Abstract

Thin films of polyetherketone guest–host polymer doped with 3-(1,1-dicyanothenyl)-1-phenyl-4, 5-dihydro-1H-pryazole were prepared. Linear electro-optic coefficients of poled-polymer films have been determined at λ=632.8 nm by use of a simple interferometric technique. Temporal and temperature stability of the poled-polymer film was measured by probing linear electro-optic activity and second-harmonic signal intensity, respectively. For the poled-polymer films the lower-order optical waveguide-transmission losses were measured at 632.8 nm. The measurements showed that the optical loss of the fundamental mode was less than 0.5 dB cm-1 for transverse electric-field polarization.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
    [CrossRef]
  2. S. M. Marder, B. Kippelen, A. K.-Y. Jen, and N. Peyghambarian, “Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications,” Nature (London) 388, 845–851 (1997).
    [CrossRef]
  3. W. Shi, C. S. Fang, Q. W. Pan, X. Sun, and Q. T. Gu, “Modeling and scaling of chielectric relaxation in NLO polymers,” Acta Phys. Sin. 8, 831–837 (1999).
  4. W. Shi, Z. Y. Zhang, C. Fang, Q. Pan, and Q. Gu, “Nonlinear optical properties and chromophore electrostatic interactions for the polyetherketone guest–host polymer films,” Macromolecules 34, 2002–2007 (2001).
    [CrossRef]
  5. L. R. Dalton, “Polymeric electro-optic modulators,” Chem. Industry 7, 510–514 (1997).
  6. A. Chen, V. Chuyanov, S. Garner, H. Zhan, W. H. Steier, J. Chen, J. Zhu, F. Wang, M. He, S. S. H. Mao, and L. R. Dalton, “Low-Vπ electro-optic modulator with a high-μβ chromophore and a constant-bias field,” Opt. Lett. 23, 478–480 (1998).
    [CrossRef]
  7. M. Nakanishi, O. Sugihara, N. Okamoto, and K. Hirota, “Ultraviolet photobleaching process of azo dye doped polymer and silica films for fabrication of nonlinear optical waveguides,” Appl. Opt. 37, 1068–1073 (1998).
    [CrossRef]
  8. A. W. Harper, S. Sun, L. R. Dalton, S. M. Garner, A. Chen, S. Kalluri, and W. H. Steier, “Translating microscopic optical nonlinearity into macroscopic optical nonlinearity: the role of chromophore chromophore electrostatic interactions,” J. Opt. Soc. Am. B 15, 329–337 (1998).
    [CrossRef]
  9. P. Günther and Z. Xia, “Transport of detrapped charges in thermally wet grown SiO2 electrets,” J. Appl. Phys. 74, 7269–7274 (1993).
    [CrossRef]
  10. R. Blum, M. Sprave, J. Sablotny, and M. Eich, “High-electric-field poling of nonlinear optical polymers,” J. Opt. Soc. Am. B 15, 318–328 (1998).
    [CrossRef]
  11. G. M. Sessler, Electrets (Springer, Heidelberg, 1987).
  12. H.-J. Winkelhahn, H. H. Winter, and D. Neher, “Piezoelectricity and electrostriction of dye-doped polymer,” Appl. Phys. Lett. 64, 1347–1349 (1994).
    [CrossRef]
  13. R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G. C. Bjorklund, and C. G. Wilson, “Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films,” J. Opt. Soc. Am. B 7, 1239–1250 (1990).
    [CrossRef]
  14. W. Shi, C. Fang, Q. Pan, Q. Gu, D. Xu, H. Z. Wei, and J. Z. Yu, “Measurement of the optical transmission modes and losses of the poled guest–host polymer NAEC/PEK-c planar waveguides,” Opt. Lasers Eng. 33, 21–28 (2000).
    [CrossRef]
  15. W. Shi, C. Fang, Q. Pan, Q. Gu, D. Xu, H. Z. Wei, and J. Z. Yu, “Refractive index dispersion measurement on nonlinear optical polymer using V-prism refractometer,” Opt. Lasers Eng. 32, 41–47 (1999).
    [CrossRef]
  16. W. Shi, S. Guo, C. Fang, D. Xu, and Q. Ren, “Poling and properties of nano-composite thin film PT/PEK-c,” J. Mater. Sci. 34, 5995–5998 (1999).
    [CrossRef]
  17. K. D. Singer, M. G. Kuzyk, and E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
    [CrossRef]
  18. F. Ghebremichael, M. G. Kuzyk, K. D. Singer, and J. H. Andrews, “Relationship between the second-order microscopic and macroscopic nonlinear optical susceptibilities of poled dye-doped polymers,” J. Opt. Soc. Am. B 15, 2294–2297 (1998).
    [CrossRef]
  19. Ph. Pretre, L.-M. Wu, A. Knoesen, and J. D. Swalen, “Optical properties of nonlinear optical polymers: a method for calculation,” J. Opt. Soc. Am. B 15, 359–368 (1998).
    [CrossRef]
  20. M. Stahelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. J. Twieg, W. Volksen, and C. A. Walsh, “Re-evaluation of the thermal stability of optically nonlinear polymeric guest–host system,” Appl. Phys. Lett. 61, 1626–1628 (1992).
    [CrossRef]
  21. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, Berlin, 1985).
  22. F. P. Strohkendl, D. Fluck, P. Günter, R. Irmsher, and C. Buchal, “Nonleaky optical waveguides in KNbO3 by ultralow dose MeV He ion implantation,” Appl. Phys. Lett. 59, 3354–3356 (1991).
    [CrossRef]
  23. D. Kip, S. Aulkemyer, and P. Moretti, “Low-loss planar optical waveguides in strontium barium niobate crystals formed by ion-beam implantation,” Opt. Lett. 20, 1256–1258 (1995).
    [CrossRef] [PubMed]

