Abstract

Optical limiting in carbon-nanotube suspensions, whose origin lies in a strong nonlinear scattering due to solvent vapor bubbles and sublimation of the nanotubes, is investigated in the picosecond and nanosecond regimes by polychromatic pump–probe experiments. Samples were pumped either with 532-nm or 1064-nm pulses, and probed from 400 nm to 650 nm. Using a model based on Mie theory, we determine the time evolution of the radius and the concentration of the scattering centers for both temporal regimes. We compare the transmission signals for single-wall carbon nanotubes suspended in water and in chloroform and for multiwall carbon nanotubes in water. Several conclusions can be drawn. First, coalescence of gaseous cavities is more effective in water than in chloroform, leading to nonlinear scattering by a smaller number of larger bubbles. Second, in spite of the smaller size of the scattering centers, the limiting efficiency of chloroform suspensions is better than that of water suspensions, due to a larger volume fraction of the gaseous phase. However, the characteristic times for the growth of laser-induced bubbles are too long to allow efficient limiting of subnanosecond laser pulses.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Nashimoto, R. Pachter, B. W. Wessels, J. Shmulovich, A. K.-Y. Jen, K. Lewis, R. Sutherland, and J. W. Perry, eds., Thin Films for Optical Waveguides Devices and Materials for Optical Limiting, Vol. 597 of MRS Proceedings Series (Materials Research Society, Warrendale, Pa., 1999).
  2. R. Bozio, F. Kazjar, and M. Meneghetti, eds., Proceeding of Second International Workshop on Optical Power Limiting (Gordon and Breach, London, 2002).
  3. J. W. Perry, “Organics and metal-containing reverse saturable absorbers for optical limiters,” in Nonlinear Optics of Organics Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC Press, Orlando, Fla., 1997), pp. 813–840.
  4. P. Feneyrou, “Broadband optical limiting using tandem filters with multiphoton absorber and reverse saturable absorbers,” J. Opt. Nonlinear Phys. Mat. 9, 523–530 (2000).
    [CrossRef]
  5. R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).
  6. B. L. Justus, A. L. Huston, and A. J. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1486 (1993).
    [CrossRef]
  7. K. J. McEwan, P. K. Milsom, and D. B. James, “Nonlinear optical effects in carbon suspensions,” Proc. SPIE 3472, 42–52 (1998).
    [CrossRef]
  8. K. M. Nashold and D. P. Walter, “Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions,” J. Opt. Soc. Am. B 12, 1228–1237 (1995).
    [CrossRef]
  9. K. Mansour, M. J. Soileau, and E. W. Van Stryland, “Nonlinear optical properties of carbon-black suspensions (ink),” J. Opt. Soc. Am. B 9, 1100–1109 (1992).
    [CrossRef]
  10. V. Joudrier, P. Bourdon, F. Hache, and C. Flytzanis, “Characterization of nonlinear scattering in colloidal suspensions of silica particles,” Appl. Phys. B 70, 105–109 (2000).
    [CrossRef]
  11. S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991).
    [CrossRef]
  12. L. Vivien, E. Anglaret, D. Riehl, F. Bacou, C. Journet, C. Goze, M. Andrieux, M. Brunet, F. Lafonta, P. Bernier, and F. Hache, “Single-wall carbon nanotubes for optical limiting,” Chem. Phys. Lett. 307, 317–319 (1999), and erratum 312, 617 (1999).
    [CrossRef]
  13. S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
    [CrossRef]
  14. L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
    [CrossRef]
  15. X. Sun, Y. Xiong, P. Chen, J. Lin, W. Ji, J. Hong Lim, S. S. Yang, D. J. Hagan, and E. W. Van Stryland, “Investigation of an optical limiting mechanism in multiwalled carbon nanotubes,” Appl. Opt. 39, 1998–2001 (2000).
    [CrossRef]
  16. L. Vivien, D. Riehl, E. Anglaret, and F. Hache, “Pump-probe experiments at 1064 nm in singlewall carbon nanotube suspensions,” IEEE J. Quantum Electron. 36, 680–686 (2000).
    [CrossRef]
  17. L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Opt. Nonlinear Phys. Mat. 9, 297–308 (2000).
    [CrossRef]
  18. L. Vivien, D. Riehl, P. Lançon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 223–225 (2001).
    [CrossRef]
  19. J. E. Riggs, D. B. Walker, D. L. Carroll, and Y.-P. Sun, “Optical limiting properties of suspended and solubilized carbon nanotubes,” J. Phys. Chem. B 104, 7071–7076 (2000).
    [CrossRef]
  20. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
    [CrossRef]
  21. L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier, “Purification procedure of carbon nanotubes,” Synth. Metals 103, 2492–2493 (1999).
    [CrossRef]
  22. S. Rols, E. Anglaret, J. L. Sauvajol, G. Coddens, and A. J. Dianoux, “Neutron scattering studies of the structure and dynamics of nanobundles of single wall carbon nanotubes,” Appl. Phys. A 69, 1–72 (1999).
    [CrossRef]
  23. S. Rols, R. Almairac, L. Henrard, E. Anglaret, and J. L. Sauvajol, “Diffraction by finite-size crystalline bundles of single wall nanotubes,” Europhys. J. B 10, 263–270 (1999).
  24. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

