Abstract

We demonstrate the measurement of optical frequency differences between Q-switched laser pulses by using photo-electromotive-force (photo-EMF) optical frequency sensors. The presence of high-peak-power laser pulses affords the photo-EMF frequency sensor with ultrafast response times limited only by the free-carrier lifetime of the sensor material. Such fast response times lead to a broad dynamic range for optical difference frequency measurements with an experimentally demonstrated frequency detection bandwidth in excess of 50 MHz, limited only by the capability of our test equipment. Such a large dynamic range for optical frequency detection makes photo-EMF sensors ideal candidates for adaptive remote sensing of high-speed objects.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, and I. Apostal, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs: Cr,” Opt. Lett. 15, 1239–1241 (1990).
    [CrossRef] [PubMed]
  2. I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
    [CrossRef]
  3. C.-C. Wang, F. Davidson, and S. Trivedi, “Simple laser velocimeter that uses photoconductive semiconductors to measure optical frequency differences,” Appl. Opt. 34, 6496–6499 (1995).
    [CrossRef] [PubMed]
  4. M. Arroyo Carrasco, P. Rodriguez Montero, and S. Stepanov, “Measurement of coherent length of superluminescent diode irradiation with photo-EMF based adaptive photodetector,” in Conference on Lasers and Electro-Optics, 1999 OSA Technical Digest Series, (Optical Society of America, Washington, D.C., 1999).
  5. F. Jin, J. Khurgin, S. Trivedi, C.-C. Wang, and E. Gad, “Displacement measurement and surface profiling using semi-insulating photoconductive semiconductors and linearly frequency-ramped lasers,” Appl. Phys. Lett. 75, 1374–1376 (1999).
    [CrossRef]
  6. C.-C. Wang, S. Trivedi, F. Jin, J. Khurgin, D. Temple, U. Hommerich, E. Gad, F.-S. Choa, Y.-S. Wu, and A. Corder, “Interferometer-less coherent optical range finder,” J. Lightwave Technol. 19, 666–672 (2001).
    [CrossRef]
  7. J. A. Coy, D. D. Nolte, G. J. Dunning, D. M. Pepper, B. Pouet, G. D. Bacher, and M. B. Klein, “Asymmetric interdigitated metal–semiconductor–metal contacts for improved adaptive photoinduced-electromotive-force detectors,” J. Opt. Soc. Am. B 17, 697–704 (2000).
    [CrossRef]
  8. T. Yanagisawa, K. Asaka, and Y. Hirano, “1.5-μm coherent lidar using a single longitudinal-mode diode pumped Q-switched Er, Yb:glass laser,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 49 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000).
  9. P. Gunter and J.-P. Huignard, eds., Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988).
  10. G. C. Valley, “Short-pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron. QE-19, 1637–1645 (1983).
    [CrossRef]
  11. R. N. Schwartz, M. Ziari, and S. Trivedi, “Electron paramagnetic resonance and an optical investigation of photorefractive vanadium-doped CdTe,” Phys. Rev. B 49, 5274–5282 (1994).
    [CrossRef]
  12. N. Korneev, S. Mansurova, and S. Stepanov, “Nonstationary current in bipolar photoconductor with slow photoconductivity relaxation,” J. Appl. Phys. 78, 2925–2931 (1995).
    [CrossRef]
  13. D. Ritter, E. Zeldov, and K. Weiser, “Ambipolar transport in amorphous semiconductors in the lifetime and relaxation time regimes investigated by the steady-state photocarrier grating technique,” Phys. Rev. B 38, 8296–8304 (1988).
    [CrossRef]
  14. C.-C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
    [CrossRef]
  15. G. S. Elliott and T. J. Beutner, “A review of recent ad-vancements in molecular filter based planar Doppler velocimetry systems,” Prog. Aerosp. Sci. 35, 799–845 (1999).
    [CrossRef]
  16. J. F. Meyers and H. Komine, “Doppler global velocimetry: a new way to look at velocity,” Laser Anemom. Int. Conf., 4th 1, 289–296 (1991).
  17. J. F. Meyers, J. W. Lee, M. T. Fletcher, and B. W. South, “Hardening Doppler global velocimetry systems for large wind tunnel applications,” AIAA Paper 98–2606 (American Institute of Aeronautics and Astronautics, Inc., New York, New York, 1998).
  18. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).