2001 (1)

W. Shi, Z. Y. Zhang, C. Fang, Q. Pan, and Q. Gu, “Nonlinear optical properties and chromophore electrostatic interactions for the polyetherketone guest–host polymer films,” Macromolecules 34, 2002–2007 (2001).
[CrossRef]

2000 (1)

W. Shi, C. Fang, Q. Pan, Q. Gu, D. Xu, H. Z. Wei, and J. Z. Yu, “Measurement of the optical transmission modes and losses of the poled guest–host polymer NAEC/PEK-c planar waveguides,” Opt. Lasers Eng. 33, 21–28 (2000).
[CrossRef]

1999 (3)

W. Shi, C. Fang, Q. Pan, Q. Gu, D. Xu, H. Z. Wei, and J. Z. Yu, “Refractive index dispersion measurement on nonlinear optical polymer using V-prism refractometer,” Opt. Lasers Eng. 32, 41–47 (1999).
[CrossRef]

W. Shi, S. Guo, C. Fang, D. Xu, and Q. Ren, “Poling and properties of nano-composite thin film PT/PEK-c,” J. Mater. Sci. 34, 5995–5998 (1999).
[CrossRef]

W. Shi, C. S. Fang, Q. W. Pan, X. Sun, and Q. T. Gu, “Modeling and scaling of chielectric relaxation in NLO polymers,” Acta Phys. Sin. 8, 831–837 (1999).

1998 (6)

1997 (2)

L. R. Dalton, “Polymeric electro-optic modulators,” Chem. Industry 7, 510–514 (1997).

S. M. Marder, B. Kippelen, A. K.-Y. Jen, and N. Peyghambarian, “Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications,” Nature (London) 388, 845–851 (1997).
[CrossRef]

1995 (1)

1994 (2)

H.-J. Winkelhahn, H. H. Winter, and D. Neher, “Piezoelectricity and electrostriction of dye-doped polymer,” Appl. Phys. Lett. 64, 1347–1349 (1994).
[CrossRef]

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
[CrossRef]

1993 (1)

P. Günther and Z. Xia, “Transport of detrapped charges in thermally wet grown SiO2 electrets,” J. Appl. Phys. 74, 7269–7274 (1993).
[CrossRef]

1992 (1)

M. Stahelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. J. Twieg, W. Volksen, and C. A. Walsh, “Re-evaluation of the thermal stability of optically nonlinear polymeric guest–host system,” Appl. Phys. Lett. 61, 1626–1628 (1992).
[CrossRef]

1991 (1)

F. P. Strohkendl, D. Fluck, P. Günter, R. Irmsher, and C. Buchal, “Nonleaky optical waveguides in KNbO3 by ultralow dose MeV He ion implantation,” Appl. Phys. Lett. 59, 3354–3356 (1991).
[CrossRef]

1990 (1)

1987 (1)

Andrews, J. H.