2001 (1)

2000 (8)

X. Sun, Y. Xiong, P. Chen, J. Lin, W. Ji, J. Hong Lim, S. S. Yang, D. J. Hagan, and E. W. Van Stryland, “Investigation of an optical limiting mechanism in multiwalled carbon nanotubes,” Appl. Opt. 39, 1998–2001 (2000).
[CrossRef]

L. Vivien, D. Riehl, E. Anglaret, and F. Hache, “Pump-probe experiments at 1064 nm in singlewall carbon nanotube suspensions,” IEEE J. Quantum Electron. 36, 680–686 (2000).
[CrossRef]

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Opt. Nonlinear Phys. Mat. 9, 297–308 (2000).
[CrossRef]

P. Feneyrou, “Broadband optical limiting using tandem filters with multiphoton absorber and reverse saturable absorbers,” J. Opt. Nonlinear Phys. Mat. 9, 523–530 (2000).
[CrossRef]

V. Joudrier, P. Bourdon, F. Hache, and C. Flytzanis, “Characterization of nonlinear scattering in colloidal suspensions of silica particles,” Appl. Phys. B 70, 105–109 (2000).
[CrossRef]

S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

J. E. Riggs, D. B. Walker, D. L. Carroll, and Y.-P. Sun, “Optical limiting properties of suspended and solubilized carbon nanotubes,” J. Phys. Chem. B 104, 7071–7076 (2000).
[CrossRef]

1999 (3)

L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier, “Purification procedure of carbon nanotubes,” Synth. Metals 103, 2492–2493 (1999).
[CrossRef]

S. Rols, E. Anglaret, J. L. Sauvajol, G. Coddens, and A. J. Dianoux, “Neutron scattering studies of the structure and dynamics of nanobundles of single wall carbon nanotubes,” Appl. Phys. A 69, 1–72 (1999).
[CrossRef]

S. Rols, R. Almairac, L. Henrard, E. Anglaret, and J. L. Sauvajol, “Diffraction by finite-size crystalline bundles of single wall nanotubes,” Europhys. J. B 10, 263–270 (1999).

1998 (1)

K. J. McEwan, P. K. Milsom, and D. B. James, “Nonlinear optical effects in carbon suspensions,” Proc. SPIE 3472, 42–52 (1998).
[CrossRef]

1997 (1)

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
[CrossRef]

1995 (1)

1993 (1)

B. L. Justus, A. L. Huston, and A. J. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1486 (1993).
[CrossRef]

1992 (1)

1991 (1)

S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991).
[CrossRef]

Almairac, R.

S. Rols, R. Almairac, L. Henrard, E. Anglaret, and J. L. Sauvajol, “Diffraction by finite-size crystalline bundles of single wall nanotubes,” Europhys. J. B 10, 263–270 (1999).

