Abstract

We analyze the limitations imposed by sample absorption on the determination of the nonlinear refractive index by the Z-scan technique. By using a nanostructured thin film consisting of Cu nanocrystals embedded in a dielectric Al2O3 matrix as an example, we show that thermo-optical effects appearing when linear absorption is significant can be strongly misleading in the interpretation of the results of a Z scan. Even though this effect is not new, the widespread use of the Z-scan technique during the past several years makes it necessary to analyze explicitly the conditions under which the technique can be reliably applied and when more sophisticated techniques should be used instead. We discuss the contributions to the signal under different experimental conditions, several diagnostic techniques to discriminate true nonlinear effects from thermally induced phenomena, and different methods to reduce the thermal contribution.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  2. R. L. Sutherland, ed., Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996).
  3. S. R. Friberg and P. W. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. QE-23, 2089–2094 (1987).
    [CrossRef]
  4. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” J. Opt. Soc. Am. B 4, 875–881 (1987).
    [CrossRef]
  5. M. J. Moran, C. Y. She, and R. L. Carman, “Interferometric measurements of the nonlinear refractive-index coefficient relative to CS2 in laser-system related materials,” IEEE J. Quantum Electron. QE-11, 259–265 (1975).
    [CrossRef]
  6. A. Owyoung, “Ellipse rotation studies in laser host materials,” IEEE J. Quantum Electron. QE-9, 1064–1071 (1973).
    [CrossRef]
  7. P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in electric field strength,” Phys. Rev. 137, A801–A818 (1965).
    [CrossRef]
  8. W. E. Williams, M. J. Soileau, and E. W. Van Stryland, “Optical switching and n2 measurements in CS2,” Opt. Commun. 50, 256–260 (1984).
    [CrossRef]
  9. Y. Bae, J. J. Song, and Y. B. Kim, “Photoacoustic study of two-photon absorption in hexagonal ZnS,” J. Appl. Phys. 53, 615–619 (1982).
    [CrossRef]
  10. S. M. Mian, B. Taheri, and J. P. Wicksted, “Effects of beam ellipticity on z-scan measurements,” J. Opt. Soc. Am. B 13, 856–863 (1996).
    [CrossRef]
  11. Y. L. Huang and C. K. Sun, “Z-scan measurement with an astigmatic Gaussian beam,” J. Opt. Soc. Am. B 17, 43–47 (2000).
    [CrossRef]
  12. P. Chen, D. A. Oulianov, I. V. Tomov, and P. M. Rentzepis, “Two- dimensional z-scan for arbitrary beam shape and sample thickness,” J. Appl. Phys. 85, 7043–7050 (1999).
    [CrossRef]
  13. P. B. Chapple, J. Staromlynska, and R. G. McDuff, “Z-scan studies in the thin- and the thick-sample limits,” J. Opt. Soc. Am. B 11, 975–982 (1994).
    [CrossRef]
  14. M. Sheik-Bahae, A. A. Said, D. J. Hagan, M. J. Soileau, and E. W. Van Stryland, “Nonlinear refraction and optical limiting in thick media,” Opt. Eng. 30, 1228–1235 (1991).
    [CrossRef]
  15. S. Bian, M. Martinelli, and R. J. Horowicz, “Z-scan formula for saturable Kerr media,” Opt. Commun. 172, 347–353 (1999).
    [CrossRef]
  16. A. Marcano, O. H. Maillotte, D. Gindre, and D. Métin, “Picosecond nonlinear refraction measurement in single-beam open z-scan by charge-coupled device image processing,” Opt. Lett. 21, 101–103 (1996).
    [CrossRef]
  17. F. E. Hernández, A. Marcano, and H. Maillotte, “Sensitivity of the total beam profile distortion z-scan for the measurement of nonlinear refraction,” Opt. Commun. 134, 529–536 (1997).
    [CrossRef]
  18. T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing z-scan measurement of λ/104 wave-front distortion,” Opt. Lett. 19, 317–319 (1994).
    [CrossRef] [PubMed]
  19. A. Marcano, F. E. Hernández, and A. D. Sena, “Two-color near-field eclipsing z-scan technique for the determination of nonlinear refraction,” J. Opt. Soc. Am. B 14, 3363–3367 (1997).
    [CrossRef]
  20. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).
    [CrossRef]
  21. D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511–513 (1985).
    [CrossRef] [PubMed]
  22. H. B. Liao, R. F. Xiao, J. S. Fu, and G. K. L. Wong, “Large third order nonlinear optical susceptibility of Au–Al2O3 composite films near the resonant frequency,” Appl. Phys. B 65, 673–676 (1997).
    [CrossRef]
  23. R. H. Magruder III, L. Yang, R. F. Haglund, Jr., C. W. White, L. Yang, R. Dorsinville, and R. R. Alfano, “Optical properties of gold nanocluster composites formed by deep ion implantation in silica,” Appl. Phys. Lett. 62, 1730–1732 (1993).
    [CrossRef]
  24. F. Hache, D. Richard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys. A 47, 347–357 (1988).
    [CrossRef]
  25. J. M. Ballesteros, J. Solís, R. Serna, and C. N. Afonso, “Nanocrystal size dependence of the third order nonlinear optical response of Cu:Al2O3 thin films,” Appl. Phys. Lett. 74, 2791–2793 (1999).
    [CrossRef]
  26. M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett. 73, 288–290 (1998).
    [CrossRef]
  27. Y. Takeda, T. Hioki, T. Motohiro, and S. Noda, “Large third-order optical nonlinearity of tin microcrystallite-doped silica glass formed by ion implantation,” Appl. Phys. Lett. 63, 3420–3422 (1993).
    [CrossRef]
  28. M. Sheik-Bahae, A. A. Said, and E. W. Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989).
    [CrossRef] [PubMed]
  29. J. M. Ballesteros, R. Serna, J. Solís, C. N. Afonso, A. K. Petford-Long, D. H. Osborne, and R. F. Haglund, Jr., “Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third order optical susceptibility,” Appl. Phys. Lett. 71, 2445–2447 (1997).
    [CrossRef]
  30. L. R. Doolittle, “Algorithms for the rapid simulation of Rutherford backscattering spectra,” Nucl. Instrum. Methods B 9, 344–351 (1985).
    [CrossRef]
  31. R. Serna, C. N. Afonso, C. Ricolleau, Y. Wang, Y. Zheng, M. Gandais, and I. Vickridge, “Artificially nanostructured Cu:Al2O3 films produced by pulsed laser deposition,” Appl. Phys. A 71, 583–586 (2000).
    [CrossRef]
  32. A. Naudon and D. Thiaudière, “Grazing-incidence small-angle scattering. Morphology of deposited clusters and nanostructure of thin films,” J. Appl. Crystallogr. 30, 822–827 (1997).
    [CrossRef]
  33. A. Naudon, D. Babonneau, D. Thiaudière, and S. Lequien, “Grazing-incidence small-angle X-ray scattering applied to the characterization of aggregates in surface regions,” Physica B 283, 69–74 (2000).
    [CrossRef]
  34. Peak power refers to the maximum power of the laser pulse and the mean power to the total power of the train of pulses. Intensity refers to the energy density, i.e., the power of a laser pulse (peak or total) divided by the area of the laser beam.
  35. R. F. Haglund, Jr., L. Yang, R. H. Magruder, III, J. E. Wittig, K. Becker, and R. A. Zuhr, “Picosecond nonlinear optical response of a Cu:silica nanocluster composite,” Opt. Lett. 18, 373–375 (1993).
    [CrossRef] [PubMed]
  36. L. Yang, D. H. Osborne, R. F. Haglund, Jr., R. H. Magruder, C. W. White, R. A. Zuhr, and H. Hosono, “Probing interface properties of nanocomposites by third order nonlinear optics,” Appl. Phys. A 62, 403–415 (1996).
    [CrossRef]
  37. D. Weaire, B. S. Wherrett, D. A. B. Miller, and S. D. Smith, “Effect of low-power nonlinear refraction on laser-beam propagation in InSb,” Opt. Lett. 4, 331–333 (1974).
    [CrossRef]
  38. T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, and M. Ueda, “Measurement of nonlinear refractive index by time-resolved z-scan technique,” Opt. Commun. 160, 125–129 (1999).
    [CrossRef]
  39. M. L. Baesso, J. Shen, and R. D. Snook, “Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths,” J. Appl. Phys. 75, 3732–3737 (1994).
    [CrossRef]
  40. S. J. Sheldon, L. V. Knight, and J. M. Thorne, “Laser induced thermal lens effect: a new theoretical model,” Appl. Opt. 21, 1663–1669 (1982).
    [CrossRef] [PubMed]
  41. T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, “Subpicosecond time response of third order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65, 941–943 (1994).
    [CrossRef]
  42. M. Falconieri, “Thermo-optical effects in z-scan measurements using high-repetition-rate lasers,” J. Opt. A: Pure Appl. Opt. 1, 662–667 (1999).
    [CrossRef]
  43. S. Vijayalakshmi, H. Grebel, Z. Iqbal, and C. W. White, “Ar-tificial dielectrics: nonlinear properties of Si nanoclusters formed by ion implantation in SiO2 glassy matrix,” J. Appl. Phys. 84, 6502–6506 (1998).
    [CrossRef]
  44. X. Zhu and Z. Meng, “The optical nonlinearity and structure for a PbO, TiO2, SiO2 and K2O quaternary glass systems,” J. Appl. Phys. 75, 3756–3760 (1994).
    [CrossRef]
  45. A. A. Andrade, E. Tenório, T. Catunda, M. L. Baesso, A. Cassanho, and H. P. Jenssen, “Discrimination between electronic and thermal contributions to the nonlinear refractive index of SrAlF5:Cr+3,” J. Opt. Soc. Am. B 16, 395–400 (1999).
    [CrossRef]
  46. Y. M. Cheung and S. K. Gayen, “Optical nonlinearities of tea studied by z-scan and four-wave mixing techniques,” J. Opt. Soc. Am. B 11, 636–643 (1994).
    [CrossRef]
  47. B. Taheri, A. F. Munoz, W. D. St. John, J. P. Wicksted, R. C. Powell, D. H. Blackburn, and D. C. Cranmer, “Effects of the structure and composition of lead glasses on the thermal lensing of pulsed radiation,” J. Appl. Phys. 71, 3693–3700 (1992).
    [CrossRef]
  48. M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69, 133–136 (1999).
    [CrossRef]
  49. R. F. Haglund, Handbook of Optical Properties. Vol. II: Optics of Small Particles, Interfaces and Surfaces, R. E. Hummel and P. Wissmann, eds. (CRC Press, Boca Raton, Fla., 1997).
  50. L. Yang, “Nonlinear optics of noble metal crystallites embedded in a dielectric matrix,” Ph.D. dissertation (Vanderbilt University, Nashville, Tenn., 1993).

