Abstract

A finite three-dimensional photonic-crystal structure with a complete photonic bandgap is shown to drastically modify the spontaneous-emission rate of an embedded dipole. Calculations on the basis of the finite-difference time-domain method with perfectly matched layer boundary conditions demonstrate a strong position and polarization dependence of spontaneous emission within the unit cell. Strong enhancement effects are predicted at interfaces between the high-index and the low-index material. The inhibition of spontaneous emission within the bandgap is of the order of two magnitudes, even for relatively small crystallites.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
    [CrossRef] [PubMed]
  2. F. L. Kien, N. H. Quang, and K. Hakuta, “Spontaneous emission from an atom inside a dielectric sphere,” Opt. Commun. 178, 151–164 (2000).
    [CrossRef]
  3. Y. Xu, R. K. Lee, and A. Yariv, “Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity,” Phys. Rev. A 61, 033808 (2000).
    [CrossRef]
  4. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  5. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  6. K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998).
    [CrossRef]
  7. J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802–804 (1998).
    [CrossRef]
  8. M. S. Thijssen, R. Sprik, J. E. G. J. Wijnhoven, M. Megens, T. Narayanan, A. Lagendijk, and W. L. Vos, “Inhibited light propagation and broad band reflection in photonic air-sphere crystals,” Phys. Rev. Lett. 83, 2730–2733 (1999).
    [CrossRef]
  9. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
    [CrossRef] [PubMed]
  10. H. Miguez, F. Meseguer, C. Lopez, M. Holgado, G. Andreasen, A. Mifsud, and V. Forn, “Germanium FCC structure from a colloidal crystal template,” Langmuir 16, 4405–4408 (2000).
    [CrossRef]
  11. Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
    [CrossRef] [PubMed]
  12. H. P. Schriemer, H. M. van Driel, A. F. Koenderink, and W. L. Vos, “Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals,” Phys. Rev. A 63, 011801 (2001).
    [CrossRef]
  13. R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).
    [CrossRef]
  14. G. Kweon and L. M. Lawandy, “Quantum electrodynamics in photonic crystals,” Opt. Commun. 118, 388–411 (1995).
    [CrossRef]
  15. T. Suzuki and P. K. L. Yu, “Emission power of an electric dipole in the photonic band structure of the fcc lattice,” J. Opt. Soc. Am. B 12, 570–582 (1995).
    [CrossRef]
  16. K. Busch, N. Vats, S. John, and B. C. Sanders, “Radiating dipoles in photonic crystals,” Phys. Rev. E 62, 4251–4260 (2000).
    [CrossRef]
  17. V. Lousse, J.-P. Vigneron, X. Bouju, and J.-M. Vigoreux, “Atomic radiation rates in photonic crystals,” Phys. Rev. B 64, 201104(R) (2001).
    [CrossRef]
  18. S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound States and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
    [CrossRef] [PubMed]
  19. S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
    [CrossRef] [PubMed]
  20. S. Y. Zhu, Y. Yang, H. Chen, H. Zheng, and M. S. Zubairy, “Spontaneous radiation and Lamb shift in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2136–2139 (2000).
    [CrossRef] [PubMed]
  21. N. Vats, S. John, and K. Busch, “Theory of fluorescence in photonic crystals,” Phys. Rev. A 65, 043808 (2002).
    [CrossRef]
  22. Z. Y. Li, L. L. Lin, and Z. Q. Zhang, “Spontaneous emission from photonic crystals: full vectorial calculations,” Phys. Rev. Lett. 84, 4341–4344 (2000).
    [CrossRef] [PubMed]
  23. Z. Y. Li and Y. Xia, “Optical photonic band gaps and the Lamb shift,” Phys. Rev. B 63, 121305(R) (2001).
    [CrossRef]
  24. Z. Y. Li and Y. Xia, “Full vectorial model for quantum optics in three-dimensional photonic crystals,” Phys. Rev. A 63, 043817 (2001).
    [CrossRef]
  25. J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
    [CrossRef]
  26. Y. Xu, R. K. Lee, and A. Yariv, “Quantum analysis and the classical analysis of spontaneous emission in a microcavity,” Phys. Rev. A 61, 033807 (2000).
    [CrossRef]
  27. R. K. Lee, Y. Xu, and A. Yariv, “Modified spontaneous emission from a two-dimensional photonic bandgap crystal slab,” J. Opt. Soc. Am. B 17, 1438–1442 (2000).
    [CrossRef]
  28. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
  29. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
    [CrossRef]
  30. J. de Moerloose and D. de Zutter, “Poynting’s theorem for the finite-difference-time-domain method,” Microwave Opt. Technol. Lett. 8, 257–260 (1995).
    [CrossRef]
  31. C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
    [CrossRef]