Aulkemyer, S.

Bjorklund, G. C.

Blum, R.

Buchal, C.

F. P. Strohkendl, D. Fluck, P. Günter, R. Irmsher, and C. Buchal, “Nonleaky optical waveguides in KNbO3 by ultralow dose MeV He ion implantation,” Appl. Phys. Lett. 59, 3354–3356 (1991).
[CrossRef]

Burland, D. M.

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
[CrossRef]

M. Stahelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. J. Twieg, W. Volksen, and C. A. Walsh, “Re-evaluation of the thermal stability of optically nonlinear polymeric guest–host system,” Appl. Phys. Lett. 61, 1626–1628 (1992).
[CrossRef]

Chen, A.

Chen, J.

Chuyanov, V.

Dalton, L. R.

Ebert, M.

M. Stahelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. J. Twieg, W. Volksen, and C. A. Walsh, “Re-evaluation of the thermal stability of optically nonlinear polymeric guest–host system,” Appl. Phys. Lett. 61, 1626–1628 (1992).
[CrossRef]

Eich, M.

Fang, C.

W. Shi, Z. Y. Zhang, C. Fang, Q. Pan, and Q. Gu, “Nonlinear optical properties and chromophore electrostatic interactions for the polyetherketone guest–host polymer films,” Macromolecules 34, 2002–2007 (2001).
[CrossRef]

W. Shi, C. Fang, Q. Pan, Q. Gu, D. Xu, H. Z. Wei, and J. Z. Yu, “Measurement of the optical transmission modes and losses of the poled guest–host polymer NAEC/PEK-c planar waveguides,” Opt. Lasers Eng. 33, 21–28 (2000).
[CrossRef]

W. Shi, C. Fang, Q. Pan, Q. Gu, D. Xu, H. Z. Wei, and J. Z. Yu, “Refractive index dispersion measurement on nonlinear optical polymer using V-prism refractometer,” Opt. Lasers Eng. 32, 41–47 (1999).
[CrossRef]

W. Shi, S. Guo, C. Fang, D. Xu, and Q. Ren, “Poling and properties of nano-composite thin film PT/PEK-c,” J. Mater. Sci. 34, 5995–5998 (1999).
[CrossRef]

Fang, C. S.

W. Shi, C. S. Fang, Q. W. Pan, X. Sun, and Q. T. Gu, “Modeling and scaling of chielectric relaxation in NLO polymers,” Acta Phys. Sin. 8, 831–837 (1999).

Fluck, D.

F. P. Strohkendl, D. Fluck, P. Günter, R. Irmsher, and C. Buchal, “Nonleaky optical waveguides in KNbO3 by ultralow dose MeV He ion implantation,” Appl. Phys. Lett. 59, 3354–3356 (1991).
[CrossRef]

Garner, S.

Garner, S. M.

Ghebremichael, F.

Gu, Q.

W. Shi, Z. Y. Zhang, C. Fang, Q. Pan, and Q. Gu, “Nonlinear optical properties and chromophore electrostatic interactions for the polyetherketone guest–host polymer films,” Macromolecules 34, 2002–2007 (2001).
[CrossRef]

W. Shi, C. Fang, Q. Pan, Q. Gu, D. Xu, H. Z. Wei, and J. Z. Yu, “Measurement of the optical transmission modes and losses of the poled guest–host polymer NAEC/PEK-c planar waveguides,” Opt. Lasers Eng. 33, 21–28 (2000).
[CrossRef]

W. Shi, C. Fang, Q. Pan, Q. Gu, D. Xu, H. Z. Wei, and J. Z. Yu, “Refractive index dispersion measurement on nonlinear optical polymer using V-prism refractometer,” Opt. Lasers Eng. 32, 41–47 (1999).
[CrossRef]

Gu, Q. T.

W. Shi, C. S. Fang, Q. W. Pan, X. Sun, and Q. T. Gu, “Modeling and scaling of chielectric relaxation in NLO polymers,” Acta Phys. Sin. 8, 831–837 (1999).

Günter, P.

F. P. Strohkendl, D. Fluck, P. Günter, R. Irmsher, and C. Buchal, “Nonleaky optical waveguides in KNbO3 by ultralow dose MeV He ion implantation,” Appl. Phys. Lett. 59, 3354–3356 (1991).
[CrossRef]

Günther, P.