2001 (1)

2000 (1)

1999 (2)

F. Jin, J. Khurgin, S. Trivedi, C.-C. Wang, and E. Gad, “Displacement measurement and surface profiling using semi-insulating photoconductive semiconductors and linearly frequency-ramped lasers,” Appl. Phys. Lett. 75, 1374–1376 (1999).
[CrossRef]

G. S. Elliott and T. J. Beutner, “A review of recent ad-vancements in molecular filter based planar Doppler velocimetry systems,” Prog. Aerosp. Sci. 35, 799–845 (1999).
[CrossRef]

1998 (1)

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

1997 (1)

C.-C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
[CrossRef]

1995 (2)

C.-C. Wang, F. Davidson, and S. Trivedi, “Simple laser velocimeter that uses photoconductive semiconductors to measure optical frequency differences,” Appl. Opt. 34, 6496–6499 (1995).
[CrossRef] [PubMed]

N. Korneev, S. Mansurova, and S. Stepanov, “Nonstationary current in bipolar photoconductor with slow photoconductivity relaxation,” J. Appl. Phys. 78, 2925–2931 (1995).
[CrossRef]

1994 (1)

R. N. Schwartz, M. Ziari, and S. Trivedi, “Electron paramagnetic resonance and an optical investigation of photorefractive vanadium-doped CdTe,” Phys. Rev. B 49, 5274–5282 (1994).
[CrossRef]

1991 (1)

J. F. Meyers and H. Komine, “Doppler global velocimetry: a new way to look at velocity,” Laser Anemom. Int. Conf., 4th 1, 289–296 (1991).

1990 (1)

1988 (1)

D. Ritter, E. Zeldov, and K. Weiser, “Ambipolar transport in amorphous semiconductors in the lifetime and relaxation time regimes investigated by the steady-state photocarrier grating technique,” Phys. Rev. B 38, 8296–8304 (1988).
[CrossRef]

1983 (1)

G. C. Valley, “Short-pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron. QE-19, 1637–1645 (1983).
[CrossRef]

Apostal, I.

Bacher, G. D.

J. A. Coy, D. D. Nolte, G. J. Dunning, D. M. Pepper, B. Pouet, G. D. Bacher, and M. B. Klein, “Asymmetric interdigitated metal–semiconductor–metal contacts for improved adaptive photoinduced-electromotive-force detectors,” J. Opt. Soc. Am. B 17, 697–704 (2000).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Beutner, T. J.

G. S. Elliott and T. J. Beutner, “A review of recent ad-vancements in molecular filter based planar Doppler velocimetry systems,” Prog. Aerosp. Sci. 35, 799–845 (1999).
[CrossRef]

Choa, F.-S.

Corder, A.

Coy, J. A.

Davidson, F.

Dunning, G. J.

Elliott, G. S.

G. S. Elliott and T. J. Beutner, “A review of recent ad-vancements in molecular filter based planar Doppler velocimetry systems,” Prog. Aerosp. Sci. 35, 799–845 (1999).
[CrossRef]

Gad, E.

C.-C. Wang, S. Trivedi, F. Jin, J. Khurgin, D. Temple, U. Hommerich, E. Gad, F.-S. Choa, Y.-S. Wu, and A. Corder, “Interferometer-less coherent optical range finder,” J. Lightwave Technol. 19, 666–672 (2001).
[CrossRef]

F. Jin, J. Khurgin, S. Trivedi, C.-C. Wang, and E. Gad, “Displacement measurement and surface profiling using semi-insulating photoconductive semiconductors and linearly frequency-ramped lasers,” Appl. Phys. Lett. 75, 1374–1376 (1999).
[CrossRef]

Hommerich, U.

Jin, F.

C.-C. Wang, S. Trivedi, F. Jin, J. Khurgin, D. Temple, U. Hommerich, E. Gad, F.-S. Choa, Y.-S. Wu, and A. Corder, “Interferometer-less coherent optical range finder,” J. Lightwave Technol. 19, 666–672 (2001).
[CrossRef]

F. Jin, J. Khurgin, S. Trivedi, C.-C. Wang, and E. Gad, “Displacement measurement and surface profiling using semi-insulating photoconductive semiconductors and linearly frequency-ramped lasers,” Appl. Phys. Lett. 75, 1374–1376 (1999).
[CrossRef]

Khurgin, J.

C.-C. Wang, S. Trivedi, F. Jin, J. Khurgin, D. Temple, U. Hommerich, E. Gad, F.-S. Choa, Y.-S. Wu, and A. Corder, “Interferometer-less coherent optical range finder,” J. Lightwave Technol. 19, 666–672 (2001).
[CrossRef]

F. Jin, J. Khurgin, S. Trivedi, C.-C. Wang, and E. Gad, “Displacement measurement and surface profiling using semi-insulating photoconductive semiconductors and linearly frequency-ramped lasers,” Appl. Phys. Lett. 75, 1374–1376 (1999).
[CrossRef]

Klein, M. B.

J. A. Coy, D. D. Nolte, G. J. Dunning, D. M. Pepper, B. Pouet, G. D. Bacher, and M. B. Klein, “Asymmetric interdigitated metal–semiconductor–metal contacts for improved adaptive photoinduced-electromotive-force detectors,” J. Opt. Soc. Am. B 17, 697–704 (2000).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Komine, H.

J. F. Meyers and H. Komine, “Doppler global velocimetry: a new way to look at velocity,” Laser Anemom. Int. Conf., 4th 1, 289–296 (1991).

Korneev, N.

N. Korneev, S. Mansurova, and S. Stepanov, “Nonstationary current in bipolar photoconductor with slow photoconductivity relaxation,” J. Appl. Phys. 78, 2925–2931 (1995).
[CrossRef]

Kruger, R. A.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Lahiri, I.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Linke, R. A.

C.-C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
[CrossRef]

Mansurova, S.

N. Korneev, S. Mansurova, and S. Stepanov, “Nonstationary current in bipolar photoconductor with slow photoconductivity relaxation,” J. Appl. Phys. 78, 2925–2931 (1995).
[CrossRef]

Melloch, M. R.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

C.-C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
[CrossRef]

Meyers, J. F.

J. F. Meyers and H. Komine, “Doppler global velocimetry: a new way to look at velocity,” Laser Anemom. Int. Conf., 4th 1, 289–296 (1991).

Nolte, D. D.

J. A. Coy, D. D. Nolte, G. J. Dunning, D. M. Pepper, B. Pouet, G. D. Bacher, and M. B. Klein, “Asymmetric interdigitated metal–semiconductor–metal contacts for improved adaptive photoinduced-electromotive-force detectors,” J. Opt. Soc. Am. B 17, 697–704 (2000).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

C.-C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
[CrossRef]

Pepper, D. M.

Popa, D.

Pouet, B.

Pyrak-Nolte, L. J.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Ritter, D.

D. Ritter, E. Zeldov, and K. Weiser, “Ambipolar transport in amorphous semiconductors in the lifetime and relaxation time regimes investigated by the steady-state photocarrier grating technique,” Phys. Rev. B 38, 8296–8304 (1988).
[CrossRef]

Schwartz, R. N.

R. N. Schwartz, M. Ziari, and S. Trivedi, “Electron paramagnetic resonance and an optical investigation of photorefractive vanadium-doped CdTe,” Phys. Rev. B 49, 5274–5282 (1994).
[CrossRef]

Sokolov, I. A.

Stepanov, S.

N. Korneev, S. Mansurova, and S. Stepanov, “Nonstationary current in bipolar photoconductor with slow photoconductivity relaxation,” J. Appl. Phys. 78, 2925–2931 (1995).
[CrossRef]

Stepanov, S. I.