2000 (3)

Y. L. Huang and C. K. Sun, “Z-scan measurement with an astigmatic Gaussian beam,” J. Opt. Soc. Am. B 17, 43–47 (2000).
[CrossRef]

R. Serna, C. N. Afonso, C. Ricolleau, Y. Wang, Y. Zheng, M. Gandais, and I. Vickridge, “Artificially nanostructured Cu:Al2O3 films produced by pulsed laser deposition,” Appl. Phys. A 71, 583–586 (2000).
[CrossRef]

A. Naudon, D. Babonneau, D. Thiaudière, and S. Lequien, “Grazing-incidence small-angle X-ray scattering applied to the characterization of aggregates in surface regions,” Physica B 283, 69–74 (2000).
[CrossRef]

1999 (7)

T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, and M. Ueda, “Measurement of nonlinear refractive index by time-resolved z-scan technique,” Opt. Commun. 160, 125–129 (1999).
[CrossRef]

J. M. Ballesteros, J. Solís, R. Serna, and C. N. Afonso, “Nanocrystal size dependence of the third order nonlinear optical response of Cu:Al2O3 thin films,” Appl. Phys. Lett. 74, 2791–2793 (1999).
[CrossRef]

P. Chen, D. A. Oulianov, I. V. Tomov, and P. M. Rentzepis, “Two- dimensional z-scan for arbitrary beam shape and sample thickness,” J. Appl. Phys. 85, 7043–7050 (1999).
[CrossRef]

S. Bian, M. Martinelli, and R. J. Horowicz, “Z-scan formula for saturable Kerr media,” Opt. Commun. 172, 347–353 (1999).
[CrossRef]

M. Falconieri, “Thermo-optical effects in z-scan measurements using high-repetition-rate lasers,” J. Opt. A: Pure Appl. Opt. 1, 662–667 (1999).
[CrossRef]

A. A. Andrade, E. Tenório, T. Catunda, M. L. Baesso, A. Cassanho, and H. P. Jenssen, “Discrimination between electronic and thermal contributions to the nonlinear refractive index of SrAlF5:Cr+3,” J. Opt. Soc. Am. B 16, 395–400 (1999).
[CrossRef]

M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69, 133–136 (1999).
[CrossRef]

1998 (2)

S. Vijayalakshmi, H. Grebel, Z. Iqbal, and C. W. White, “Ar-tificial dielectrics: nonlinear properties of Si nanoclusters formed by ion implantation in SiO2 glassy matrix,” J. Appl. Phys. 84, 6502–6506 (1998).
[CrossRef]

M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett. 73, 288–290 (1998).
[CrossRef]

1997 (5)

H. B. Liao, R. F. Xiao, J. S. Fu, and G. K. L. Wong, “Large third order nonlinear optical susceptibility of Au–Al2O3 composite films near the resonant frequency,” Appl. Phys. B 65, 673–676 (1997).
[CrossRef]

J. M. Ballesteros, R. Serna, J. Solís, C. N. Afonso, A. K. Petford-Long, D. H. Osborne, and R. F. Haglund, Jr., “Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third order optical susceptibility,” Appl. Phys. Lett. 71, 2445–2447 (1997).
[CrossRef]

A. Naudon and D. Thiaudière, “Grazing-incidence small-angle scattering. Morphology of deposited clusters and nanostructure of thin films,” J. Appl. Crystallogr. 30, 822–827 (1997).
[CrossRef]

F. E. Hernández, A. Marcano, and H. Maillotte, “Sensitivity of the total beam profile distortion z-scan for the measurement of nonlinear refraction,” Opt. Commun. 134, 529–536 (1997).
[CrossRef]

A. Marcano, F. E. Hernández, and A. D. Sena, “Two-color near-field eclipsing z-scan technique for the determination of nonlinear refraction,” J. Opt. Soc. Am. B 14, 3363–3367 (1997).
[CrossRef]

1996 (3)

1994 (7)

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, “Subpicosecond time response of third order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65, 941–943 (1994).
[CrossRef]

X. Zhu and Z. Meng, “The optical nonlinearity and structure for a PbO, TiO2, SiO2 and K2O quaternary glass systems,” J. Appl. Phys. 75, 3756–3760 (1994).
[CrossRef]

Y. M. Cheung and S. K. Gayen, “Optical nonlinearities of tea studied by z-scan and four-wave mixing techniques,” J. Opt. Soc. Am. B 11, 636–643 (1994).
[CrossRef]

M. L. Baesso, J. Shen, and R. D. Snook, “Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths,” J. Appl. Phys. 75, 3732–3737 (1994).
[CrossRef]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).
[CrossRef]

T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing z-scan measurement of λ/104 wave-front distortion,” Opt. Lett. 19, 317–319 (1994).
[CrossRef] [PubMed]