2002 (1)

N. Vats, S. John, and K. Busch, “Theory of fluorescence in photonic crystals,” Phys. Rev. A 65, 043808 (2002).
[CrossRef]

2001 (5)

Z. Y. Li and Y. Xia, “Optical photonic band gaps and the Lamb shift,” Phys. Rev. B 63, 121305(R) (2001).
[CrossRef]

Z. Y. Li and Y. Xia, “Full vectorial model for quantum optics in three-dimensional photonic crystals,” Phys. Rev. A 63, 043817 (2001).
[CrossRef]

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
[CrossRef] [PubMed]

H. P. Schriemer, H. M. van Driel, A. F. Koenderink, and W. L. Vos, “Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals,” Phys. Rev. A 63, 011801 (2001).
[CrossRef]

V. Lousse, J.-P. Vigneron, X. Bouju, and J.-M. Vigoreux, “Atomic radiation rates in photonic crystals,” Phys. Rev. B 64, 201104(R) (2001).
[CrossRef]

2000 (9)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

H. Miguez, F. Meseguer, C. Lopez, M. Holgado, G. Andreasen, A. Mifsud, and V. Forn, “Germanium FCC structure from a colloidal crystal template,” Langmuir 16, 4405–4408 (2000).
[CrossRef]

F. L. Kien, N. H. Quang, and K. Hakuta, “Spontaneous emission from an atom inside a dielectric sphere,” Opt. Commun. 178, 151–164 (2000).
[CrossRef]

Y. Xu, R. K. Lee, and A. Yariv, “Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity,” Phys. Rev. A 61, 033808 (2000).
[CrossRef]

Y. Xu, R. K. Lee, and A. Yariv, “Quantum analysis and the classical analysis of spontaneous emission in a microcavity,” Phys. Rev. A 61, 033807 (2000).
[CrossRef]

Z. Y. Li, L. L. Lin, and Z. Q. Zhang, “Spontaneous emission from photonic crystals: full vectorial calculations,” Phys. Rev. Lett. 84, 4341–4344 (2000).
[CrossRef] [PubMed]

K. Busch, N. Vats, S. John, and B. C. Sanders, “Radiating dipoles in photonic crystals,” Phys. Rev. E 62, 4251–4260 (2000).
[CrossRef]

S. Y. Zhu, Y. Yang, H. Chen, H. Zheng, and M. S. Zubairy, “Spontaneous radiation and Lamb shift in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2136–2139 (2000).
[CrossRef] [PubMed]

R. K. Lee, Y. Xu, and A. Yariv, “Modified spontaneous emission from a two-dimensional photonic bandgap crystal slab,” J. Opt. Soc. Am. B 17, 1438–1442 (2000).
[CrossRef]

1999 (2)

J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

M. S. Thijssen, R. Sprik, J. E. G. J. Wijnhoven, M. Megens, T. Narayanan, A. Lagendijk, and W. L. Vos, “Inhibited light propagation and broad band reflection in photonic air-sphere crystals,” Phys. Rev. Lett. 83, 2730–2733 (1999).
[CrossRef]

1998 (2)

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998).
[CrossRef]

J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802–804 (1998).
[CrossRef]

1996 (1)

R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).
[CrossRef]

1995 (4)

G. Kweon and L. M. Lawandy, “Quantum electrodynamics in photonic crystals,” Opt. Commun. 118, 388–411 (1995).
[CrossRef]

J. de Moerloose and D. de Zutter, “Poynting’s theorem for the finite-difference-time-domain method,” Microwave Opt. Technol. Lett. 8, 257–260 (1995).
[CrossRef]

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[CrossRef]

T. Suzuki and P. K. L. Yu, “Emission power of an electric dipole in the photonic band structure of the fcc lattice,” J. Opt. Soc. Am. B 12, 570–582 (1995).
[CrossRef]

1994 (2)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[CrossRef] [PubMed]

1990 (1)

S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound States and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
[CrossRef] [PubMed]

1988 (1)

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
[CrossRef] [PubMed]

1987 (2)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

Andreasen, G.

H. Miguez, F. Meseguer, C. Lopez, M. Holgado, G. Andreasen, A. Mifsud, and V. Forn, “Germanium FCC structure from a colloidal crystal template,” Langmuir 16, 4405–4408 (2000).
[CrossRef]

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

Blanco, A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

Bo, X.-Z.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
[CrossRef] [PubMed]

Bouju, X.

V. Lousse, J.-P. Vigneron, X. Bouju, and J.-M. Vigoreux, “Atomic radiation rates in photonic crystals,” Phys. Rev. B 64, 201104(R) (2001).
[CrossRef]

Busch, K.

N. Vats, S. John, and K. Busch, “Theory of fluorescence in photonic crystals,” Phys. Rev. A 65, 043808 (2002).
[CrossRef]

K. Busch, N. Vats, S. John, and B. C. Sanders, “Radiating dipoles in photonic crystals,” Phys. Rev. E 62, 4251–4260 (2000).
[CrossRef]

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998).
[CrossRef]

Chan, C. T.

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[CrossRef]

Chen, H.

S. Y. Zhu, Y. Yang, H. Chen, H. Zheng, and M. S. Zubairy, “Spontaneous radiation and Lamb shift in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2136–2139 (2000).
[CrossRef] [PubMed]

Chew, H.

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
[CrossRef] [PubMed]

Chomski, E.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

de Moerloose, J.

J. de Moerloose and D. de Zutter, “Poynting’s theorem for the finite-difference-time-domain method,” Microwave Opt. Technol. Lett. 8, 257–260 (1995).
[CrossRef]

de Zutter, D.

J. de Moerloose and D. de Zutter, “Poynting’s theorem for the finite-difference-time-domain method,” Microwave Opt. Technol. Lett. 8, 257–260 (1995).
[CrossRef]

Forn, V.

H. Miguez, F. Meseguer, C. Lopez, M. Holgado, G. Andreasen, A. Mifsud, and V. Forn, “Germanium FCC structure from a colloidal crystal template,” Langmuir 16, 4405–4408 (2000).
[CrossRef]

Grabtchak, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

Hakuta, K.

F. L. Kien, N. H. Quang, and K. Hakuta, “Spontaneous emission from an atom inside a dielectric sphere,” Opt. Commun. 178, 151–164 (2000).
[CrossRef]

Ho, K. M.

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[CrossRef]

Holgado, M.

H. Miguez, F. Meseguer, C. Lopez, M. Holgado, G. Andreasen, A. Mifsud, and V. Forn, “Germanium FCC structure from a colloidal crystal template,” Langmuir 16, 4405–4408 (2000).
[CrossRef]

Hwang, J.-K.

J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

Ibisate, M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

John, S.

N. Vats, S. John, and K. Busch, “Theory of fluorescence in photonic crystals,” Phys. Rev. A 65, 043808 (2002).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

K. Busch, N. Vats, S. John, and B. C. Sanders, “Radiating dipoles in photonic crystals,” Phys. Rev. E 62, 4251–4260 (2000).
[CrossRef]

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998).
[CrossRef]

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[CrossRef] [PubMed]

S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound States and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Kien, F. L.

F. L. Kien, N. H. Quang, and K. Hakuta, “Spontaneous emission from an atom inside a dielectric sphere,” Opt. Commun. 178, 151–164 (2000).
[CrossRef]

Koenderink, A. F.

H. P. Schriemer, H. M. van Driel, A. F. Koenderink, and W. L. Vos, “Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals,” Phys. Rev. A 63, 011801 (2001).
[CrossRef]

Kweon, G.

G. Kweon and L. M. Lawandy, “Quantum electrodynamics in photonic crystals,” Opt. Commun. 118, 388–411 (1995).
[CrossRef]

Lagendijk, A.

M. S. Thijssen, R. Sprik, J. E. G. J. Wijnhoven, M. Megens, T. Narayanan, A. Lagendijk, and W. L. Vos, “Inhibited light propagation and broad band reflection in photonic air-sphere crystals,” Phys. Rev. Lett. 83, 2730–2733 (1999).
[CrossRef]

R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).
[CrossRef]

Lawandy, L. M.

G. Kweon and L. M. Lawandy, “Quantum electrodynamics in photonic crystals,” Opt. Commun. 118, 388–411 (1995).
[CrossRef]

Lee, R. K.

