Abstract

The phenomenon of modulation instability of continuous-wave (cw) solutions of the cubic–quintic complex Ginzburg–Landau equation is studied. It is shown that low-amplitude cw solutions are always unstable. For higher-amplitude cw solutions, there are regions of stability and regions where the cw solutions are modulationally unstable. It is found that there is an indirect relation between the stability of the soliton solutions and the modulation instability of the higher-amplitude cw solutions. However, there is no one-to-one correspondence between the two. We show that the evolution of modulationally unstable cw’s depends on the system parameters.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (43)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription