Abstract

We have performed a detailed comparison of the predictions of coupled-wave theories of isotropic and anisotropic volume gratings. It is shown that material birefringence can dramatically modify the diffractive properties of volume gratings. The predictions of the coupled-wave theories have also been compared with the diffractive properties of volume gratings fabricated with polymer-dispersed liquid crystals. It is shown that a coupled-wave theory that includes the effects of the birefringence of the liquid crystal must be used to explain the diffraction properties of these highly anisotropic gratings. Information can be obtained about the alignment of the liquid crystal within the composite gratings from comparisons of theory and experiment.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Whitney and R. T. Ingwall, “The fabrication and properties of composite holograms recorded in DMP-128 photopolymer,” Proc. SPIE 1213, 18–26 (1990).
    [CrossRef]
  2. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “The physics of photopolymer–liquid crystal composite holographic gratings,” Proc. SPIE 2689, 158–169 (1996).
    [CrossRef]
  3. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer dispersed liquid crystals,” Polymer 36, 2699–2707 (1995).
    [CrossRef]
  4. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
    [CrossRef]
  5. J. Zhang and M. B. Sponsler, “Switchable liquid crystalline photopolymer media for holography,” J. Am. Chem. Soc. 114, 1506–1507 (1992).
    [CrossRef]
  6. M. S. Malcuit and T. W. Stone, “Optically switched volume holographic elements,” Opt. Lett. 20, 1328–1330 (1995).
    [CrossRef] [PubMed]
  7. T. W. Stone, J. C. Kralik, and M. S. Malcuit, “Characteristics of photonic time shifters based on switched gratings,” Proc. SPIE 3463, 86–97 (1998).
    [CrossRef]
  8. T. W. Stone, J. C. Kralik, R. C. Veitch, and M. S. Malcuit, “Performance of photonic switching systems based on electro-optic volume holographic diffraction gratings,” Proc. SPIE 4112, 38–47 (2000).
    [CrossRef]
  9. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Development of photopolymer-liquid crystal composite materials for dynamic hologram applications,” Proc. SPIE 2152, 303–313 (1994).
    [CrossRef]
  10. J. J. Butler and M. S. Malcuit, “Diffraction properties of highly birefringent liquid-crystal composite gratings,” Opt. Lett. 25, 420–422 (2000).
    [CrossRef]
  11. K. Kojima, “Diffraction of light waves in inhomogeneous and anisotropic medium,” Jpn. J. Appl. Phys. 21, 1303–1307 (1982).
    [CrossRef]
  12. K. Rokushima and J. Yamakita, “Analysis of anisotropic dielectric gratings,” J. Opt. Soc. Am. 73, 901–908 (1983).
    [CrossRef]
  13. R. V. Johnson and A. R. Tanguay, Jr., “Optical beam propagation method for birefringent phase grating diffraction,” Opt. Eng. 25, 235–249 (1986).
    [CrossRef]
  14. F. Vachss and L. Hesselink, “Holographic beam coupling in anisotropic photorefractive media,” J. Opt. Soc. Am. A 4, 325–339 (1987).
    [CrossRef]
  15. E. N. Glytsis and T. K. Gaylord, “Rigorous three-dimensional coupled-wave diffraction of single and cascaded anisotropic gratings,” J. Opt. Soc. Am. A 4, 2061–2080 (1987).
    [CrossRef]
  16. E. N. Glytsis and T. K. Gaylord, “Three-dimensional (vector) rigorous coupled-wave analysis of anisotropic grating diffraction,” J. Opt. Soc. Am. A 7, 1399–1420 (1990).
    [CrossRef]
  17. G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
    [CrossRef]
  18. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  19. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
    [CrossRef]
  20. R. T. Pogue, L. V. Natarajan, V. P. Tondiglia, S. A. Siwecki, R. L. Sutherland, and T. J. Bunning, “Controlling nano-scale morphology in switchable PDLC gratings,” Proc. SPIE 3475, 2–11 (1998).
    [CrossRef]
  21. P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, Singapore, 1995).