Y. Xu, R. K. Lee, and A. Yariv, “Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity,” Phys. Rev. A 61, 033808 (2000).
[CrossRef]

Y. Xu, R. K. Lee, and A. Yariv, “Quantum analysis and the classical analysis of spontaneous emission in a microcavity,” Phys. Rev. A 61, 033807 (2000).
[CrossRef]

R. K. Lee, Y. Xu, and A. Yariv, “Modified spontaneous emission from a two-dimensional photonic bandgap crystal slab,” J. Opt. Soc. Am. B 17, 1438–1442 (2000).
[CrossRef]

Lee, Y.-H.

J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

Leonard, S. W.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

Li, Z. Y.

Z. Y. Li and Y. Xia, “Optical photonic band gaps and the Lamb shift,” Phys. Rev. B 63, 121305(R) (2001).
[CrossRef]

Z. Y. Li and Y. Xia, “Full vectorial model for quantum optics in three-dimensional photonic crystals,” Phys. Rev. A 63, 043817 (2001).
[CrossRef]

Z. Y. Li, L. L. Lin, and Z. Q. Zhang, “Spontaneous emission from photonic crystals: full vectorial calculations,” Phys. Rev. Lett. 84, 4341–4344 (2000).
[CrossRef] [PubMed]

Lin, L. L.

Z. Y. Li, L. L. Lin, and Z. Q. Zhang, “Spontaneous emission from photonic crystals: full vectorial calculations,” Phys. Rev. Lett. 84, 4341–4344 (2000).
[CrossRef] [PubMed]

Lopez, C.

H. Miguez, F. Meseguer, C. Lopez, M. Holgado, G. Andreasen, A. Mifsud, and V. Forn, “Germanium FCC structure from a colloidal crystal template,” Langmuir 16, 4405–4408 (2000).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

Lousse, V.

V. Lousse, J.-P. Vigneron, X. Bouju, and J.-M. Vigoreux, “Atomic radiation rates in photonic crystals,” Phys. Rev. B 64, 201104(R) (2001).
[CrossRef]

Megens, M.

M. S. Thijssen, R. Sprik, J. E. G. J. Wijnhoven, M. Megens, T. Narayanan, A. Lagendijk, and W. L. Vos, “Inhibited light propagation and broad band reflection in photonic air-sphere crystals,” Phys. Rev. Lett. 83, 2730–2733 (1999).
[CrossRef]

Meseguer, F.

H. Miguez, F. Meseguer, C. Lopez, M. Holgado, G. Andreasen, A. Mifsud, and V. Forn, “Germanium FCC structure from a colloidal crystal template,” Langmuir 16, 4405–4408 (2000).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

Mifsud, A.

H. Miguez, F. Meseguer, C. Lopez, M. Holgado, G. Andreasen, A. Mifsud, and V. Forn, “Germanium FCC structure from a colloidal crystal template,” Langmuir 16, 4405–4408 (2000).
[CrossRef]

Miguez, H.

H. Miguez, F. Meseguer, C. Lopez, M. Holgado, G. Andreasen, A. Mifsud, and V. Forn, “Germanium FCC structure from a colloidal crystal template,” Langmuir 16, 4405–4408 (2000).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

Mondia, J. P.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

Narayanan, T.

M. S. Thijssen, R. Sprik, J. E. G. J. Wijnhoven, M. Megens, T. Narayanan, A. Lagendijk, and W. L. Vos, “Inhibited light propagation and broad band reflection in photonic air-sphere crystals,” Phys. Rev. Lett. 83, 2730–2733 (1999).
[CrossRef]

Norris, D. J.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
[CrossRef] [PubMed]

Ozin, G. A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

Quang, N. H.

F. L. Kien, N. H. Quang, and K. Hakuta, “Spontaneous emission from an atom inside a dielectric sphere,” Opt. Commun. 178, 151–164 (2000).
[CrossRef]

Quang, T.

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[CrossRef] [PubMed]

Ryu, H.-Y.

J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

Sanders, B. C.

K. Busch, N. Vats, S. John, and B. C. Sanders, “Radiating dipoles in photonic crystals,” Phys. Rev. E 62, 4251–4260 (2000).
[CrossRef]

Schriemer, H. P.

H. P. Schriemer, H. M. van Driel, A. F. Koenderink, and W. L. Vos, “Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals,” Phys. Rev. A 63, 011801 (2001).
[CrossRef]

Sprik, R.