Andrieux, M.

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

Anglaret, E.

L. Vivien, D. Riehl, P. Lançon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 223–225 (2001).
[CrossRef]

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

L. Vivien, D. Riehl, E. Anglaret, and F. Hache, “Pump-probe experiments at 1064 nm in singlewall carbon nanotube suspensions,” IEEE J. Quantum Electron. 36, 680–686 (2000).
[CrossRef]

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Opt. Nonlinear Phys. Mat. 9, 297–308 (2000).
[CrossRef]

S. Rols, R. Almairac, L. Henrard, E. Anglaret, and J. L. Sauvajol, “Diffraction by finite-size crystalline bundles of single wall nanotubes,” Europhys. J. B 10, 263–270 (1999).

S. Rols, E. Anglaret, J. L. Sauvajol, G. Coddens, and A. J. Dianoux, “Neutron scattering studies of the structure and dynamics of nanobundles of single wall carbon nanotubes,” Appl. Phys. A 69, 1–72 (1999).
[CrossRef]

Aznar, R.

L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier, “Purification procedure of carbon nanotubes,” Synth. Metals 103, 2492–2493 (1999).
[CrossRef]

Bacou, F.

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

Bandyopadhyay, R.

S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Bernier, P.

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier, “Purification procedure of carbon nanotubes,” Synth. Metals 103, 2492–2493 (1999).
[CrossRef]

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
[CrossRef]

Bourdon, P.

V. Joudrier, P. Bourdon, F. Hache, and C. Flytzanis, “Characterization of nonlinear scattering in colloidal suspensions of silica particles,” Appl. Phys. B 70, 105–109 (2000).
[CrossRef]

Brunet, M.

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

Campillo, A. J.

B. L. Justus, A. L. Huston, and A. J. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1486 (1993).
[CrossRef]

Carroll, D. L.

J. E. Riggs, D. B. Walker, D. L. Carroll, and Y.-P. Sun, “Optical limiting properties of suspended and solubilized carbon nanotubes,” J. Phys. Chem. B 104, 7071–7076 (2000).
[CrossRef]

Chen, P.

Coddens, G.

S. Rols, E. Anglaret, J. L. Sauvajol, G. Coddens, and A. J. Dianoux, “Neutron scattering studies of the structure and dynamics of nanobundles of single wall carbon nanotubes,” Appl. Phys. A 69, 1–72 (1999).
[CrossRef]

de la Chapelle, M. Lamy

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
[CrossRef]

Deniard, P.

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
[CrossRef]

Dianoux, A. J.

S. Rols, E. Anglaret, J. L. Sauvajol, G. Coddens, and A. J. Dianoux, “Neutron scattering studies of the structure and dynamics of nanobundles of single wall carbon nanotubes,” Appl. Phys. A 69, 1–72 (1999).
[CrossRef]

Feneyrou, P.

P. Feneyrou, “Broadband optical limiting using tandem filters with multiphoton absorber and reverse saturable absorbers,” J. Opt. Nonlinear Phys. Mat. 9, 523–530 (2000).
[CrossRef]

Fischer, J. E.

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
[CrossRef]

Flytzanis, C.

V. Joudrier, P. Bourdon, F. Hache, and C. Flytzanis, “Characterization of nonlinear scattering in colloidal suspensions of silica particles,” Appl. Phys. B 70, 105–109 (2000).
[CrossRef]

Govindaraj, A.

S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Goze, C.

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier, “Purification procedure of carbon nanotubes,” Synth. Metals 103, 2492–2493 (1999).
[CrossRef]

Hache, F.

L. Vivien, D. Riehl, P. Lançon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 223–225 (2001).
[CrossRef]

V. Joudrier, P. Bourdon, F. Hache, and C. Flytzanis, “Characterization of nonlinear scattering in colloidal suspensions of silica particles,” Appl. Phys. B 70, 105–109 (2000).
[CrossRef]

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Opt. Nonlinear Phys. Mat. 9, 297–308 (2000).
[CrossRef]

L. Vivien, D. Riehl, E. Anglaret, and F. Hache, “Pump-probe experiments at 1064 nm in singlewall carbon nanotube suspensions,” IEEE J. Quantum Electron. 36, 680–686 (2000).
[CrossRef]

Hagan, D. J.

