet and G. Larose, “High-power Q-switched erbium fiber laser using an all-fiber intensity modulator,” Opt. Eng. 32, 2031–2035 (1993).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. A (1)

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by Cr4+:yttrium aluminum garnet absorbers,” Phys. Rev. A 60, 4052–4058 (1999).
[CrossRef]

Proc. SPIE (1)

J. T. Lin and W. A. Gambling, “Polarization effects in fiber lasers,” Proc. SPIE 1373, 42–48 (1990).
[CrossRef]

Quantum Electron. (3)

N. N. Il’ichev, A. V. Kir’yanov, E. S. Gulyamova, and P. P. Pashinin, “Polarization of a neodymium laser with a passive switch based on a Cr4+:YAG crystal,” Quantum Electron. 28, 17–20 (1998).
[CrossRef]

N. N. Il’ichev, A. V. Kir’yanov, and P. P. Pashinin, “Model of passive Q switching taking account of the anisotropy of nonlinear absorption in a crystal switch with phototropic centers,” Quantum Electron. 28, 147–151 (1998).
[CrossRef]

N. N. Il’ichev, E. S. Gulyamova, and P. P. Pashinin, “Passive Q switching of a neodymium laser by a Cr4+:YAG switch,” Quantum Electron. 27, 972–977 (1997).
[CrossRef]

Other (6)

E. Desurvire, Erbium-Doped Fiber Amplifiers. Principles and Applications (Wiley, New York, 1994), pp. 224, 254, 264.

F. T. Arecchi, in Instabilities and Chaos in Quantum Optics, F. T. Arecchi and R. G. Harrison, eds., Vol. 34 of Springer Series on Synergetics (Springer, Berlin, 1987), pp. 9–48.

A. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 669, 1024.

A. V. Podlipensky, V. G. Shcherbitsky, V. P. Mikhailov, N. V. Kuleshov, V. I. Levchenko, and V. N. Yakimovich, “Passive Q-switching of Er:glass laser Cr 2+ :ZnSe and Co 2+ :ZnSe saturable absorbers,” in Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 249–253.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1976), pp. 28, 399, 401.

R. D. Stultz, H. Bruesselbach, D. S. Sumida, M. B. Camargo, and M. Birnbaum, “Passive Q switching of an erbium fiber laser using uranium-doped fluoride crystal Q switches,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 451–453.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Laser schematic.

Fig. 2
Fig. 2

Simulation of laser dynamics. Intracavity intensity (curves 1) and Co2+:ZnSe transmission (curves 2) versus time are shown: (a) Δ=80 s-1 (20.0 mW), operation in the superluminescence regime (area I); (b) Δ=175 s-1 (43.7 mW), PQS operation (area II); (c) Δ=295 s-1 (73.7 mW), cw operation (area III).

Fig. 3
Fig. 3

Calculated dependencies of repetition rate (curve 1) and average power (curve 2) versus pump rate.

Fig. 4
Fig. 4

Calculated dependencies of GP pulse width (curve 1) and peak power (curve 2) versus pump rate.

Fig. 5
Fig. 5

Reflection spectra of FBG mirrors M1 and M2.

Fig. 6
Fig. 6

Experimental snapshots of single GPs.

Fig. 7
Fig. 7

Experimental dependencies of repetition rate (curve 1) and average power (curve 2) versus diode pump.

Fig. 8
Fig. 8

Experimental snapshots of GP trains demonstrating instabilities appeared at the laser transition from PQS to cw operation.

Fig. 9
Fig. 9

Laser spectrum in the stable PQS mode. Pump power is 60 mW.

Fig. 10
Fig. 10

Experimental dependencies of (a) pulse width, (b) energy, and (c) peak power versus the diode pump.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

dFadt=S+FatR2σanala-2σslsns-ln1R1R2-α,
dnadt=-γσanaFac+Δ(Na-na)-na+Na(γ-1)τa,
dnsdt=-σsnsFacK-ns-Nsτs,
Na=N0(γ-1)[exp(-hν/kT)-1]1+(γ-1)exp(-hν/kT).
Ns=-ln Tinσsls,
PPUMP=ΔNoVωη,

Metrics