M. S. Thijssen, R. Sprik, J. E. G. J. Wijnhoven, M. Megens, T. Narayanan, A. Lagendijk, and W. L. Vos, “Inhibited light propagation and broad band reflection in photonic air-sphere crystals,” Phys. Rev. Lett. 83, 2730–2733 (1999).
[CrossRef]

R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).
[CrossRef]

Sturm, J. C.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
[CrossRef] [PubMed]

Suzuki, T.

Thijssen, M. S.

M. S. Thijssen, R. Sprik, J. E. G. J. Wijnhoven, M. Megens, T. Narayanan, A. Lagendijk, and W. L. Vos, “Inhibited light propagation and broad band reflection in photonic air-sphere crystals,” Phys. Rev. Lett. 83, 2730–2733 (1999).
[CrossRef]

Toader, O.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

van Driel, H. M.

H. P. Schriemer, H. M. van Driel, A. F. Koenderink, and W. L. Vos, “Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals,” Phys. Rev. A 63, 011801 (2001).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

van Tiggelen, B. A.

R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).
[CrossRef]

Vats, N.

N. Vats, S. John, and K. Busch, “Theory of fluorescence in photonic crystals,” Phys. Rev. A 65, 043808 (2002).
[CrossRef]

K. Busch, N. Vats, S. John, and B. C. Sanders, “Radiating dipoles in photonic crystals,” Phys. Rev. E 62, 4251–4260 (2000).
[CrossRef]

Vigneron, J.-P.

V. Lousse, J.-P. Vigneron, X. Bouju, and J.-M. Vigoreux, “Atomic radiation rates in photonic crystals,” Phys. Rev. B 64, 201104(R) (2001).
[CrossRef]

Vigoreux, J.-M.

V. Lousse, J.-P. Vigneron, X. Bouju, and J.-M. Vigoreux, “Atomic radiation rates in photonic crystals,” Phys. Rev. B 64, 201104(R) (2001).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
[CrossRef] [PubMed]

Vos, W. L.

H. P. Schriemer, H. M. van Driel, A. F. Koenderink, and W. L. Vos, “Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals,” Phys. Rev. A 63, 011801 (2001).
[CrossRef]

M. S. Thijssen, R. Sprik, J. E. G. J. Wijnhoven, M. Megens, T. Narayanan, A. Lagendijk, and W. L. Vos, “Inhibited light propagation and broad band reflection in photonic air-sphere crystals,” Phys. Rev. Lett. 83, 2730–2733 (1999).
[CrossRef]

J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802–804 (1998).
[CrossRef]

Wang, J.

S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound States and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
[CrossRef] [PubMed]

Wijnhoven, J. E. G. J.

M. S. Thijssen, R. Sprik, J. E. G. J. Wijnhoven, M. Megens, T. Narayanan, A. Lagendijk, and W. L. Vos, “Inhibited light propagation and broad band reflection in photonic air-sphere crystals,” Phys. Rev. Lett. 83, 2730–2733 (1999).
[CrossRef]

J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802–804 (1998).
[CrossRef]

Xia, Y.

Z. Y. Li and Y. Xia, “Full vectorial model for quantum optics in three-dimensional photonic crystals,” Phys. Rev. A 63, 043817 (2001).
[CrossRef]

Z. Y. Li and Y. Xia, “Optical photonic band gaps and the Lamb shift,” Phys. Rev. B 63, 121305(R) (2001).
[CrossRef]

Xu, Y.

R. K. Lee, Y. Xu, and A. Yariv, “Modified spontaneous emission from a two-dimensional photonic bandgap crystal slab,” J. Opt. Soc. Am. B 17, 1438–1442 (2000).
[CrossRef]

Y. Xu, R. K. Lee, and A. Yariv, “Quantum analysis and the classical analysis of spontaneous emission in a microcavity,” Phys. Rev. A 61, 033807 (2000).
[CrossRef]

Y. Xu, R. K. Lee, and A. Yariv, “Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity,” Phys. Rev. A 61, 033808 (2000).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yang, Y.

S. Y. Zhu, Y. Yang, H. Chen, H. Zheng, and M. S. Zubairy, “Spontaneous radiation and Lamb shift in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2136–2139 (2000).
[CrossRef] [PubMed]

Yariv, A.