2000 (2)

T. W. Stone, J. C. Kralik, R. C. Veitch, and M. S. Malcuit, “Performance of photonic switching systems based on electro-optic volume holographic diffraction gratings,” Proc. SPIE 4112, 38–47 (2000).
[CrossRef]

J. J. Butler and M. S. Malcuit, “Diffraction properties of highly birefringent liquid-crystal composite gratings,” Opt. Lett. 25, 420–422 (2000).
[CrossRef]

1998 (2)

T. W. Stone, J. C. Kralik, and M. S. Malcuit, “Characteristics of photonic time shifters based on switched gratings,” Proc. SPIE 3463, 86–97 (1998).
[CrossRef]

R. T. Pogue, L. V. Natarajan, V. P. Tondiglia, S. A. Siwecki, R. L. Sutherland, and T. J. Bunning, “Controlling nano-scale morphology in switchable PDLC gratings,” Proc. SPIE 3475, 2–11 (1998).
[CrossRef]

1997 (1)

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

1996 (1)

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “The physics of photopolymer–liquid crystal composite holographic gratings,” Proc. SPIE 2689, 158–169 (1996).
[CrossRef]

1995 (2)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer dispersed liquid crystals,” Polymer 36, 2699–2707 (1995).
[CrossRef]

M. S. Malcuit and T. W. Stone, “Optically switched volume holographic elements,” Opt. Lett. 20, 1328–1330 (1995).
[CrossRef] [PubMed]

1994 (2)

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Development of photopolymer-liquid crystal composite materials for dynamic hologram applications,” Proc. SPIE 2152, 303–313 (1994).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

1993 (1)

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

1992 (1)

J. Zhang and M. B. Sponsler, “Switchable liquid crystalline photopolymer media for holography,” J. Am. Chem. Soc. 114, 1506–1507 (1992).
[CrossRef]

1990 (2)

D. H. Whitney and R. T. Ingwall, “The fabrication and properties of composite holograms recorded in DMP-128 photopolymer,” Proc. SPIE 1213, 18–26 (1990).
[CrossRef]

E. N. Glytsis and T. K. Gaylord, “Three-dimensional (vector) rigorous coupled-wave analysis of anisotropic grating diffraction,” J. Opt. Soc. Am. A 7, 1399–1420 (1990).
[CrossRef]

1987 (2)

1986 (1)

R. V. Johnson and A. R. Tanguay, Jr., “Optical beam propagation method for birefringent phase grating diffraction,” Opt. Eng. 25, 235–249 (1986).
[CrossRef]

1983 (1)

1982 (1)

K. Kojima, “Diffraction of light waves in inhomogeneous and anisotropic medium,” Jpn. J. Appl. Phys. 21, 1303–1307 (1982).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Adams, W. W.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer dispersed liquid crystals,” Polymer 36, 2699–2707 (1995).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Development of photopolymer-liquid crystal composite materials for dynamic hologram applications,” Proc. SPIE 2152, 303–313 (1994).
[CrossRef]

Bunning, T. J.

R. T. Pogue, L. V. Natarajan, V. P. Tondiglia, S. A. Siwecki, R. L. Sutherland, and T. J. Bunning, “Controlling nano-scale morphology in switchable PDLC gratings,” Proc. SPIE 3475, 2–11 (1998).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “The physics of photopolymer–liquid crystal composite holographic gratings,” Proc. SPIE 2689, 158–169 (1996).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer dispersed liquid crystals,” Polymer 36, 2699–2707 (1995).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Development of photopolymer-liquid crystal composite materials for dynamic hologram applications,” Proc. SPIE 2152, 303–313 (1994).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Butler, J. J.

Gaylord, T. K.

Glytsis, E. N.

Hesselink, L.

Ingwall, R. T.