Henrard, L.

S. Rols, R. Almairac, L. Henrard, E. Anglaret, and J. L. Sauvajol, “Diffraction by finite-size crystalline bundles of single wall nanotubes,” Europhys. J. B 10, 263–270 (1999).

Huston, A. L.

B. L. Justus, A. L. Huston, and A. J. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1486 (1993).
[CrossRef]

Iijima, S.

S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991).
[CrossRef]

James, D. B.

K. J. McEwan, P. K. Milsom, and D. B. James, “Nonlinear optical effects in carbon suspensions,” Proc. SPIE 3472, 42–52 (1998).
[CrossRef]

Ji, W.

Joudrier, V.

V. Joudrier, P. Bourdon, F. Hache, and C. Flytzanis, “Characterization of nonlinear scattering in colloidal suspensions of silica particles,” Appl. Phys. B 70, 105–109 (2000).
[CrossRef]

Journet, C.

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier, “Purification procedure of carbon nanotubes,” Synth. Metals 103, 2492–2493 (1999).
[CrossRef]

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
[CrossRef]

Justus, B. L.

B. L. Justus, A. L. Huston, and A. J. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1486 (1993).
[CrossRef]

Lafonta, F.

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

Lançon, P.

Lee, R.

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
[CrossRef]

Lefrant, S.

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
[CrossRef]

Lim, J. Hong

Lin, J.

Loiseau, A.

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
[CrossRef]

Mansour, K.

Maser, W. K.

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
[CrossRef]

McEwan, K. J.

K. J. McEwan, P. K. Milsom, and D. B. James, “Nonlinear optical effects in carbon suspensions,” Proc. SPIE 3472, 42–52 (1998).
[CrossRef]

Mehendale, S. C.

S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Micholet, V.

L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier, “Purification procedure of carbon nanotubes,” Synth. Metals 103, 2492–2493 (1999).
[CrossRef]

Milsom, P. K.

K. J. McEwan, P. K. Milsom, and D. B. James, “Nonlinear optical effects in carbon suspensions,” Proc. SPIE 3472, 42–52 (1998).
[CrossRef]

Mishra, S. R.

S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Nashold, K. M.

Rao, C. N. R.

S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Rawat, H. S.

S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Riehl, D.

L. Vivien, D. Riehl, P. Lançon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 223–225 (2001).
[CrossRef]

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Opt. Nonlinear Phys. Mat. 9, 297–308 (2000).
[CrossRef]

L. Vivien, D. Riehl, E. Anglaret, and F. Hache, “Pump-probe experiments at 1064 nm in singlewall carbon nanotube suspensions,” IEEE J. Quantum Electron. 36, 680–686 (2000).
[CrossRef]

Riggs, J. E.

J. E. Riggs, D. B. Walker, D. L. Carroll, and Y.-P. Sun, “Optical limiting properties of suspended and solubilized carbon nanotubes,” J. Phys. Chem. B 104, 7071–7076 (2000).
[CrossRef]

Rols, S.

S. Rols, R. Almairac, L. Henrard, E. Anglaret, and J. L. Sauvajol, “Diffraction by finite-size crystalline bundles of single wall nanotubes,” Europhys. J. B 10, 263–270 (1999).

S. Rols, E. Anglaret, J. L. Sauvajol, G. Coddens, and A. J. Dianoux, “Neutron scattering studies of the structure and dynamics of nanobundles of single wall carbon nanotubes,” Appl. Phys. A 69, 1–72 (1999).
[CrossRef]

Rustagi, K. C.

S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Sauvajol, J. L.

S. Rols, R. Almairac, L. Henrard, E. Anglaret, and J. L. Sauvajol, “Diffraction by finite-size crystalline bundles of single wall nanotubes,” Europhys. J. B 10, 263–270 (1999).

