Abstract

A new time-domain single-shot detection technique based on nonresonant femtosecond coherent anti-Stokes Raman scattering is introduced for the determination of temperatures in flames and combustion processes. Chirped probe pulses are used to map the time evolution of the molecular dynamics initiated by a pump and a Stokes pulse onto the spectrum of the coherent anti-Stokes Raman-scattering signal pulses. An analytical description of this mapping process is given, which specifies ranges of linear and nonlinear time-frequency mapping, and an experimental realization is presented for single-shot thermometry on H2.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).
  2. M. Pealat, J. P. E. Taran, J. Taillet, M. Bacal, and A. M. Bruneteau, “Measurement of vibrational populations in low-pressure hydrogen plasma by coherent antiStokes Raman-scattering,” J. Appl. Phys. 52, 2687–2691 (1981).
    [Crossref]
  3. V. Bergmann and W. Stricker, “H2 CARS thermometry in a fuel-rich, premixed, laminar CH4/air flame in the pressure range between 5 and 40 bar,” Appl. Phys. B: Photophys. Laser Chem. 61, 49–57 (1995).
    [Crossref]
  4. W. B. Roh, P. W. Schreiber, and J. P. Taran, “Single-pulse coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
    [Crossref]
  5. M. Alden, K. Fredriksson, and S. Wallin, “Application of a two-color dye laser in coherent anti-Stokes Raman-scattering experiments for fast determination of temperatures,” Appl. Opt. 23, 2053–2055 (1984), and references therein.
    [Crossref]
  6. M. Pealat and M. Lefebvre, “Temperature-measurement by single-shot dual-line CARS in low-pressure flows,” Appl. Phys. B: Photophys. Laser Chem. 53, 23–29 (1991).
    [Crossref]
  7. T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2” Chem. Phys. Lett. 310, 65–72 (1999).
    [Crossref]
  8. T. Lang and M. Motzkus, “Determination of line shift coefficients with femtosecond time resolved CARS,” J. Raman Spectrosc. 31, 65–70 (2000).
    [Crossref]
  9. G. P. Wakeham and K. A. Nelson, “Dual-echelon singleshot femtosecond spectroscopy,” Opt. Lett. 25, 505–507 (2000).
    [Crossref]
  10. A. M. Zheltikov and A. N. Naumov, “High-resolution four-photon spectroscopy with chirped pulses,” Quantum Electron. 30, 606–610 (2000).
    [Crossref]
  11. Z. Jiang and X.-C. Zhang, “Electro-optic measurement of THz field pulses with a chirped optical beam,” Appl. Phys. Lett. 72, 1945–1947 (1998).
    [Crossref]
  12. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, Oxford, 1995).
  13. T. Hornung, R. Meier, and M. Motzkus, “Optimal control of molecular states in a learning loop with a parametrization in frequency and time domain,” Chem. Phys. Lett. 326, 445–453 (2000).
    [Crossref]

2000 (4)

T. Lang and M. Motzkus, “Determination of line shift coefficients with femtosecond time resolved CARS,” J. Raman Spectrosc. 31, 65–70 (2000).
[Crossref]

A. M. Zheltikov and A. N. Naumov, “High-resolution four-photon spectroscopy with chirped pulses,” Quantum Electron. 30, 606–610 (2000).
[Crossref]

T. Hornung, R. Meier, and M. Motzkus, “Optimal control of molecular states in a learning loop with a parametrization in frequency and time domain,” Chem. Phys. Lett. 326, 445–453 (2000).
[Crossref]

G. P. Wakeham and K. A. Nelson, “Dual-echelon singleshot femtosecond spectroscopy,” Opt. Lett. 25, 505–507 (2000).
[Crossref]

1999 (1)

T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2” Chem. Phys. Lett. 310, 65–72 (1999).
[Crossref]

1998 (1)

Z. Jiang and X.-C. Zhang, “Electro-optic measurement of THz field pulses with a chirped optical beam,” Appl. Phys. Lett. 72, 1945–1947 (1998).
[Crossref]

1995 (1)

V. Bergmann and W. Stricker, “H2 CARS thermometry in a fuel-rich, premixed, laminar CH4/air flame in the pressure range between 5 and 40 bar,” Appl. Phys. B: Photophys. Laser Chem. 61, 49–57 (1995).
[Crossref]

1991 (1)

M. Pealat and M. Lefebvre, “Temperature-measurement by single-shot dual-line CARS in low-pressure flows,” Appl. Phys. B: Photophys. Laser Chem. 53, 23–29 (1991).
[Crossref]

1984 (1)

1981 (1)

M. Pealat, J. P. E. Taran, J. Taillet, M. Bacal, and A. M. Bruneteau, “Measurement of vibrational populations in low-pressure hydrogen plasma by coherent antiStokes Raman-scattering,” J. Appl. Phys. 52, 2687–2691 (1981).
[Crossref]

1976 (1)

W. B. Roh, P. W. Schreiber, and J. P. Taran, “Single-pulse coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
[Crossref]

Alden, M.