D. H. Whitney and R. T. Ingwall, “The fabrication and properties of composite holograms recorded in DMP-128 photopolymer,” Proc. SPIE 1213, 18–26 (1990).
[CrossRef]

Johnson, R. V.

R. V. Johnson and A. R. Tanguay, Jr., “Optical beam propagation method for birefringent phase grating diffraction,” Opt. Eng. 25, 235–249 (1986).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kojima, K.

K. Kojima, “Diffraction of light waves in inhomogeneous and anisotropic medium,” Jpn. J. Appl. Phys. 21, 1303–1307 (1982).
[CrossRef]

Kralik, J. C.

T. W. Stone, J. C. Kralik, R. C. Veitch, and M. S. Malcuit, “Performance of photonic switching systems based on electro-optic volume holographic diffraction gratings,” Proc. SPIE 4112, 38–47 (2000).
[CrossRef]

T. W. Stone, J. C. Kralik, and M. S. Malcuit, “Characteristics of photonic time shifters based on switched gratings,” Proc. SPIE 3463, 86–97 (1998).
[CrossRef]

Malcuit, M. S.

J. J. Butler and M. S. Malcuit, “Diffraction properties of highly birefringent liquid-crystal composite gratings,” Opt. Lett. 25, 420–422 (2000).
[CrossRef]

T. W. Stone, J. C. Kralik, R. C. Veitch, and M. S. Malcuit, “Performance of photonic switching systems based on electro-optic volume holographic diffraction gratings,” Proc. SPIE 4112, 38–47 (2000).
[CrossRef]

T. W. Stone, J. C. Kralik, and M. S. Malcuit, “Characteristics of photonic time shifters based on switched gratings,” Proc. SPIE 3463, 86–97 (1998).
[CrossRef]

M. S. Malcuit and T. W. Stone, “Optically switched volume holographic elements,” Opt. Lett. 20, 1328–1330 (1995).
[CrossRef] [PubMed]

Montemezzani, G.

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

Natarajan, L. V.

R. T. Pogue, L. V. Natarajan, V. P. Tondiglia, S. A. Siwecki, R. L. Sutherland, and T. J. Bunning, “Controlling nano-scale morphology in switchable PDLC gratings,” Proc. SPIE 3475, 2–11 (1998).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “The physics of photopolymer–liquid crystal composite holographic gratings,” Proc. SPIE 2689, 158–169 (1996).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer dispersed liquid crystals,” Polymer 36, 2699–2707 (1995).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Development of photopolymer-liquid crystal composite materials for dynamic hologram applications,” Proc. SPIE 2152, 303–313 (1994).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Pogue, R. T.

R. T. Pogue, L. V. Natarajan, V. P. Tondiglia, S. A. Siwecki, R. L. Sutherland, and T. J. Bunning, “Controlling nano-scale morphology in switchable PDLC gratings,” Proc. SPIE 3475, 2–11 (1998).
[CrossRef]

Rokushima, K.

Siwecki, S. A.

R. T. Pogue, L. V. Natarajan, V. P. Tondiglia, S. A. Siwecki, R. L. Sutherland, and T. J. Bunning, “Controlling nano-scale morphology in switchable PDLC gratings,” Proc. SPIE 3475, 2–11 (1998).
[CrossRef]

Sponsler, M. B.

J. Zhang and M. B. Sponsler, “Switchable liquid crystalline photopolymer media for holography,” J. Am. Chem. Soc. 114, 1506–1507 (1992).
[CrossRef]

Stone, T. W.

T. W. Stone, J. C. Kralik, R. C. Veitch, and M. S. Malcuit, “Performance of photonic switching systems based on electro-optic volume holographic diffraction gratings,” Proc. SPIE 4112, 38–47 (2000).
[CrossRef]

T. W. Stone, J. C. Kralik, and M. S. Malcuit, “Characteristics of photonic time shifters based on switched gratings,” Proc. SPIE 3463, 86–97 (1998).
[CrossRef]

M. S. Malcuit and T. W. Stone, “Optically switched volume holographic elements,” Opt. Lett. 20, 1328–1330 (1995).
[CrossRef] [PubMed]

Sutherland, R. L.