P. B. Chapple, J. Staromlynska, and R. G. McDuff, “Z-scan studies in the thin- and the thick-sample limits,” J. Opt. Soc. Am. B 11, 975–982 (1994).
[CrossRef]

1993 (3)

R. F. Haglund, Jr., L. Yang, R. H. Magruder, III, J. E. Wittig, K. Becker, and R. A. Zuhr, “Picosecond nonlinear optical response of a Cu:silica nanocluster composite,” Opt. Lett. 18, 373–375 (1993).
[CrossRef] [PubMed]

R. H. Magruder III, L. Yang, R. F. Haglund, Jr., C. W. White, L. Yang, R. Dorsinville, and R. R. Alfano, “Optical properties of gold nanocluster composites formed by deep ion implantation in silica,” Appl. Phys. Lett. 62, 1730–1732 (1993).
[CrossRef]

Y. Takeda, T. Hioki, T. Motohiro, and S. Noda, “Large third-order optical nonlinearity of tin microcrystallite-doped silica glass formed by ion implantation,” Appl. Phys. Lett. 63, 3420–3422 (1993).
[CrossRef]

1992 (1)

B. Taheri, A. F. Munoz, W. D. St. John, J. P. Wicksted, R. C. Powell, D. H. Blackburn, and D. C. Cranmer, “Effects of the structure and composition of lead glasses on the thermal lensing of pulsed radiation,” J. Appl. Phys. 71, 3693–3700 (1992).
[CrossRef]

1991 (1)

M. Sheik-Bahae, A. A. Said, D. J. Hagan, M. J. Soileau, and E. W. Van Stryland, “Nonlinear refraction and optical limiting in thick media,” Opt. Eng. 30, 1228–1235 (1991).
[CrossRef]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

1989 (1)

1988 (1)

F. Hache, D. Richard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys. A 47, 347–357 (1988).
[CrossRef]

1987 (2)

S. R. Friberg and P. W. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. QE-23, 2089–2094 (1987).
[CrossRef]

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” J. Opt. Soc. Am. B 4, 875–881 (1987).
[CrossRef]

1985 (2)

D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511–513 (1985).
[CrossRef] [PubMed]

L. R. Doolittle, “Algorithms for the rapid simulation of Rutherford backscattering spectra,” Nucl. Instrum. Methods B 9, 344–351 (1985).
[CrossRef]

1984 (1)

W. E. Williams, M. J. Soileau, and E. W. Van Stryland, “Optical switching and n2 measurements in CS2,” Opt. Commun. 50, 256–260 (1984).
[CrossRef]

1982 (2)

Y. Bae, J. J. Song, and Y. B. Kim, “Photoacoustic study of two-photon absorption in hexagonal ZnS,” J. Appl. Phys. 53, 615–619 (1982).
[CrossRef]

S. J. Sheldon, L. V. Knight, and J. M. Thorne, “Laser induced thermal lens effect: a new theoretical model,” Appl. Opt. 21, 1663–1669 (1982).
[CrossRef] [PubMed]

1975 (1)

M. J. Moran, C. Y. She, and R. L. Carman, “Interferometric measurements of the nonlinear refractive-index coefficient relative to CS2 in laser-system related materials,” IEEE J. Quantum Electron. QE-11, 259–265 (1975).
[CrossRef]

1974 (1)

1973 (1)

A. Owyoung, “Ellipse rotation studies in laser host materials,” IEEE J. Quantum Electron. QE-9, 1064–1071 (1973).
[CrossRef]

1965 (1)

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in electric field strength,” Phys. Rev. 137, A801–A818 (1965).
[CrossRef]

Adair, R.

Afonso, C. N.

R. Serna, C. N. Afonso, C. Ricolleau, Y. Wang, Y. Zheng, M. Gandais, and I. Vickridge, “Artificially nanostructured Cu:Al2O3 films produced by pulsed laser deposition,” Appl. Phys. A 71, 583–586 (2000).
[CrossRef]

J. M. Ballesteros, J. Solís, R. Serna, and C. N. Afonso, “Nanocrystal size dependence of the third order nonlinear optical response of Cu:Al2O3 thin films,” Appl. Phys. Lett. 74, 2791–2793 (1999).
[CrossRef]

J. M. Ballesteros, R. Serna, J. Solís, C. N. Afonso, A. K. Petford-Long, D. H. Osborne, and R. F. Haglund, Jr., “Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third order optical susceptibility,” Appl. Phys. Lett. 71, 2445–2447 (1997).
[CrossRef]

Alfano, R. R.

R. H. Magruder III, L. Yang, R. F. Haglund, Jr., C. W. White, L. Yang, R. Dorsinville, and R. R. Alfano, “Optical properties of gold nanocluster composites formed by deep ion implantation in silica,” Appl. Phys. Lett. 62, 1730–1732 (1993).
[CrossRef]

Andrade, A. A.

Asahara, Y.

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, “Subpicosecond time response of third order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65, 941–943 (1994).
[CrossRef]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).
[CrossRef]

Babonneau, D.

A. Naudon, D. Babonneau, D. Thiaudière, and S. Lequien, “Grazing-incidence small-angle X-ray scattering applied to the characterization of aggregates in surface regions,” Physica B 283, 69–74 (2000).
[CrossRef]

Bae, Y.

Y. Bae, J. J. Song, and Y. B. Kim, “Photoacoustic study of two-photon absorption in hexagonal ZnS,” J. Appl. Phys. 53, 615–619 (1982).
[CrossRef]

Baesso, M. L.

A. A. Andrade, E. Tenório, T. Catunda, M. L. Baesso, A. Cassanho, and H. P. Jenssen, “Discrimination between electronic and thermal contributions to the nonlinear refractive index of SrAlF5:Cr+3,” J. Opt. Soc. Am. B 16, 395–400 (1999).
[CrossRef]

M. L. Baesso, J. Shen, and R. D. Snook, “Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths,” J. Appl. Phys. 75, 3732–3737 (1994).
[CrossRef]

Ballesteros, J. M.

J. M. Ballesteros, J. Solís, R. Serna, and C. N. Afonso, “Nanocrystal size dependence of the third order nonlinear optical response of Cu:Al2O3 thin films,” Appl. Phys. Lett. 74, 2791–2793 (1999).
[CrossRef]

J. M. Ballesteros, R. Serna, J. Solís, C. N. Afonso, A. K. Petford-Long, D. H. Osborne, and R. F. Haglund, Jr., “Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third order optical susceptibility,” Appl. Phys. Lett. 71, 2445–2447 (1997).
[CrossRef]

Battaglin, G.

M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett. 73, 288–290 (1998).
[CrossRef]

Becker, K.

Bian, S.

S. Bian, M. Martinelli, and R. J. Horowicz, “Z-scan formula for saturable Kerr media,” Opt. Commun. 172, 347–353 (1999).
[CrossRef]

Blackburn, D. H.

B. Taheri, A. F. Munoz, W. D. St. John, J. P. Wicksted, R. C. Powell, D. H. Blackburn, and D. C. Cranmer, “Effects of the structure and composition of lead glasses on the thermal lensing of pulsed radiation,” J. Appl. Phys. 71, 3693–3700 (1992).
[CrossRef]

Carman, R. L.

M. J. Moran, C. Y. She, and R. L. Carman, “Interferometric measurements of the nonlinear refractive-index coefficient relative to CS2 in laser-system related materials,” IEEE J. Quantum Electron. QE-11, 259–265 (1975).
[CrossRef]

Cassanho, A.

Cattaruzza, E.

M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett. 73, 288–290 (1998).
[CrossRef]

Catunda, T.

Chapple, P. B.

Chase, L. L.

Chen, P.

P. Chen, D. A. Oulianov, I. V. Tomov, and P. M. Rentzepis, “Two- dimensional z-scan for arbitrary beam shape and sample thickness,” J. Appl. Phys. 85, 7043–7050 (1999).
[CrossRef]

Cheung, Y. M.

Cranmer, D. C.