Temple, D.

Trivedi, S.

C.-C. Wang, S. Trivedi, F. Jin, J. Khurgin, D. Temple, U. Hommerich, E. Gad, F.-S. Choa, Y.-S. Wu, and A. Corder, “Interferometer-less coherent optical range finder,” J. Lightwave Technol. 19, 666–672 (2001).
[CrossRef]

F. Jin, J. Khurgin, S. Trivedi, C.-C. Wang, and E. Gad, “Displacement measurement and surface profiling using semi-insulating photoconductive semiconductors and linearly frequency-ramped lasers,” Appl. Phys. Lett. 75, 1374–1376 (1999).
[CrossRef]

C.-C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
[CrossRef]

C.-C. Wang, F. Davidson, and S. Trivedi, “Simple laser velocimeter that uses photoconductive semiconductors to measure optical frequency differences,” Appl. Opt. 34, 6496–6499 (1995).
[CrossRef] [PubMed]

R. N. Schwartz, M. Ziari, and S. Trivedi, “Electron paramagnetic resonance and an optical investigation of photorefractive vanadium-doped CdTe,” Phys. Rev. B 49, 5274–5282 (1994).
[CrossRef]

Trofimov, G. S.

Valley, G. C.

G. C. Valley, “Short-pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron. QE-19, 1637–1645 (1983).
[CrossRef]

Vlad, V. I.

Wang, C.-C.

C.-C. Wang, S. Trivedi, F. Jin, J. Khurgin, D. Temple, U. Hommerich, E. Gad, F.-S. Choa, Y.-S. Wu, and A. Corder, “Interferometer-less coherent optical range finder,” J. Lightwave Technol. 19, 666–672 (2001).
[CrossRef]

F. Jin, J. Khurgin, S. Trivedi, C.-C. Wang, and E. Gad, “Displacement measurement and surface profiling using semi-insulating photoconductive semiconductors and linearly frequency-ramped lasers,” Appl. Phys. Lett. 75, 1374–1376 (1999).
[CrossRef]

C.-C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
[CrossRef]

C.-C. Wang, F. Davidson, and S. Trivedi, “Simple laser velocimeter that uses photoconductive semiconductors to measure optical frequency differences,” Appl. Opt. 34, 6496–6499 (1995).
[CrossRef] [PubMed]

Weiser, K.

D. Ritter, E. Zeldov, and K. Weiser, “Ambipolar transport in amorphous semiconductors in the lifetime and relaxation time regimes investigated by the steady-state photocarrier grating technique,” Phys. Rev. B 38, 8296–8304 (1988).
[CrossRef]

Wu, Y.-S.

Zeldov, E.

D. Ritter, E. Zeldov, and K. Weiser, “Ambipolar transport in amorphous semiconductors in the lifetime and relaxation time regimes investigated by the steady-state photocarrier grating technique,” Phys. Rev. B 38, 8296–8304 (1988).
[CrossRef]

Ziari, M.

R. N. Schwartz, M. Ziari, and S. Trivedi, “Electron paramagnetic resonance and an optical investigation of photorefractive vanadium-doped CdTe,” Phys. Rev. B 49, 5274–5282 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

F. Jin, J. Khurgin, S. Trivedi, C.-C. Wang, and E. Gad, “Displacement measurement and surface profiling using semi-insulating photoconductive semiconductors and linearly frequency-ramped lasers,” Appl. Phys. Lett. 75, 1374–1376 (1999).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

C.-C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. C. Valley, “Short-pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron. QE-19, 1637–1645 (1983).
[CrossRef]

J. Appl. Phys. (1)

N. Korneev, S. Mansurova, and S. Stepanov, “Nonstationary current in bipolar photoconductor with slow photoconductivity relaxation,” J. Appl. Phys. 78, 2925–2931 (1995).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Laser Anemom. Int. Conf., 4th (1)

J. F. Meyers and H. Komine, “Doppler global velocimetry: a new way to look at velocity,” Laser Anemom. Int. Conf., 4th 1, 289–296 (1991).