P. Günther and Z. Xia, “Transport of detrapped charges in thermally wet grown SiO2 electrets,” J. Appl. Phys. 74, 7269–7274 (1993).
[CrossRef]

Guo, S.

W. Shi, S. Guo, C. Fang, D. Xu, and Q. Ren, “Poling and properties of nano-composite thin film PT/PEK-c,” J. Mater. Sci. 34, 5995–5998 (1999).
[CrossRef]

Harper, A. W.

He, M.

Hirota, K.

Irmsher, R.

F. P. Strohkendl, D. Fluck, P. Günter, R. Irmsher, and C. Buchal, “Nonleaky optical waveguides in KNbO3 by ultralow dose MeV He ion implantation,” Appl. Phys. Lett. 59, 3354–3356 (1991).
[CrossRef]

Jen, A. K.-Y.

S. M. Marder, B. Kippelen, A. K.-Y. Jen, and N. Peyghambarian, “Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications,” Nature (London) 388, 845–851 (1997).
[CrossRef]

Jurich, M. C.

Kalluri, S.

Kip, D.

Kippelen, B.

S. M. Marder, B. Kippelen, A. K.-Y. Jen, and N. Peyghambarian, “Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications,” Nature (London) 388, 845–851 (1997).
[CrossRef]

Knoesen, A.

Kuzyk, M. G.

Mao, S. S. H.

Marder, S. M.

S. M. Marder, B. Kippelen, A. K.-Y. Jen, and N. Peyghambarian, “Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications,” Nature (London) 388, 845–851 (1997).
[CrossRef]

Miller, R. D.

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
[CrossRef]

M. Stahelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. J. Twieg, W. Volksen, and C. A. Walsh, “Re-evaluation of the thermal stability of optically nonlinear polymeric guest–host system,” Appl. Phys. Lett. 61, 1626–1628 (1992).
[CrossRef]

Moretti, P.

Nakanishi, M.

Neher, D.

H.-J. Winkelhahn, H. H. Winter, and D. Neher, “Piezoelectricity and electrostriction of dye-doped polymer,” Appl. Phys. Lett. 64, 1347–1349 (1994).
[CrossRef]

Okamoto, N.

Page, R. H.

Pan, Q.

W. Shi, Z. Y. Zhang, C. Fang, Q. Pan, and Q. Gu, “Nonlinear optical properties and chromophore electrostatic interactions for the polyetherketone guest–host polymer films,” Macromolecules 34, 2002–2007 (2001).
[CrossRef]

W. Shi, C. Fang, Q. Pan, Q. Gu, D. Xu, H. Z. Wei, and J. Z. Yu, “Measurement of the optical transmission modes and losses of the poled guest–host polymer NAEC/PEK-c planar waveguides,” Opt. Lasers Eng. 33, 21–28 (2000).
[CrossRef]

W. Shi, C. Fang, Q. Pan, Q. Gu, D. Xu, H. Z. Wei, and J. Z. Yu, “Refractive index dispersion measurement on nonlinear optical polymer using V-prism refractometer,” Opt. Lasers Eng. 32, 41–47 (1999).
[CrossRef]

Pan, Q. W.

W. Shi, C. S. Fang, Q. W. Pan, X. Sun, and Q. T. Gu, “Modeling and scaling of chielectric relaxation in NLO polymers,” Acta Phys. Sin. 8, 831–837 (1999).

Peyghambarian, N.

S. M. Marder, B. Kippelen, A. K.-Y. Jen, and N. Peyghambarian, “Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications,” Nature (London) 388, 845–851 (1997).
[CrossRef]

Pretre, Ph.

Reck, B.

Ren, Q.

W. Shi, S. Guo, C. Fang, D. Xu, and Q. Ren, “Poling and properties of nano-composite thin film PT/PEK-c,” J. Mater. Sci. 34, 5995–5998 (1999).
[CrossRef]

Sablotny, J.

Sen, A.

Shi, W.