B. Taheri, A. F. Munoz, W. D. St. John, J. P. Wicksted, R. C. Powell, D. H. Blackburn, and D. C. Cranmer, “Effects of the structure and composition of lead glasses on the thermal lensing of pulsed radiation,” J. Appl. Phys. 71, 3693–3700 (1992).
[CrossRef]

Doolittle, L. R.

L. R. Doolittle, “Algorithms for the rapid simulation of Rutherford backscattering spectra,” Nucl. Instrum. Methods B 9, 344–351 (1985).
[CrossRef]

Dorsinville, R.

R. H. Magruder III, L. Yang, R. F. Haglund, Jr., C. W. White, L. Yang, R. Dorsinville, and R. R. Alfano, “Optical properties of gold nanocluster composites formed by deep ion implantation in silica,” Appl. Phys. Lett. 62, 1730–1732 (1993).
[CrossRef]

Falconieri, M.

M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69, 133–136 (1999).
[CrossRef]

M. Falconieri, “Thermo-optical effects in z-scan measurements using high-repetition-rate lasers,” J. Opt. A: Pure Appl. Opt. 1, 662–667 (1999).
[CrossRef]

M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett. 73, 288–290 (1998).
[CrossRef]

Flytzanis, C.

F. Hache, D. Richard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys. A 47, 347–357 (1988).
[CrossRef]

D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511–513 (1985).
[CrossRef] [PubMed]

Friberg, S. R.

S. R. Friberg and P. W. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. QE-23, 2089–2094 (1987).
[CrossRef]

Fu, J. S.

H. B. Liao, R. F. Xiao, J. S. Fu, and G. K. L. Wong, “Large third order nonlinear optical susceptibility of Au–Al2O3 composite films near the resonant frequency,” Appl. Phys. B 65, 673–676 (1997).
[CrossRef]

Gandais, M.

R. Serna, C. N. Afonso, C. Ricolleau, Y. Wang, Y. Zheng, M. Gandais, and I. Vickridge, “Artificially nanostructured Cu:Al2O3 films produced by pulsed laser deposition,” Appl. Phys. A 71, 583–586 (2000).
[CrossRef]

Gayen, S. K.

Gindre, D.

Gonella, F.

M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett. 73, 288–290 (1998).
[CrossRef]

Grebel, H.

S. Vijayalakshmi, H. Grebel, Z. Iqbal, and C. W. White, “Ar-tificial dielectrics: nonlinear properties of Si nanoclusters formed by ion implantation in SiO2 glassy matrix,” J. Appl. Phys. 84, 6502–6506 (1998).
[CrossRef]

Haba, O.

T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, and M. Ueda, “Measurement of nonlinear refractive index by time-resolved z-scan technique,” Opt. Commun. 160, 125–129 (1999).
[CrossRef]

Hache, F.

F. Hache, D. Richard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys. A 47, 347–357 (1988).
[CrossRef]

Hagan, D. J.

T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing z-scan measurement of λ/104 wave-front distortion,” Opt. Lett. 19, 317–319 (1994).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, D. J. Hagan, M. J. Soileau, and E. W. Van Stryland, “Nonlinear refraction and optical limiting in thick media,” Opt. Eng. 30, 1228–1235 (1991).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Haglund Jr., R. F.

J. M. Ballesteros, R. Serna, J. Solís, C. N. Afonso, A. K. Petford-Long, D. H. Osborne, and R. F. Haglund, Jr., “Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third order optical susceptibility,” Appl. Phys. Lett. 71, 2445–2447 (1997).
[CrossRef]

L. Yang, D. H. Osborne, R. F. Haglund, Jr., R. H. Magruder, C. W. White, R. A. Zuhr, and H. Hosono, “Probing interface properties of nanocomposites by third order nonlinear optics,” Appl. Phys. A 62, 403–415 (1996).
[CrossRef]

R. F. Haglund, Jr., L. Yang, R. H. Magruder, III, J. E. Wittig, K. Becker, and R. A. Zuhr, “Picosecond nonlinear optical response of a Cu:silica nanocluster composite,” Opt. Lett. 18, 373–375 (1993).
[CrossRef] [PubMed]

R. H. Magruder III, L. Yang, R. F. Haglund, Jr., C. W. White, L. Yang, R. Dorsinville, and R. R. Alfano, “Optical properties of gold nanocluster composites formed by deep ion implantation in silica,” Appl. Phys. Lett. 62, 1730–1732 (1993).
[CrossRef]

Hata, C.

Hernández, F. E.

A. Marcano, F. E. Hernández, and A. D. Sena, “Two-color near-field eclipsing z-scan technique for the determination of nonlinear refraction,” J. Opt. Soc. Am. B 14, 3363–3367 (1997).
[CrossRef]

F. E. Hernández, A. Marcano, and H. Maillotte, “Sensitivity of the total beam profile distortion z-scan for the measurement of nonlinear refraction,” Opt. Commun. 134, 529–536 (1997).
[CrossRef]

Hioki, T.

Y. Takeda, T. Hioki, T. Motohiro, and S. Noda, “Large third-order optical nonlinearity of tin microcrystallite-doped silica glass formed by ion implantation,” Appl. Phys. Lett. 63, 3420–3422 (1993).
[CrossRef]

Horowicz, R. J.

S. Bian, M. Martinelli, and R. J. Horowicz, “Z-scan formula for saturable Kerr media,” Opt. Commun. 172, 347–353 (1999).
[CrossRef]

Hosono, H.

L. Yang, D. H. Osborne, R. F. Haglund, Jr., R. H. Magruder, C. W. White, R. A. Zuhr, and H. Hosono, “Probing interface properties of nanocomposites by third order nonlinear optics,” Appl. Phys. A 62, 403–415 (1996).
[CrossRef]

Huang, Y. L.

Ikushima, A. J.

Inoue, J.

T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, and M. Ueda, “Measurement of nonlinear refractive index by time-resolved z-scan technique,” Opt. Commun. 160, 125–129 (1999).
[CrossRef]

Iqbal, Z.

S. Vijayalakshmi, H. Grebel, Z. Iqbal, and C. W. White, “Ar-tificial dielectrics: nonlinear properties of Si nanoclusters formed by ion implantation in SiO2 glassy matrix,” J. Appl. Phys. 84, 6502–6506 (1998).
[CrossRef]

Jenssen, H. P.

Kaneko, S.

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, “Subpicosecond time response of third order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65, 941–943 (1994).
[CrossRef]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).
[CrossRef]

Kawaguchi, H.

T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, and M. Ueda, “Measurement of nonlinear refractive index by time-resolved z-scan technique,” Opt. Commun. 160, 125–129 (1999).
[CrossRef]

Kawazoe, T.

T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, and M. Ueda, “Measurement of nonlinear refractive index by time-resolved z-scan technique,” Opt. Commun. 160, 125–129 (1999).
[CrossRef]

Kim, Y. B.

Y. Bae, J. J. Song, and Y. B. Kim, “Photoacoustic study of two-photon absorption in hexagonal ZnS,” J. Appl. Phys. 53, 615–619 (1982).
[CrossRef]

Knight, L. V.

Kreibig, U.

F. Hache, D. Richard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys. A 47, 347–357 (1988).
[CrossRef]

Lequien, S.

A. Naudon, D. Babonneau, D. Thiaudière, and S. Lequien, “Grazing-incidence small-angle X-ray scattering applied to the characterization of aggregates in surface regions,” Physica B 283, 69–74 (2000).
[CrossRef]

Liao, H. B.

H. B. Liao, R. F. Xiao, J. S. Fu, and G. K. L. Wong, “Large third order nonlinear optical susceptibility of Au–Al2O3 composite films near the resonant frequency,” Appl. Phys. B 65, 673–676 (1997).
[CrossRef]

Magruder, R. H.