R. T. Pogue, L. V. Natarajan, V. P. Tondiglia, S. A. Siwecki, R. L. Sutherland, and T. J. Bunning, “Controlling nano-scale morphology in switchable PDLC gratings,” Proc. SPIE 3475, 2–11 (1998).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “The physics of photopolymer–liquid crystal composite holographic gratings,” Proc. SPIE 2689, 158–169 (1996).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer dispersed liquid crystals,” Polymer 36, 2699–2707 (1995).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Development of photopolymer-liquid crystal composite materials for dynamic hologram applications,” Proc. SPIE 2152, 303–313 (1994).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Tanguay Jr., A. R.

R. V. Johnson and A. R. Tanguay, Jr., “Optical beam propagation method for birefringent phase grating diffraction,” Opt. Eng. 25, 235–249 (1986).
[CrossRef]

Tondiglia, V. P.

R. T. Pogue, L. V. Natarajan, V. P. Tondiglia, S. A. Siwecki, R. L. Sutherland, and T. J. Bunning, “Controlling nano-scale morphology in switchable PDLC gratings,” Proc. SPIE 3475, 2–11 (1998).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “The physics of photopolymer–liquid crystal composite holographic gratings,” Proc. SPIE 2689, 158–169 (1996).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer dispersed liquid crystals,” Polymer 36, 2699–2707 (1995).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Development of photopolymer-liquid crystal composite materials for dynamic hologram applications,” Proc. SPIE 2152, 303–313 (1994).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Vachss, F.

Veitch, R. C.

T. W. Stone, J. C. Kralik, R. C. Veitch, and M. S. Malcuit, “Performance of photonic switching systems based on electro-optic volume holographic diffraction gratings,” Proc. SPIE 4112, 38–47 (2000).
[CrossRef]

Vezie, D. L.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer dispersed liquid crystals,” Polymer 36, 2699–2707 (1995).
[CrossRef]

Whitney, D. H.

D. H. Whitney and R. T. Ingwall, “The fabrication and properties of composite holograms recorded in DMP-128 photopolymer,” Proc. SPIE 1213, 18–26 (1990).
[CrossRef]

Yamakita, J.

Zgonik, M.

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

Zhang, J.

J. Zhang and M. B. Sponsler, “Switchable liquid crystalline photopolymer media for holography,” J. Am. Chem. Soc. 114, 1506–1507 (1992).
[CrossRef]

Appl. Phys. Lett. (1)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Chem. Mater. (1)

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

J. Am. Chem. Soc. (1)

J. Zhang and M. B. Sponsler, “Switchable liquid crystalline photopolymer media for holography,” J. Am. Chem. Soc. 114, 1506–1507 (1992).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Jpn. J. Appl. Phys. (1)

K. Kojima, “Diffraction of light waves in inhomogeneous and anisotropic medium,” Jpn. J. Appl. Phys. 21, 1303–1307 (1982).
[CrossRef]

Opt. Eng. (1)

R. V. Johnson and A. R. Tanguay, Jr., “Optical beam propagation method for birefringent phase grating diffraction,” Opt. Eng. 25, 235–249 (1986).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. E (1)

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

Polymer (1)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer dispersed liquid crystals,” Polymer 36, 2699–2707 (1995).
[CrossRef]

Proc. SPIE (6)

D. H. Whitney and R. T. Ingwall, “The fabrication and properties of composite holograms recorded in DMP-128 photopolymer,” Proc. SPIE 1213, 18–26 (1990).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “The physics of photopolymer–liquid crystal composite holographic gratings,” Proc. SPIE 2689, 158–169 (1996).
[CrossRef]