W. Shi, Z. Y. Zhang, C. Fang, Q. Pan, and Q. Gu, “Nonlinear optical properties and chromophore electrostatic interactions for the polyetherketone guest–host polymer films,” Macromolecules 34, 2002–2007 (2001).
[CrossRef]

W. Shi, C. Fang, Q. Pan, Q. Gu, D. Xu, H. Z. Wei, and J. Z. Yu, “Measurement of the optical transmission modes and losses of the poled guest–host polymer NAEC/PEK-c planar waveguides,” Opt. Lasers Eng. 33, 21–28 (2000).
[CrossRef]

W. Shi, C. Fang, Q. Pan, Q. Gu, D. Xu, H. Z. Wei, and J. Z. Yu, “Refractive index dispersion measurement on nonlinear optical polymer using V-prism refractometer,” Opt. Lasers Eng. 32, 41–47 (1999).
[CrossRef]

W. Shi, C. S. Fang, Q. W. Pan, X. Sun, and Q. T. Gu, “Modeling and scaling of chielectric relaxation in NLO polymers,” Acta Phys. Sin. 8, 831–837 (1999).

W. Shi, S. Guo, C. Fang, D. Xu, and Q. Ren, “Poling and properties of nano-composite thin film PT/PEK-c,” J. Mater. Sci. 34, 5995–5998 (1999).
[CrossRef]

Singer, K. D.

Smith, B. A.

M. Stahelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. J. Twieg, W. Volksen, and C. A. Walsh, “Re-evaluation of the thermal stability of optically nonlinear polymeric guest–host system,” Appl. Phys. Lett. 61, 1626–1628 (1992).
[CrossRef]

Sohn, E.

Sprave, M.

Stahelin, M.

M. Stahelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. J. Twieg, W. Volksen, and C. A. Walsh, “Re-evaluation of the thermal stability of optically nonlinear polymeric guest–host system,” Appl. Phys. Lett. 61, 1626–1628 (1992).
[CrossRef]

Steier, W. H.

Strohkendl, F. P.

F. P. Strohkendl, D. Fluck, P. Günter, R. Irmsher, and C. Buchal, “Nonleaky optical waveguides in KNbO3 by ultralow dose MeV He ion implantation,” Appl. Phys. Lett. 59, 3354–3356 (1991).
[CrossRef]

Sugihara, O.

Sun, S.

Sun, X.

W. Shi, C. S. Fang, Q. W. Pan, X. Sun, and Q. T. Gu, “Modeling and scaling of chielectric relaxation in NLO polymers,” Acta Phys. Sin. 8, 831–837 (1999).

Swalen, J. D.

Twieg, R. J.

M. Stahelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. J. Twieg, W. Volksen, and C. A. Walsh, “Re-evaluation of the thermal stability of optically nonlinear polymeric guest–host system,” Appl. Phys. Lett. 61, 1626–1628 (1992).
[CrossRef]

R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G. C. Bjorklund, and C. G. Wilson, “Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films,” J. Opt. Soc. Am. B 7, 1239–1250 (1990).
[CrossRef]

Volksen, W.

M. Stahelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. J. Twieg, W. Volksen, and C. A. Walsh, “Re-evaluation of the thermal stability of optically nonlinear polymeric guest–host system,” Appl. Phys. Lett. 61, 1626–1628 (1992).
[CrossRef]

Walsh, C. A.

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
[CrossRef]

M. Stahelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. J. Twieg, W. Volksen, and C. A. Walsh, “Re-evaluation of the thermal stability of optically nonlinear polymeric guest–host system,” Appl. Phys. Lett. 61, 1626–1628 (1992).
[CrossRef]

Wang, F.

Wei, H. Z.

W. Shi, C. Fang, Q. Pan, Q. Gu, D. Xu, H. Z. Wei, and J. Z. Yu, “Measurement of the optical transmission modes and losses of the poled guest–host polymer NAEC/PEK-c planar waveguides,” Opt. Lasers Eng. 33, 21–28 (2000).
[CrossRef]

W. Shi, C. Fang, Q. Pan, Q. Gu, D. Xu, H. Z. Wei, and J. Z. Yu, “Refractive index dispersion measurement on nonlinear optical polymer using V-prism refractometer,” Opt. Lasers Eng. 32, 41–47 (1999).
[CrossRef]

Wilson, C. G.

Winkelhahn, H.-J.

H.-J. Winkelhahn, H. H. Winter, and D. Neher, “Piezoelectricity and electrostriction of dye-doped polymer,” Appl. Phys. Lett. 64, 1347–1349 (1994).
[CrossRef]

Winter, H. H.