L. Yang, D. H. Osborne, R. F. Haglund, Jr., R. H. Magruder, C. W. White, R. A. Zuhr, and H. Hosono, “Probing interface properties of nanocomposites by third order nonlinear optics,” Appl. Phys. A 62, 403–415 (1996).
[CrossRef]

Magruder III, R. H.

R. F. Haglund, Jr., L. Yang, R. H. Magruder, III, J. E. Wittig, K. Becker, and R. A. Zuhr, “Picosecond nonlinear optical response of a Cu:silica nanocluster composite,” Opt. Lett. 18, 373–375 (1993).
[CrossRef] [PubMed]

R. H. Magruder III, L. Yang, R. F. Haglund, Jr., C. W. White, L. Yang, R. Dorsinville, and R. R. Alfano, “Optical properties of gold nanocluster composites formed by deep ion implantation in silica,” Appl. Phys. Lett. 62, 1730–1732 (1993).
[CrossRef]

Maillotte, H.

F. E. Hernández, A. Marcano, and H. Maillotte, “Sensitivity of the total beam profile distortion z-scan for the measurement of nonlinear refraction,” Opt. Commun. 134, 529–536 (1997).
[CrossRef]

Maillotte, O. H.

Maker, P. D.

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in electric field strength,” Phys. Rev. 137, A801–A818 (1965).
[CrossRef]

Marcano, A.

Martinelli, M.

S. Bian, M. Martinelli, and R. J. Horowicz, “Z-scan formula for saturable Kerr media,” Opt. Commun. 172, 347–353 (1999).
[CrossRef]

Mattei, G.

M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett. 73, 288–290 (1998).
[CrossRef]

Mazzoldi, P.

M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett. 73, 288–290 (1998).
[CrossRef]

McDuff, R. G.

Meng, Z.

X. Zhu and Z. Meng, “The optical nonlinearity and structure for a PbO, TiO2, SiO2 and K2O quaternary glass systems,” J. Appl. Phys. 75, 3756–3760 (1994).
[CrossRef]

Métin, D.

Mian, S. M.

Miller, D. A. B.

Moran, M. J.

M. J. Moran, C. Y. She, and R. L. Carman, “Interferometric measurements of the nonlinear refractive-index coefficient relative to CS2 in laser-system related materials,” IEEE J. Quantum Electron. QE-11, 259–265 (1975).
[CrossRef]

Motohiro, T.

Y. Takeda, T. Hioki, T. Motohiro, and S. Noda, “Large third-order optical nonlinearity of tin microcrystallite-doped silica glass formed by ion implantation,” Appl. Phys. Lett. 63, 3420–3422 (1993).
[CrossRef]

Munoz, A. F.

B. Taheri, A. F. Munoz, W. D. St. John, J. P. Wicksted, R. C. Powell, D. H. Blackburn, and D. C. Cranmer, “Effects of the structure and composition of lead glasses on the thermal lensing of pulsed radiation,” J. Appl. Phys. 71, 3693–3700 (1992).
[CrossRef]

Nakamura, A.

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, “Subpicosecond time response of third order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65, 941–943 (1994).
[CrossRef]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).
[CrossRef]

Naudon, A.

A. Naudon, D. Babonneau, D. Thiaudière, and S. Lequien, “Grazing-incidence small-angle X-ray scattering applied to the characterization of aggregates in surface regions,” Physica B 283, 69–74 (2000).
[CrossRef]

A. Naudon and D. Thiaudière, “Grazing-incidence small-angle scattering. Morphology of deposited clusters and nanostructure of thin films,” J. Appl. Crystallogr. 30, 822–827 (1997).
[CrossRef]

Noda, S.

Y. Takeda, T. Hioki, T. Motohiro, and S. Noda, “Large third-order optical nonlinearity of tin microcrystallite-doped silica glass formed by ion implantation,” Appl. Phys. Lett. 63, 3420–3422 (1993).
[CrossRef]

Omi, S.

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).
[CrossRef]

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, “Subpicosecond time response of third order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65, 941–943 (1994).
[CrossRef]

Osborne, D. H.

J. M. Ballesteros, R. Serna, J. Solís, C. N. Afonso, A. K. Petford-Long, D. H. Osborne, and R. F. Haglund, Jr., “Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third order optical susceptibility,” Appl. Phys. Lett. 71, 2445–2447 (1997).
[CrossRef]

L. Yang, D. H. Osborne, R. F. Haglund, Jr., R. H. Magruder, C. W. White, R. A. Zuhr, and H. Hosono, “Probing interface properties of nanocomposites by third order nonlinear optics,” Appl. Phys. A 62, 403–415 (1996).
[CrossRef]

Oulianov, D. A.

P. Chen, D. A. Oulianov, I. V. Tomov, and P. M. Rentzepis, “Two- dimensional z-scan for arbitrary beam shape and sample thickness,” J. Appl. Phys. 85, 7043–7050 (1999).
[CrossRef]

Owyoung, A.

A. Owyoung, “Ellipse rotation studies in laser host materials,” IEEE J. Quantum Electron. QE-9, 1064–1071 (1973).
[CrossRef]

Payne, S. A.

Petford-Long, A. K.

J. M. Ballesteros, R. Serna, J. Solís, C. N. Afonso, A. K. Petford-Long, D. H. Osborne, and R. F. Haglund, Jr., “Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third order optical susceptibility,” Appl. Phys. Lett. 71, 2445–2447 (1997).
[CrossRef]

Piovesan, M.

M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett. 73, 288–290 (1998).
[CrossRef]

Polloni, R.

M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett. 73, 288–290 (1998).
[CrossRef]

Powell, R. C.

B. Taheri, A. F. Munoz, W. D. St. John, J. P. Wicksted, R. C. Powell, D. H. Blackburn, and D. C. Cranmer, “Effects of the structure and composition of lead glasses on the thermal lensing of pulsed radiation,” J. Appl. Phys. 71, 3693–3700 (1992).
[CrossRef]

Rentzepis, P. M.

P. Chen, D. A. Oulianov, I. V. Tomov, and P. M. Rentzepis, “Two- dimensional z-scan for arbitrary beam shape and sample thickness,” J. Appl. Phys. 85, 7043–7050 (1999).
[CrossRef]

Ricard, D.

Richard, D.

F. Hache, D. Richard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys. A 47, 347–357 (1988).
[CrossRef]

Ricolleau, C.

R. Serna, C. N. Afonso, C. Ricolleau, Y. Wang, Y. Zheng, M. Gandais, and I. Vickridge, “Artificially nanostructured Cu:Al2O3 films produced by pulsed laser deposition,” Appl. Phys. A 71, 583–586 (2000).
[CrossRef]

Roussignol, P.

Said, A. A.

M. Sheik-Bahae, A. A. Said, D. J. Hagan, M. J. Soileau, and E. W. Van Stryland, “Nonlinear refraction and optical limiting in thick media,” Opt. Eng. 30, 1228–1235 (1991).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, and E. W. Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989).
[CrossRef] [PubMed]

Salvetti, G.

M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69, 133–136 (1999).
[CrossRef]

M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett. 73, 288–290 (1998).
[CrossRef]

Sena, A. D.

Serna, R.

R. Serna, C. N. Afonso, C. Ricolleau, Y. Wang, Y. Zheng, M. Gandais, and I. Vickridge, “Artificially nanostructured Cu:Al2O3 films produced by pulsed laser deposition,” Appl. Phys. A 71, 583–586 (2000).
[CrossRef]

J. M. Ballesteros, J. Solís, R. Serna, and C. N. Afonso, “Nanocrystal size dependence of the third order nonlinear optical response of Cu:Al2O3 thin films,” Appl. Phys. Lett. 74, 2791–2793 (1999).
[CrossRef]

J. M. Ballesteros, R. Serna, J. Solís, C. N. Afonso, A. K. Petford-Long, D. H. Osborne, and R. F. Haglund, Jr., “Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third order optical susceptibility,” Appl. Phys. Lett. 71, 2445–2447 (1997).
[CrossRef]

She, C. Y.