Bacal, M.

M. Pealat, J. P. E. Taran, J. Taillet, M. Bacal, and A. M. Bruneteau, “Measurement of vibrational populations in low-pressure hydrogen plasma by coherent antiStokes Raman-scattering,” J. Appl. Phys. 52, 2687–2691 (1981).
[Crossref]

Bergmann, V.

V. Bergmann and W. Stricker, “H2 CARS thermometry in a fuel-rich, premixed, laminar CH4/air flame in the pressure range between 5 and 40 bar,” Appl. Phys. B: Photophys. Laser Chem. 61, 49–57 (1995).
[Crossref]

Bruneteau, A. M.

M. Pealat, J. P. E. Taran, J. Taillet, M. Bacal, and A. M. Bruneteau, “Measurement of vibrational populations in low-pressure hydrogen plasma by coherent antiStokes Raman-scattering,” J. Appl. Phys. 52, 2687–2691 (1981).
[Crossref]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).

Fredriksson, K.

Hornung, T.

T. Hornung, R. Meier, and M. Motzkus, “Optimal control of molecular states in a learning loop with a parametrization in frequency and time domain,” Chem. Phys. Lett. 326, 445–453 (2000).
[Crossref]

Jiang, Z.

Z. Jiang and X.-C. Zhang, “Electro-optic measurement of THz field pulses with a chirped optical beam,” Appl. Phys. Lett. 72, 1945–1947 (1998).
[Crossref]

Kompa, K.-L.

T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2” Chem. Phys. Lett. 310, 65–72 (1999).
[Crossref]

Lang, T.

T. Lang and M. Motzkus, “Determination of line shift coefficients with femtosecond time resolved CARS,” J. Raman Spectrosc. 31, 65–70 (2000).
[Crossref]

T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2” Chem. Phys. Lett. 310, 65–72 (1999).
[Crossref]

Lefebvre, M.

M. Pealat and M. Lefebvre, “Temperature-measurement by single-shot dual-line CARS in low-pressure flows,” Appl. Phys. B: Photophys. Laser Chem. 53, 23–29 (1991).
[Crossref]

Meier, R.

T. Hornung, R. Meier, and M. Motzkus, “Optimal control of molecular states in a learning loop with a parametrization in frequency and time domain,” Chem. Phys. Lett. 326, 445–453 (2000).
[Crossref]

Motzkus, M.

T. Hornung, R. Meier, and M. Motzkus, “Optimal control of molecular states in a learning loop with a parametrization in frequency and time domain,” Chem. Phys. Lett. 326, 445–453 (2000).
[Crossref]

T. Lang and M. Motzkus, “Determination of line shift coefficients with femtosecond time resolved CARS,” J. Raman Spectrosc. 31, 65–70 (2000).
[Crossref]

T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2” Chem. Phys. Lett. 310, 65–72 (1999).
[Crossref]

Mukamel, S.

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, Oxford, 1995).

Naumov, A. N.

A. M. Zheltikov and A. N. Naumov, “High-resolution four-photon spectroscopy with chirped pulses,” Quantum Electron. 30, 606–610 (2000).
[Crossref]

Nelson, K. A.

Pealat, M.

M. Pealat and M. Lefebvre, “Temperature-measurement by single-shot dual-line CARS in low-pressure flows,” Appl. Phys. B: Photophys. Laser Chem. 53, 23–29 (1991).
[Crossref]

M. Pealat, J. P. E. Taran, J. Taillet, M. Bacal, and A. M. Bruneteau, “Measurement of vibrational populations in low-pressure hydrogen plasma by coherent antiStokes Raman-scattering,” J. Appl. Phys. 52, 2687–2691 (1981).
[Crossref]

Roh, W. B.

W. B. Roh, P. W. Schreiber, and J. P. Taran, “Single-pulse coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
[Crossref]

Schreiber, P. W.

W. B. Roh, P. W. Schreiber, and J. P. Taran, “Single-pulse coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
[Crossref]

Stricker, W.

V. Bergmann and W. Stricker, “H2 CARS thermometry in a fuel-rich, premixed, laminar CH4/air flame in the pressure range between 5 and 40 bar,” Appl. Phys. B: Photophys. Laser Chem. 61, 49–57 (1995).
[Crossref]

Taillet, J.

M. Pealat, J. P. E. Taran, J. Taillet, M. Bacal, and A. M. Bruneteau, “Measurement of vibrational populations in low-pressure hydrogen plasma by coherent antiStokes Raman-scattering,” J. Appl. Phys. 52, 2687–2691 (1981).
[Crossref]

Taran, J. P.