H.-J. Winkelhahn, H. H. Winter, and D. Neher, “Piezoelectricity and electrostriction of dye-doped polymer,” Appl. Phys. Lett. 64, 1347–1349 (1994).
[CrossRef]

Wu, L.-M.

Xia, Z.

P. Günther and Z. Xia, “Transport of detrapped charges in thermally wet grown SiO2 electrets,” J. Appl. Phys. 74, 7269–7274 (1993).
[CrossRef]

Xu, D.

W. Shi, C. Fang, Q. Pan, Q. Gu, D. Xu, H. Z. Wei, and J. Z. Yu, “Measurement of the optical transmission modes and losses of the poled guest–host polymer NAEC/PEK-c planar waveguides,” Opt. Lasers Eng. 33, 21–28 (2000).
[CrossRef]

W. Shi, C. Fang, Q. Pan, Q. Gu, D. Xu, H. Z. Wei, and J. Z. Yu, “Refractive index dispersion measurement on nonlinear optical polymer using V-prism refractometer,” Opt. Lasers Eng. 32, 41–47 (1999).
[CrossRef]

W. Shi, S. Guo, C. Fang, D. Xu, and Q. Ren, “Poling and properties of nano-composite thin film PT/PEK-c,” J. Mater. Sci. 34, 5995–5998 (1999).
[CrossRef]

Yu, J. Z.

W. Shi, C. Fang, Q. Pan, Q. Gu, D. Xu, H. Z. Wei, and J. Z. Yu, “Measurement of the optical transmission modes and losses of the poled guest–host polymer NAEC/PEK-c planar waveguides,” Opt. Lasers Eng. 33, 21–28 (2000).
[CrossRef]

W. Shi, C. Fang, Q. Pan, Q. Gu, D. Xu, H. Z. Wei, and J. Z. Yu, “Refractive index dispersion measurement on nonlinear optical polymer using V-prism refractometer,” Opt. Lasers Eng. 32, 41–47 (1999).
[CrossRef]

Zhan, H.

Zhang, Z. Y.

W. Shi, Z. Y. Zhang, C. Fang, Q. Pan, and Q. Gu, “Nonlinear optical properties and chromophore electrostatic interactions for the polyetherketone guest–host polymer films,” Macromolecules 34, 2002–2007 (2001).
[CrossRef]

Zhu, J.

Acta Phys. Sin. (1)

W. Shi, C. S. Fang, Q. W. Pan, X. Sun, and Q. T. Gu, “Modeling and scaling of chielectric relaxation in NLO polymers,” Acta Phys. Sin. 8, 831–837 (1999).

Appl. Opt. (1)

Appl. Phys. Lett. (3)

M. Stahelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. J. Twieg, W. Volksen, and C. A. Walsh, “Re-evaluation of the thermal stability of optically nonlinear polymeric guest–host system,” Appl. Phys. Lett. 61, 1626–1628 (1992).
[CrossRef]

H.-J. Winkelhahn, H. H. Winter, and D. Neher, “Piezoelectricity and electrostriction of dye-doped polymer,” Appl. Phys. Lett. 64, 1347–1349 (1994).
[CrossRef]

F. P. Strohkendl, D. Fluck, P. Günter, R. Irmsher, and C. Buchal, “Nonleaky optical waveguides in KNbO3 by ultralow dose MeV He ion implantation,” Appl. Phys. Lett. 59, 3354–3356 (1991).
[CrossRef]

Chem. Industry (1)

L. R. Dalton, “Polymeric electro-optic modulators,” Chem. Industry 7, 510–514 (1997).

Chem. Rev. (1)

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
[CrossRef]

J. Appl. Phys. (1)

P. Günther and Z. Xia, “Transport of detrapped charges in thermally wet grown SiO2 electrets,” J. Appl. Phys. 74, 7269–7274 (1993).
[CrossRef]

J. Mater. Sci. (1)

W. Shi, S. Guo, C. Fang, D. Xu, and Q. Ren, “Poling and properties of nano-composite thin film PT/PEK-c,” J. Mater. Sci. 34, 5995–5998 (1999).
[CrossRef]

J. Opt. Soc. Am. B (6)

Macromolecules (1)

W. Shi, Z. Y. Zhang, C. Fang, Q. Pan, and Q. Gu, “Nonlinear optical properties and chromophore electrostatic interactions for the polyetherketone guest–host polymer films,” Macromolecules 34, 2002–2007 (2001).
[CrossRef]