T. W. Stone, J. C. Kralik, and M. S. Malcuit, “Characteristics of photonic time shifters based on switched gratings,” Proc. SPIE 3463, 86–97 (1998).
[CrossRef]

T. W. Stone, J. C. Kralik, R. C. Veitch, and M. S. Malcuit, “Performance of photonic switching systems based on electro-optic volume holographic diffraction gratings,” Proc. SPIE 4112, 38–47 (2000).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Development of photopolymer-liquid crystal composite materials for dynamic hologram applications,” Proc. SPIE 2152, 303–313 (1994).
[CrossRef]

R. T. Pogue, L. V. Natarajan, V. P. Tondiglia, S. A. Siwecki, R. L. Sutherland, and T. J. Bunning, “Controlling nano-scale morphology in switchable PDLC gratings,” Proc. SPIE 3475, 2–11 (1998).
[CrossRef]

Other (1)

P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, Singapore, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Diagram showing the relationship between the unit vectors for the zero-order and first-order waves in a volume grating with an anisotropic average relative-permittivity tensor. Note that θ=θB+δ, where δ is the walk-off angle.

Fig. 2
Fig. 2

Diffraction efficiency plotted as a function of refractive-index modulation at Bragg incidence for p polarization. Comparison of the predictions of Kogelnik theory (solid curve) and two-wave anisotropic grating theory (dashed curve) assuming an anisotropic average relative-permittivity tensor and an isotropic relative-permittivity modulation tensor.

Fig. 3
Fig. 3

Diffraction efficiency plotted as a function of external Bragg angle for p polarization. Comparison of the predictions of Kogelnik theory (solid curve) and two-wave anisotropic grating theory (dashed curve) assuming an anisotropic average relative-permittivity tensor and an isotropic relative-permittivity modulation tensor.

Fig. 4
Fig. 4

Diffraction efficiency plotted as a function of external Bragg angle for p polarization. Comparison of the predictions of Kogelnik theory (solid curve) and two-wave anisotropic grating theory (dashed curve) assuming an isotropic average relative permittivity tensor and an anisotropic relative-permittivity modulation tensor.

Fig. 5
Fig. 5

Normalized diffraction efficiency of a polymer-dispersed liquid-crystal (PDLC) grating fabricated with E7 liquid crystal. Theoretical predictions are obtained by modeling the grating as a highly anisotropic composite grating. The experimentally obtained data are shown as circles (squares) for the electric field off (on). The solid (dashed) curve represents the theoretical diffraction efficiency of the grating when the electric field is off (on).

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

ε(x)=ε0+ε1 cos(Kx),
σ1=σ0-K-Δk,
cos θ0 dS0dz=-iκ0S1 exp(iΔkz),
cos θ1 dS1dz=-iκ1S0 exp(-iΔkz).
κ0,1=πλ0 eˆ0·ε1·eˆ12n¯0,1g0,1,
η=sin2(ν2+ξ2)1/2(1+ξ2/ν2),
ν2=π2λo2 (eˆ0·ε1·eˆ1)24n¯0n¯1g0g1 d2cos θ0 cos θ1,
ξ=Δkd2.
Δk=σz0-σz1.
σz=σ2-σx2.
σx1=σx0-K,
σx0=n¯0ko sin α0.
ηs,p=sin2νs,p,
νs=πn1dλo cos θB,
νp=πn1d cos(2θB)λo cos θB,
ε0=ε01000ε03000ε03,
ε1=ε1100010001.
eˆ0=[cos θ0-sin θ],
eˆ1=[cos θ0sin θ],
νp=πn1 effd cos(2θ)λo cos θ,
ε0=ε0100010001,
ε1=ε1000ε1000-ε1.
eˆ0=[cos θB0-sin θB],
eˆ1=[cos θB0sin θB],
νp=πn1 effdλo cos θB,
nb=nP(LC)=cniso+(1-c)nP,
na=fnLC+(1-f)nP(LC),
n0=na+nb2,
n1=na-nb2,

Metrics