S. Rols, E. Anglaret, J. L. Sauvajol, G. Coddens, and A. J. Dianoux, “Neutron scattering studies of the structure and dynamics of nanobundles of single wall carbon nanotubes,” Appl. Phys. A 69, 1–72 (1999).
[CrossRef]

Soileau, M. J.

Sood, A. K.

S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Sun, X.

Sun, Y.-P.

J. E. Riggs, D. B. Walker, D. L. Carroll, and Y.-P. Sun, “Optical limiting properties of suspended and solubilized carbon nanotubes,” J. Phys. Chem. B 104, 7071–7076 (2000).
[CrossRef]

Vaccarini, L.

L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier, “Purification procedure of carbon nanotubes,” Synth. Metals 103, 2492–2493 (1999).
[CrossRef]

Van Stryland, E. W.

Vivien, L.

L. Vivien, D. Riehl, P. Lançon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 223–225 (2001).
[CrossRef]

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

L. Vivien, D. Riehl, E. Anglaret, and F. Hache, “Pump-probe experiments at 1064 nm in singlewall carbon nanotube suspensions,” IEEE J. Quantum Electron. 36, 680–686 (2000).
[CrossRef]

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Opt. Nonlinear Phys. Mat. 9, 297–308 (2000).
[CrossRef]

Walker, D. B.

J. E. Riggs, D. B. Walker, D. L. Carroll, and Y.-P. Sun, “Optical limiting properties of suspended and solubilized carbon nanotubes,” J. Phys. Chem. B 104, 7071–7076 (2000).
[CrossRef]

Walter, D. P.

Xiong, Y.

Yang, S. S.

Appl. Opt. (1)

Appl. Phys. A (1)

S. Rols, E. Anglaret, J. L. Sauvajol, G. Coddens, and A. J. Dianoux, “Neutron scattering studies of the structure and dynamics of nanobundles of single wall carbon nanotubes,” Appl. Phys. A 69, 1–72 (1999).
[CrossRef]

Appl. Phys. B (1)

V. Joudrier, P. Bourdon, F. Hache, and C. Flytzanis, “Characterization of nonlinear scattering in colloidal suspensions of silica particles,” Appl. Phys. B 70, 105–109 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

B. L. Justus, A. L. Huston, and A. J. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1486 (1993).
[CrossRef]

Chem. Phys. Lett. (1)

S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Europhys. J. B (1)

S. Rols, R. Almairac, L. Henrard, E. Anglaret, and J. L. Sauvajol, “Diffraction by finite-size crystalline bundles of single wall nanotubes,” Europhys. J. B 10, 263–270 (1999).

IEEE J. Quantum Electron. (1)

L. Vivien, D. Riehl, E. Anglaret, and F. Hache, “Pump-probe experiments at 1064 nm in singlewall carbon nanotube suspensions,” IEEE J. Quantum Electron. 36, 680–686 (2000).
[CrossRef]

J. Opt. Nonlinear Phys. Mat. (2)

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Opt. Nonlinear Phys. Mat. 9, 297–308 (2000).
[CrossRef]

P. Feneyrou, “Broadband optical limiting using tandem filters with multiphoton absorber and reverse saturable absorbers,” J. Opt. Nonlinear Phys. Mat. 9, 523–530 (2000).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (1)

J. E. Riggs, D. B. Walker, D. L. Carroll, and Y.-P. Sun, “Optical limiting properties of suspended and solubilized carbon nanotubes,” J. Phys. Chem. B 104, 7071–7076 (2000).
[CrossRef]

Nature (2)

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
[CrossRef]

S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991).
[CrossRef]

Opt. Commun. (1)

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

K. J. McEwan, P. K. Milsom, and D. B. James, “Nonlinear optical effects in carbon suspensions,” Proc. SPIE 3472, 42–52 (1998).
[CrossRef]

Synth. Metals (1)

L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier, “Purification procedure of carbon nanotubes,” Synth. Metals 103, 2492–2493 (1999).
[CrossRef]

Other (6)

L. Vivien, E. Anglaret, D. Riehl, F. Bacou, C. Journet, C. Goze, M. Andrieux, M. Brunet, F. Lafonta, P. Bernier, and F. Hache, “Single-wall carbon nanotubes for optical limiting,” Chem. Phys. Lett. 307, 317–319 (1999), and erratum 312, 617 (1999).
[CrossRef]

R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).