Nature (London) (1)

S. M. Marder, B. Kippelen, A. K.-Y. Jen, and N. Peyghambarian, “Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications,” Nature (London) 388, 845–851 (1997).
[CrossRef]

Opt. Lasers Eng. (2)

W. Shi, C. Fang, Q. Pan, Q. Gu, D. Xu, H. Z. Wei, and J. Z. Yu, “Measurement of the optical transmission modes and losses of the poled guest–host polymer NAEC/PEK-c planar waveguides,” Opt. Lasers Eng. 33, 21–28 (2000).
[CrossRef]

W. Shi, C. Fang, Q. Pan, Q. Gu, D. Xu, H. Z. Wei, and J. Z. Yu, “Refractive index dispersion measurement on nonlinear optical polymer using V-prism refractometer,” Opt. Lasers Eng. 32, 41–47 (1999).
[CrossRef]

Opt. Lett. (2)

Other (2)

G. M. Sessler, Electrets (Springer, Heidelberg, 1987).

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, Berlin, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Molecular structure of DCNP chromophore and (b) general structure of PEK-c polymer.

Fig. 2
Fig. 2

Schematic drawing of experimental setup for in situ signal-intensity measurement. M1, mirror; λ/2, half-wave plate; L1 and L2, lenses; μA, microammeter; PMT, photomultiplier tube; HV, high voltage.

Fig. 3
Fig. 3

In situ SHG signal intensity for DCNP/PEK-c polymer film as a function of poling temperature. Inset: dependence of SHG intensity I2ω on poling time for samples poled at 145 °C.

Fig. 4
Fig. 4

Setup for corona poling of polymer films. Samples are mounted on a heating stage, and current through the polymer sample is determined by an amperemeter.

Fig. 5
Fig. 5

(a) Schematic drawing of the optical configuration for the interferometric method; (b) cross-section view of the experimental setup for applying a modulating signal to tested samples.

Fig. 6
Fig. 6

Dispersion of linear EO coefficient γ33 for the DCNP/PEK-c poled-polymer film.

Fig. 7
Fig. 7

Normalized linear EO coefficients γ33(t)/γ33(0) of poled films versus time. Symbols correspond to experimental data, and the solid curve corresponds to the best exponential fit.

Fig. 8
Fig. 8

SHG intensity versus temperature for poled DCNP/PEK-c polymer films.

Fig. 9
Fig. 9

Schematic drawing of a Model 2010 prism coupler for measuring propagation losses of a poled-polymer planar waveguide.

Fig. 10
Fig. 10

TE mode spectrum given by reflected intensity versus internal angle of incidence.

Tables (1)

Tables Icon

Table 1 Results of Internal Incident Angles, Model Refractive Indices, and Measured Optical Losses of Poled-Polymer Waveguide for TE Polarization at λ=632.8 nm

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Δno=-12no3γ13(V1/h),
Δh=hd33(V1/h)=d33V1,
Δ1=2hΔno+2nod33V1=-no3γ13-2n02d33V1.
Δ2=2d11rV2(L/d),
γ13=2no3 V2V1Ldd11r+2no2d33.
γ33γ13=1+2Φ1-Φ L3(u)L2(u) 1-L2(u)L1(u)-L3(u),
Φ=1-AA0=12[3L2(u)-1]=1+3u2-3u coth u,
L1(u)=coth u-(1/u),
L2(u)=1+(2/u2)-(2/u)coth u,
L3(u)=(1+6/u2)coth u-(3/u)(1+2/u2).
γ33(-ω; ω, 0)=2ne4Nf2(ω)f(0)βL3(u) F1(ω0, ω)F2(ω0, ω),
N=φAρCρPM[ρC-φ(ρC-ρP)],
f(ω)=(n2+2)/3,f(0)=(n2+2)/(n2+2),
β(-ω; ω, 0)=β0 (3-ς)3(1-ς)2,
F1(ω0, ω)=ω04(ω02-ω2)(ω02-4ω2),
F2(ω0, ω)=ω02(3ω02-ω2)3(ω02-ω2),
γ33(t)/γ33(0)=exp[-(t/τ)ξ],
I(L2)=I(L1)10-(α/10)(L2-L1),
αm=-10L2-L1 log10 Im(L2)Im(L1)(dB cm-1).

Metrics