M. J. Moran, C. Y. She, and R. L. Carman, “Interferometric measurements of the nonlinear refractive-index coefficient relative to CS2 in laser-system related materials,” IEEE J. Quantum Electron. QE-11, 259–265 (1975).
[CrossRef]

Sheik-Bahae, M.

T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing z-scan measurement of λ/104 wave-front distortion,” Opt. Lett. 19, 317–319 (1994).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, D. J. Hagan, M. J. Soileau, and E. W. Van Stryland, “Nonlinear refraction and optical limiting in thick media,” Opt. Eng. 30, 1228–1235 (1991).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, and E. W. Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989).
[CrossRef] [PubMed]

Sheldon, S. J.

Shen, J.

M. L. Baesso, J. Shen, and R. D. Snook, “Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths,” J. Appl. Phys. 75, 3732–3737 (1994).
[CrossRef]

Smith, P. W.

S. R. Friberg and P. W. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. QE-23, 2089–2094 (1987).
[CrossRef]

Smith, S. D.

Snook, R. D.

M. L. Baesso, J. Shen, and R. D. Snook, “Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths,” J. Appl. Phys. 75, 3732–3737 (1994).
[CrossRef]

Soileau, M. J.

M. Sheik-Bahae, A. A. Said, D. J. Hagan, M. J. Soileau, and E. W. Van Stryland, “Nonlinear refraction and optical limiting in thick media,” Opt. Eng. 30, 1228–1235 (1991).
[CrossRef]

W. E. Williams, M. J. Soileau, and E. W. Van Stryland, “Optical switching and n2 measurements in CS2,” Opt. Commun. 50, 256–260 (1984).
[CrossRef]

Solís, J.

J. M. Ballesteros, J. Solís, R. Serna, and C. N. Afonso, “Nanocrystal size dependence of the third order nonlinear optical response of Cu:Al2O3 thin films,” Appl. Phys. Lett. 74, 2791–2793 (1999).
[CrossRef]

J. M. Ballesteros, R. Serna, J. Solís, C. N. Afonso, A. K. Petford-Long, D. H. Osborne, and R. F. Haglund, Jr., “Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third order optical susceptibility,” Appl. Phys. Lett. 71, 2445–2447 (1997).
[CrossRef]

Song, J. J.

Y. Bae, J. J. Song, and Y. B. Kim, “Photoacoustic study of two-photon absorption in hexagonal ZnS,” J. Appl. Phys. 53, 615–619 (1982).
[CrossRef]

St. John, W. D.

B. Taheri, A. F. Munoz, W. D. St. John, J. P. Wicksted, R. C. Powell, D. H. Blackburn, and D. C. Cranmer, “Effects of the structure and composition of lead glasses on the thermal lensing of pulsed radiation,” J. Appl. Phys. 71, 3693–3700 (1992).
[CrossRef]

Staromlynska, J.

Stryland, E. W.

Sun, C. K.

Taheri, B.

S. M. Mian, B. Taheri, and J. P. Wicksted, “Effects of beam ellipticity on z-scan measurements,” J. Opt. Soc. Am. B 13, 856–863 (1996).
[CrossRef]

B. Taheri, A. F. Munoz, W. D. St. John, J. P. Wicksted, R. C. Powell, D. H. Blackburn, and D. C. Cranmer, “Effects of the structure and composition of lead glasses on the thermal lensing of pulsed radiation,” J. Appl. Phys. 71, 3693–3700 (1992).
[CrossRef]

Takeda, Y.

Y. Takeda, T. Hioki, T. Motohiro, and S. Noda, “Large third-order optical nonlinearity of tin microcrystallite-doped silica glass formed by ion implantation,” Appl. Phys. Lett. 63, 3420–3422 (1993).
[CrossRef]

Tanji, H.

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).
[CrossRef]

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, “Subpicosecond time response of third order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65, 941–943 (1994).
[CrossRef]

Tenório, E.

Terhune, R. W.

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in electric field strength,” Phys. Rev. 137, A801–A818 (1965).
[CrossRef]

Thiaudière, D.

A. Naudon, D. Babonneau, D. Thiaudière, and S. Lequien, “Grazing-incidence small-angle X-ray scattering applied to the characterization of aggregates in surface regions,” Physica B 283, 69–74 (2000).
[CrossRef]

A. Naudon and D. Thiaudière, “Grazing-incidence small-angle scattering. Morphology of deposited clusters and nanostructure of thin films,” J. Appl. Crystallogr. 30, 822–827 (1997).
[CrossRef]

Thorne, J. M.

Tokizaki, T.

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, “Subpicosecond time response of third order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65, 941–943 (1994).
[CrossRef]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).
[CrossRef]

Tomov, I. V.

P. Chen, D. A. Oulianov, I. V. Tomov, and P. M. Rentzepis, “Two- dimensional z-scan for arbitrary beam shape and sample thickness,” J. Appl. Phys. 85, 7043–7050 (1999).
[CrossRef]

Uchida, K.

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).
[CrossRef]

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, “Subpicosecond time response of third order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65, 941–943 (1994).
[CrossRef]

Ueda, M.

T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, and M. Ueda, “Measurement of nonlinear refractive index by time-resolved z-scan technique,” Opt. Commun. 160, 125–129 (1999).
[CrossRef]

Van Stryland, E. W.

T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing z-scan measurement of λ/104 wave-front distortion,” Opt. Lett. 19, 317–319 (1994).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, D. J. Hagan, M. J. Soileau, and E. W. Van Stryland, “Nonlinear refraction and optical limiting in thick media,” Opt. Eng. 30, 1228–1235 (1991).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

W. E. Williams, M. J. Soileau, and E. W. Van Stryland, “Optical switching and n2 measurements in CS2,” Opt. Commun. 50, 256–260 (1984).
[CrossRef]

Vickridge, I.

R. Serna, C. N. Afonso, C. Ricolleau, Y. Wang, Y. Zheng, M. Gandais, and I. Vickridge, “Artificially nanostructured Cu:Al2O3 films produced by pulsed laser deposition,” Appl. Phys. A 71, 583–586 (2000).
[CrossRef]

Vijayalakshmi, S.

S. Vijayalakshmi, H. Grebel, Z. Iqbal, and C. W. White, “Ar-tificial dielectrics: nonlinear properties of Si nanoclusters formed by ion implantation in SiO2 glassy matrix,” J. Appl. Phys. 84, 6502–6506 (1998).
[CrossRef]

Wang, Y.

R. Serna, C. N. Afonso, C. Ricolleau, Y. Wang, Y. Zheng, M. Gandais, and I. Vickridge, “Artificially nanostructured Cu:Al2O3 films produced by pulsed laser deposition,” Appl. Phys. A 71, 583–586 (2000).
[CrossRef]

Weaire, D.

Wei, T.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Wherrett, B. S.

White, C. W.

S. Vijayalakshmi, H. Grebel, Z. Iqbal, and C. W. White, “Ar-tificial dielectrics: nonlinear properties of Si nanoclusters formed by ion implantation in SiO2 glassy matrix,” J. Appl. Phys. 84, 6502–6506 (1998).
[CrossRef]

L. Yang, D. H. Osborne, R. F. Haglund, Jr., R. H. Magruder, C. W. White, R. A. Zuhr, and H. Hosono, “Probing interface properties of nanocomposites by third order nonlinear optics,” Appl. Phys. A 62, 403–415 (1996).
[CrossRef]

R. H. Magruder III, L. Yang, R. F. Haglund, Jr., C. W. White, L. Yang, R. Dorsinville, and R. R. Alfano, “Optical properties of gold nanocluster composites formed by deep ion implantation in silica,” Appl. Phys. Lett. 62, 1730–1732 (1993).
[CrossRef]

Wicksted, J. P.