K. Nashimoto, R. Pachter, B. W. Wessels, J. Shmulovich, A. K.-Y. Jen, K. Lewis, R. Sutherland, and J. W. Perry, eds., Thin Films for Optical Waveguides Devices and Materials for Optical Limiting, Vol. 597 of MRS Proceedings Series (Materials Research Society, Warrendale, Pa., 1999).

R. Bozio, F. Kazjar, and M. Meneghetti, eds., Proceeding of Second International Workshop on Optical Power Limiting (Gordon and Breach, London, 2002).

J. W. Perry, “Organics and metal-containing reverse saturable absorbers for optical limiters,” in Nonlinear Optics of Organics Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC Press, Orlando, Fla., 1997), pp. 813–840.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Pump–probe experimental setup for pump wavelengths 532 and 1064 nm and probe wavelengths from 400 nm to 700 nm. BS, beam splitter; F1 and F2, 150-mm and 100-mm focal length, respectively.

Fig. 2
Fig. 2

Probe transmittance, normalized to the linear transmittance as function of delay between the probe at 480 nm and the pump at 532 nm for different picosecond pump fluences (from 190 mJ/cm2 to 600 mJ/cm2) for (a) MWNT in water, SWNT in (b) water, and in (c) chloroform. The linear transmittance is 80% for all samples.

Fig. 3
Fig. 3

Normalized probe transmittance as a function of probe wavelength for SWNT in water and chloroform and for MWNT in water, for a pump wavelength of (a) 532 nm and (b) 1064 nm. The delay between the pump and the probe is 4 ns, and the pump energy is 600 mJ/cm2. The solid curve is a fit obtained with Mie theory. The linear transmittance is 80% for all samples.

Fig. 4
Fig. 4

Probe perturbation at 420, 480, and 600 nm for SWNT in water at 10 ns and at 532 nm for input fluence of 200 mJ/cm2. The linear transmittance is 80% for all samples.

Fig. 5
Fig. 5

Optical-limiting curves of SWNT suspended in chloroform for 2- and 5-ns pulse widths at 532 nm. The linear transmittance is 70% for all samples.

Fig. 6
Fig. 6

Evolution of the gas volume fraction (closed circle) and normalized transmittance of the probe (solid curve) for (a) SWNT and for (b) MWNT suspended in water, in the nanosecond regime, at 532 nm and for input energy of 200 mJ/cm2. Delay zero corresponds to the maximum of the pump pulse. The linear transmittance is 80% for all samples.

Fig. 7
Fig. 7

Evolution of the concentration and of the average radius of scattering centers for SWNT in water, for 532-nm nanosecond pump pulses and for input energy of 200 mJ/cm2. Delay zero corresponds to the maximum of the pump pulse. The linear transmittance is 80% for all samples.

Fig. 8
Fig. 8

Evolution of (a) the concentration and of (b) the average radius of scattering centers for SWNT and MWNT in water and SWNT in chloroform, for 532-nm picosecond pump pulses for input energy of 600 mJ/cm2. Delay zero corresponds to the maximum of the pump pulse. The linear transmittance is 80% for all samples.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

TN=exp(-ηlσext),
σext=σabs+σsc,
ln(TN)=-ηlσsc.
σsc=2πk2 n=1(2n+1)(|an|2+|bn|2),
an=mΨn(mx)Ψn(x)-Ψn(x)Ψn(mx)mΨn(mx)ξn(x)-Ψn(mx)ξn(x),
bn=Ψn(mx)Ψn(x)-mΨn(x)Ψn(mx)Ψn(mx)ξn(x)-mΨn(mx)ξn(x).
x=2πnRλ,
m=n1n.

Metrics