Opt. Lett. (1)

Phys. Rev. B (2)

D. Ritter, E. Zeldov, and K. Weiser, “Ambipolar transport in amorphous semiconductors in the lifetime and relaxation time regimes investigated by the steady-state photocarrier grating technique,” Phys. Rev. B 38, 8296–8304 (1988).
[CrossRef]

R. N. Schwartz, M. Ziari, and S. Trivedi, “Electron paramagnetic resonance and an optical investigation of photorefractive vanadium-doped CdTe,” Phys. Rev. B 49, 5274–5282 (1994).
[CrossRef]

Prog. Aerosp. Sci. (1)

G. S. Elliott and T. J. Beutner, “A review of recent ad-vancements in molecular filter based planar Doppler velocimetry systems,” Prog. Aerosp. Sci. 35, 799–845 (1999).
[CrossRef]

Other (5)

T. Yanagisawa, K. Asaka, and Y. Hirano, “1.5-μm coherent lidar using a single longitudinal-mode diode pumped Q-switched Er, Yb:glass laser,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 49 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000).

P. Gunter and J.-P. Huignard, eds., Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988).

J. F. Meyers, J. W. Lee, M. T. Fletcher, and B. W. South, “Hardening Doppler global velocimetry systems for large wind tunnel applications,” AIAA Paper 98–2606 (American Institute of Aeronautics and Astronautics, Inc., New York, New York, 1998).

S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).

M. Arroyo Carrasco, P. Rodriguez Montero, and S. Stepanov, “Measurement of coherent length of superluminescent diode irradiation with photo-EMF based adaptive photodetector,” in Conference on Lasers and Electro-Optics, 1999 OSA Technical Digest Series, (Optical Society of America, Washington, D.C., 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for using photo-EMF sensors to detect the relative optical frequency differences between intense laser pulses. B.S., beam splitter; M, mirror; AOM, acousto-optic modulator; P.B.S., polarizing beam splitter; λ/4, quarter-wave plate.

Fig. 2
Fig. 2

Measured photovoltage versus relative optical frequency difference characteristic curve of a CdTe:V photo-EMF sensor in the presence of a Q-switched laser source. The grating spacing was Λ=23.3 µm, and the average optical power levels were PLO=6.8 mW and PP=5.3 mW for the local reference and the probe laser beams.

Fig. 3
Fig. 3

Measured photovoltage versus relative optical frequency difference characteristic curve of a high-resistivity CdTe:V photo-EMF sensor (squares) in the presence of a Q-switched laser source. The grating spacing was Λ=6.2 µm and the average optical power levels were PLO=6.8 mW and PP=4.5 mW for the local reference and the probe laser beams. For ease of comparison, the characteristic curve of the low-resistivity sample used in Fig. 2 is also shown (crosses). The inset shows the measured IV curves for the two photo-EMF sensors, both subjected to the normal incidence of 70 mW of continuous-wave laser power.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

d2Esc(t)dt2+1τn 1+n0ND-NA+EDEM+τnτM dEsc(t)dt
+1τnτM 1+n0ND-NA+EDEqEsc(t)
-jm(t)EDτnτM,
d2Esc(t)dt2+1τn 1+EDEM+τnτM dEsc(t)dt
+1τnτM 1+EDEqEsc(t)-jm(t)EDτnτM.
τ-1t=(1+ED/EM)τ-1n+τ-1M,
τ-1g=(1+ED/Eq)/[τn+(1+ED/EM)τM].
τg=τM(1+ED/EM)/(1+ED/Eq).
τgτn/(1+ED/Eq)τn,
j(ωD)=|m0|2σ0ED2(1+ED/Eq)2 ωDτM(1-τtτgω2D)2+(ωDτg)2.
j(ωD)ωD×|m0|20rED/2(1+ED/Eq)2.
|fmax|=(1+τt/τg)/2πτg1/2πτg,
fD=1λ(kS-k0)·V,
1ρ=μeτn eηPoptw×hν,

Metrics