S. M. Mian, B. Taheri, and J. P. Wicksted, “Effects of beam ellipticity on z-scan measurements,” J. Opt. Soc. Am. B 13, 856–863 (1996).
[CrossRef]

B. Taheri, A. F. Munoz, W. D. St. John, J. P. Wicksted, R. C. Powell, D. H. Blackburn, and D. C. Cranmer, “Effects of the structure and composition of lead glasses on the thermal lensing of pulsed radiation,” J. Appl. Phys. 71, 3693–3700 (1992).
[CrossRef]

Williams, W. E.

W. E. Williams, M. J. Soileau, and E. W. Van Stryland, “Optical switching and n2 measurements in CS2,” Opt. Commun. 50, 256–260 (1984).
[CrossRef]

Wittig, J. E.

Wong, G. K. L.

H. B. Liao, R. F. Xiao, J. S. Fu, and G. K. L. Wong, “Large third order nonlinear optical susceptibility of Au–Al2O3 composite films near the resonant frequency,” Appl. Phys. B 65, 673–676 (1997).
[CrossRef]

Xia, T.

Xiao, R. F.

H. B. Liao, R. F. Xiao, J. S. Fu, and G. K. L. Wong, “Large third order nonlinear optical susceptibility of Au–Al2O3 composite films near the resonant frequency,” Appl. Phys. B 65, 673–676 (1997).
[CrossRef]

Yang, L.

L. Yang, D. H. Osborne, R. F. Haglund, Jr., R. H. Magruder, C. W. White, R. A. Zuhr, and H. Hosono, “Probing interface properties of nanocomposites by third order nonlinear optics,” Appl. Phys. A 62, 403–415 (1996).
[CrossRef]

R. F. Haglund, Jr., L. Yang, R. H. Magruder, III, J. E. Wittig, K. Becker, and R. A. Zuhr, “Picosecond nonlinear optical response of a Cu:silica nanocluster composite,” Opt. Lett. 18, 373–375 (1993).
[CrossRef] [PubMed]

R. H. Magruder III, L. Yang, R. F. Haglund, Jr., C. W. White, L. Yang, R. Dorsinville, and R. R. Alfano, “Optical properties of gold nanocluster composites formed by deep ion implantation in silica,” Appl. Phys. Lett. 62, 1730–1732 (1993).
[CrossRef]

R. H. Magruder III, L. Yang, R. F. Haglund, Jr., C. W. White, L. Yang, R. Dorsinville, and R. R. Alfano, “Optical properties of gold nanocluster composites formed by deep ion implantation in silica,” Appl. Phys. Lett. 62, 1730–1732 (1993).
[CrossRef]

Zheng, Y.

R. Serna, C. N. Afonso, C. Ricolleau, Y. Wang, Y. Zheng, M. Gandais, and I. Vickridge, “Artificially nanostructured Cu:Al2O3 films produced by pulsed laser deposition,” Appl. Phys. A 71, 583–586 (2000).
[CrossRef]

Zhu, X.

X. Zhu and Z. Meng, “The optical nonlinearity and structure for a PbO, TiO2, SiO2 and K2O quaternary glass systems,” J. Appl. Phys. 75, 3756–3760 (1994).
[CrossRef]

Zuhr, R. A.

L. Yang, D. H. Osborne, R. F. Haglund, Jr., R. H. Magruder, C. W. White, R. A. Zuhr, and H. Hosono, “Probing interface properties of nanocomposites by third order nonlinear optics,” Appl. Phys. A 62, 403–415 (1996).
[CrossRef]

R. F. Haglund, Jr., L. Yang, R. H. Magruder, III, J. E. Wittig, K. Becker, and R. A. Zuhr, “Picosecond nonlinear optical response of a Cu:silica nanocluster composite,” Opt. Lett. 18, 373–375 (1993).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. A (3)

F. Hache, D. Richard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys. A 47, 347–357 (1988).
[CrossRef]

R. Serna, C. N. Afonso, C. Ricolleau, Y. Wang, Y. Zheng, M. Gandais, and I. Vickridge, “Artificially nanostructured Cu:Al2O3 films produced by pulsed laser deposition,” Appl. Phys. A 71, 583–586 (2000).
[CrossRef]

L. Yang, D. H. Osborne, R. F. Haglund, Jr., R. H. Magruder, C. W. White, R. A. Zuhr, and H. Hosono, “Probing interface properties of nanocomposites by third order nonlinear optics,” Appl. Phys. A 62, 403–415 (1996).
[CrossRef]

Appl. Phys. B (2)

H. B. Liao, R. F. Xiao, J. S. Fu, and G. K. L. Wong, “Large third order nonlinear optical susceptibility of Au–Al2O3 composite films near the resonant frequency,” Appl. Phys. B 65, 673–676 (1997).
[CrossRef]

M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69, 133–136 (1999).
[CrossRef]

Appl. Phys. Lett. (6)

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, “Subpicosecond time response of third order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65, 941–943 (1994).
[CrossRef]

R. H. Magruder III, L. Yang, R. F. Haglund, Jr., C. W. White, L. Yang, R. Dorsinville, and R. R. Alfano, “Optical properties of gold nanocluster composites formed by deep ion implantation in silica,” Appl. Phys. Lett. 62, 1730–1732 (1993).
[CrossRef]

J. M. Ballesteros, R. Serna, J. Solís, C. N. Afonso, A. K. Petford-Long, D. H. Osborne, and R. F. Haglund, Jr., “Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third order optical susceptibility,” Appl. Phys. Lett. 71, 2445–2447 (1997).
[CrossRef]

J. M. Ballesteros, J. Solís, R. Serna, and C. N. Afonso, “Nanocrystal size dependence of the third order nonlinear optical response of Cu:Al2O3 thin films,” Appl. Phys. Lett. 74, 2791–2793 (1999).
[CrossRef]

M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett. 73, 288–290 (1998).
[CrossRef]

Y. Takeda, T. Hioki, T. Motohiro, and S. Noda, “Large third-order optical nonlinearity of tin microcrystallite-doped silica glass formed by ion implantation,” Appl. Phys. Lett. 63, 3420–3422 (1993).
[CrossRef]

IEEE J. Quantum Electron. (4)

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

S. R. Friberg and P. W. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. QE-23, 2089–2094 (1987).
[CrossRef]

M. J. Moran, C. Y. She, and R. L. Carman, “Interferometric measurements of the nonlinear refractive-index coefficient relative to CS2 in laser-system related materials,” IEEE J. Quantum Electron. QE-11, 259–265 (1975).
[CrossRef]

A. Owyoung, “Ellipse rotation studies in laser host materials,” IEEE J. Quantum Electron. QE-9, 1064–1071 (1973).
[CrossRef]

J. Appl. Crystallogr. (1)

A. Naudon and D. Thiaudière, “Grazing-incidence small-angle scattering. Morphology of deposited clusters and nanostructure of thin films,” J. Appl. Crystallogr. 30, 822–827 (1997).
[CrossRef]

J. Appl. Phys. (6)

Y. Bae, J. J. Song, and Y. B. Kim, “Photoacoustic study of two-photon absorption in hexagonal ZnS,” J. Appl. Phys. 53, 615–619 (1982).
[CrossRef]

P. Chen, D. A. Oulianov, I. V. Tomov, and P. M. Rentzepis, “Two- dimensional z-scan for arbitrary beam shape and sample thickness,” J. Appl. Phys. 85, 7043–7050 (1999).
[CrossRef]

M. L. Baesso, J. Shen, and R. D. Snook, “Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths,” J. Appl. Phys. 75, 3732–3737 (1994).
[CrossRef]

S. Vijayalakshmi, H. Grebel, Z. Iqbal, and C. W. White, “Ar-tificial dielectrics: nonlinear properties of Si nanoclusters formed by ion implantation in SiO2 glassy matrix,” J. Appl. Phys. 84, 6502–6506 (1998).
[CrossRef]