W. B. Roh, P. W. Schreiber, and J. P. Taran, “Single-pulse coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
[Crossref]

Taran, J. P. E.

M. Pealat, J. P. E. Taran, J. Taillet, M. Bacal, and A. M. Bruneteau, “Measurement of vibrational populations in low-pressure hydrogen plasma by coherent antiStokes Raman-scattering,” J. Appl. Phys. 52, 2687–2691 (1981).
[Crossref]

Wakeham, G. P.

Wallin, S.

Zhang, X.-C.

Z. Jiang and X.-C. Zhang, “Electro-optic measurement of THz field pulses with a chirped optical beam,” Appl. Phys. Lett. 72, 1945–1947 (1998).
[Crossref]

Zheltikov, A. M.

A. M. Zheltikov and A. N. Naumov, “High-resolution four-photon spectroscopy with chirped pulses,” Quantum Electron. 30, 606–610 (2000).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B: Photophys. Laser Chem. (2)

M. Pealat and M. Lefebvre, “Temperature-measurement by single-shot dual-line CARS in low-pressure flows,” Appl. Phys. B: Photophys. Laser Chem. 53, 23–29 (1991).
[Crossref]

V. Bergmann and W. Stricker, “H2 CARS thermometry in a fuel-rich, premixed, laminar CH4/air flame in the pressure range between 5 and 40 bar,” Appl. Phys. B: Photophys. Laser Chem. 61, 49–57 (1995).
[Crossref]

Appl. Phys. Lett. (2)

W. B. Roh, P. W. Schreiber, and J. P. Taran, “Single-pulse coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
[Crossref]

Z. Jiang and X.-C. Zhang, “Electro-optic measurement of THz field pulses with a chirped optical beam,” Appl. Phys. Lett. 72, 1945–1947 (1998).
[Crossref]

Chem. Phys. Lett. (2)

T. Hornung, R. Meier, and M. Motzkus, “Optimal control of molecular states in a learning loop with a parametrization in frequency and time domain,” Chem. Phys. Lett. 326, 445–453 (2000).
[Crossref]

T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2” Chem. Phys. Lett. 310, 65–72 (1999).
[Crossref]

J. Appl. Phys. (1)

M. Pealat, J. P. E. Taran, J. Taillet, M. Bacal, and A. M. Bruneteau, “Measurement of vibrational populations in low-pressure hydrogen plasma by coherent antiStokes Raman-scattering,” J. Appl. Phys. 52, 2687–2691 (1981).
[Crossref]

J. Raman Spectrosc. (1)

T. Lang and M. Motzkus, “Determination of line shift coefficients with femtosecond time resolved CARS,” J. Raman Spectrosc. 31, 65–70 (2000).
[Crossref]

Opt. Lett. (1)

Quantum Electron. (1)

A. M. Zheltikov and A. N. Naumov, “High-resolution four-photon spectroscopy with chirped pulses,” Quantum Electron. 30, 606–610 (2000).
[Crossref]

Other (2)

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, Oxford, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup. See text for details.

Fig. 2
Fig. 2

Time-resolved multishot fs-CARS experiment on H2 with time-bandwidth limited pulses at different temperatures. Circles: experimental data. Solid curve: theoretical simulation.

Fig. 3
Fig. 3

Time-frequency mapping by chirped probe pulses in the fs-CARS experiment on H2. The simulation is based on the Q-branch response of the H2 molecule at T=300 K.

Fig. 4
Fig. 4

Solid curve: H2 response function. Circles: narrowband detected, experimental fs-CARS transient (multishot) on H2 with chirped probe pulses.

Fig. 5
Fig. 5

Single-shot thermometry: (a) pulse sequence, (b) H2 response function, (c) comparison between experimental data and theoretical simulation.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Pτ(3)(t)=EP(t)- EL(t+τ-t)×ES(t+τ-t)R(3)(t)dt,
R(3)(t)=θ(t)v,jav,j exp(iωv,jt),
IAS(τ)|R(3)(τ)|2=θ(τ)v,jav,j2+v,jv,jav,jav,j cos[(ωv,j-ωv,j)τ].
IAS(τ=τ, ω)=|Ftω[Pτ(3)(t)]|2=-Fτ(ω, t)R(3)(t)dt2
Fτ(ω, t)=Ftω[EP(t)EL(t+τ-t)×ES(t+τ-t)].
IAS(τ, ω)=v,jav,j exp{-i,ωv,j[τ+2ϕ(ω-2ωL+ωS)]}exp-(ωv,j-ω+ωL)2ΔωP2-(ωv,j-ωL+ωS)2ΔωL/S2exp[iϕ(ωv,j-ωL+ωS)2]{1+erf[fe(τ, ω)]}2,

Metrics