X. Zhu and Z. Meng, “The optical nonlinearity and structure for a PbO, TiO2, SiO2 and K2O quaternary glass systems,” J. Appl. Phys. 75, 3756–3760 (1994).
[CrossRef]

B. Taheri, A. F. Munoz, W. D. St. John, J. P. Wicksted, R. C. Powell, D. H. Blackburn, and D. C. Cranmer, “Effects of the structure and composition of lead glasses on the thermal lensing of pulsed radiation,” J. Appl. Phys. 71, 3693–3700 (1992).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

M. Falconieri, “Thermo-optical effects in z-scan measurements using high-repetition-rate lasers,” J. Opt. A: Pure Appl. Opt. 1, 662–667 (1999).
[CrossRef]

J. Opt. Soc. Am. B (8)

A. A. Andrade, E. Tenório, T. Catunda, M. L. Baesso, A. Cassanho, and H. P. Jenssen, “Discrimination between electronic and thermal contributions to the nonlinear refractive index of SrAlF5:Cr+3,” J. Opt. Soc. Am. B 16, 395–400 (1999).
[CrossRef]

Y. M. Cheung and S. K. Gayen, “Optical nonlinearities of tea studied by z-scan and four-wave mixing techniques,” J. Opt. Soc. Am. B 11, 636–643 (1994).
[CrossRef]

P. B. Chapple, J. Staromlynska, and R. G. McDuff, “Z-scan studies in the thin- and the thick-sample limits,” J. Opt. Soc. Am. B 11, 975–982 (1994).
[CrossRef]

A. Marcano, F. E. Hernández, and A. D. Sena, “Two-color near-field eclipsing z-scan technique for the determination of nonlinear refraction,” J. Opt. Soc. Am. B 14, 3363–3367 (1997).
[CrossRef]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).
[CrossRef]

S. M. Mian, B. Taheri, and J. P. Wicksted, “Effects of beam ellipticity on z-scan measurements,” J. Opt. Soc. Am. B 13, 856–863 (1996).
[CrossRef]

Y. L. Huang and C. K. Sun, “Z-scan measurement with an astigmatic Gaussian beam,” J. Opt. Soc. Am. B 17, 43–47 (2000).
[CrossRef]

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” J. Opt. Soc. Am. B 4, 875–881 (1987).
[CrossRef]

Nucl. Instrum. Methods B (1)

L. R. Doolittle, “Algorithms for the rapid simulation of Rutherford backscattering spectra,” Nucl. Instrum. Methods B 9, 344–351 (1985).
[CrossRef]

Opt. Commun. (4)

W. E. Williams, M. J. Soileau, and E. W. Van Stryland, “Optical switching and n2 measurements in CS2,” Opt. Commun. 50, 256–260 (1984).
[CrossRef]

F. E. Hernández, A. Marcano, and H. Maillotte, “Sensitivity of the total beam profile distortion z-scan for the measurement of nonlinear refraction,” Opt. Commun. 134, 529–536 (1997).
[CrossRef]

S. Bian, M. Martinelli, and R. J. Horowicz, “Z-scan formula for saturable Kerr media,” Opt. Commun. 172, 347–353 (1999).
[CrossRef]

T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, and M. Ueda, “Measurement of nonlinear refractive index by time-resolved z-scan technique,” Opt. Commun. 160, 125–129 (1999).
[CrossRef]

Opt. Eng. (1)

M. Sheik-Bahae, A. A. Said, D. J. Hagan, M. J. Soileau, and E. W. Van Stryland, “Nonlinear refraction and optical limiting in thick media,” Opt. Eng. 30, 1228–1235 (1991).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. (1)

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in electric field strength,” Phys. Rev. 137, A801–A818 (1965).
[CrossRef]

Physica B (1)

A. Naudon, D. Babonneau, D. Thiaudière, and S. Lequien, “Grazing-incidence small-angle X-ray scattering applied to the characterization of aggregates in surface regions,” Physica B 283, 69–74 (2000).
[CrossRef]

Other (4)

Peak power refers to the maximum power of the laser pulse and the mean power to the total power of the train of pulses. Intensity refers to the energy density, i.e., the power of a laser pulse (peak or total) divided by the area of the laser beam.

R. L. Sutherland, ed., Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996).

R. F. Haglund, Handbook of Optical Properties. Vol. II: Optics of Small Particles, Interfaces and Surfaces, R. E. Hummel and P. Wissmann, eds. (CRC Press, Boca Raton, Fla., 1997).

L. Yang, “Nonlinear optics of noble metal crystallites embedded in a dielectric matrix,” Ph.D. dissertation (Vanderbilt University, Nashville, Tenn., 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup used for the forward folded-box degenerate four-wave mixing experiments. NL, nonlinear (sample).

Fig. 2
Fig. 2

Experimental setup used for the Z-scan experiment: Ref Pd, reference photodetector; FF PD, far-field photodetector; NF PD, near-field photodetector. The plots show the typical shape of the far-field Z scan for n2>0 (upper graph) and the typical near-field Z scan for β<0 (lower graph).

Fig. 3
Fig. 3

Intensity of the conjugated beam as a function of pump intensity in the DFWM experiment for Cu:Al2O3 samples on glass with a Cu content of (stars) 12×1016 at/cm2, (filled squares) 9.5×1016 at/cm2, and for (hollow circles) a 5-mm-thick CS2 cell. The dotted curves correspond to cubic fits of the data. The absorption spectrum of the sample with a Cu content of 12×1016 at/cm2 is shown in the upper-left-corner inset. The surface-plasmon resonance can be observed at ∼620 nm. The arrow indicates the excitation wavelength used in the Z-scan and degenerate four-wave mixing experiments.

Fig. 4
Fig. 4

Experimental far-field Z-scan results in the Cu:Al2O3 sample on glass with a Cu content of 12×1016 at/cm2. The corresponding repetition rates and peak powers are the following: (filled triangles) 400 kHz, 1 kW; (filled circles) 800 kHz, 1 kW; (hollow inverted triangles) 4 MHz, 0.44 kW; (hollow circles) 40 MHz, 0.055 kW. The curves are guides to the eye. The dashed curves corresponds to the Z-scan profile calculated by assuming the χ(3) value measured through DFWM [χ(3)=(8±4)×10-8 esu].

Fig. 5
Fig. 5

Peak-to-valley transmittance change (ΔTp-v) as a function of the mean power of the laser beam obtained from the Z scans in the Cu:Al2O3 sample on glass with a Cu content of 12×1016 at/cm2. The mean power was varied either by changing the repetition rate while keeping the peak power constant (filled symbols) or by changing both the repetition rate and peak power (hollow symbols): (solid squares) 80 kHz, 1 kW; (solid triangles) 400 kHz, 1 kW; (solid circles) 800 kHz, 1 kW; (hollow diamonds) 4 MHz, 0.26 kW; (hollow inverted triangles) 4 MHz, 0.44 kW; (hollow squares) 40 MHz, 0.042 kW; and (hollow circles) 40 MHz, 0.055 kW.

Fig. 6
Fig. 6

Far-field Z-scan results obtained in the Cu:Al2O3 samples with lower Cu content (9.5×1016 at/cm2) grown on different substrates: (solid circles) sapphire, (hollow squares) glass, and (hollow triangles) silica, with a peak power of 1 kW and a repetition rate of 4 MHz. The peak power density was Ppeak=4×108 W/cm2.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

χS(3)=nSnref2LrefLSbSbref1/2αL exp(αL/2)1-exp(-αL)χref(3),
n=n0+n2I,
T(z, ΔΦ0)1-4ΔΦ0z/z0(z2/z02+9)(z2/z02+1),
ΔΦ0=2πλLeffn2I0,
ΔTp-v=0.406ΔΦ0,Δzp-v=1.7z0.
Re χ(3)(esu)=n020.0395n2(cm2/W).

Metrics