R. K. Lee, Y. Xu, and A. Yariv, “Modified spontaneous emission from a two-dimensional photonic bandgap crystal slab,” J. Opt. Soc. Am. B 17, 1438–1442 (2000).
[CrossRef]

Y. Xu, R. K. Lee, and A. Yariv, “Quantum analysis and the classical analysis of spontaneous emission in a microcavity,” Phys. Rev. A 61, 033807 (2000).
[CrossRef]

Y. Xu, R. K. Lee, and A. Yariv, “Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity,” Phys. Rev. A 61, 033808 (2000).
[CrossRef]

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

Yu, P. K. L.

Yu, Q. L.

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[CrossRef]

Zhang, Z. Q.

Z. Y. Li, L. L. Lin, and Z. Q. Zhang, “Spontaneous emission from photonic crystals: full vectorial calculations,” Phys. Rev. Lett. 84, 4341–4344 (2000).
[CrossRef] [PubMed]

Zheng, H.

S. Y. Zhu, Y. Yang, H. Chen, H. Zheng, and M. S. Zubairy, “Spontaneous radiation and Lamb shift in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2136–2139 (2000).
[CrossRef] [PubMed]

Zhu, S. Y.

S. Y. Zhu, Y. Yang, H. Chen, H. Zheng, and M. S. Zubairy, “Spontaneous radiation and Lamb shift in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2136–2139 (2000).
[CrossRef] [PubMed]

Zubairy, M. S.

S. Y. Zhu, Y. Yang, H. Chen, H. Zheng, and M. S. Zubairy, “Spontaneous radiation and Lamb shift in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2136–2139 (2000).
[CrossRef] [PubMed]

Europhys. Lett. (1)

R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

J. Comput. Phys. (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

J. Opt. Soc. Am. B (2)

Langmuir (1)

H. Miguez, F. Meseguer, C. Lopez, M. Holgado, G. Andreasen, A. Mifsud, and V. Forn, “Germanium FCC structure from a colloidal crystal template,” Langmuir 16, 4405–4408 (2000).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

J. de Moerloose and D. de Zutter, “Poynting’s theorem for the finite-difference-time-domain method,” Microwave Opt. Technol. Lett. 8, 257–260 (1995).
[CrossRef]

Nature (2)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
[CrossRef] [PubMed]

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
[CrossRef] [PubMed]

Opt. Commun. (2)

G. Kweon and L. M. Lawandy, “Quantum electrodynamics in photonic crystals,” Opt. Commun. 118, 388–411 (1995).
[CrossRef]

F. L. Kien, N. H. Quang, and K. Hakuta, “Spontaneous emission from an atom inside a dielectric sphere,” Opt. Commun. 178, 151–164 (2000).
[CrossRef]

Phys. Rev. A (7)

Y. Xu, R. K. Lee, and A. Yariv, “Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity,” Phys. Rev. A 61, 033808 (2000).
[CrossRef]

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
[CrossRef] [PubMed]

H. P. Schriemer, H. M. van Driel, A. F. Koenderink, and W. L. Vos, “Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals,” Phys. Rev. A 63, 011801 (2001).
[CrossRef]

Z. Y. Li and Y. Xia, “Full vectorial model for quantum optics in three-dimensional photonic crystals,” Phys. Rev. A 63, 043817 (2001).
[CrossRef]

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[CrossRef] [PubMed]

N. Vats, S. John, and K. Busch, “Theory of fluorescence in photonic crystals,” Phys. Rev. A 65, 043808 (2002).
[CrossRef]

Y. Xu, R. K. Lee, and A. Yariv, “Quantum analysis and the classical analysis of spontaneous emission in a microcavity,” Phys. Rev. A 61, 033807 (2000).
[CrossRef]

Phys. Rev. B (4)

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[CrossRef]

J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

Z. Y. Li and Y. Xia, “Optical photonic band gaps and the Lamb shift,” Phys. Rev. B 63, 121305(R) (2001).
[CrossRef]

V. Lousse, J.-P. Vigneron, X. Bouju, and J.-M. Vigoreux, “Atomic radiation rates in photonic crystals,” Phys. Rev. B 64, 201104(R) (2001).
[CrossRef]

Phys. Rev. E (2)

K. Busch, N. Vats, S. John, and B. C. Sanders, “Radiating dipoles in photonic crystals,” Phys. Rev. E 62, 4251–4260 (2000).
[CrossRef]

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998).
[CrossRef]

Phys. Rev. Lett. (6)

M. S. Thijssen, R. Sprik, J. E. G. J. Wijnhoven, M. Megens, T. Narayanan, A. Lagendijk, and W. L. Vos, “Inhibited light propagation and broad band reflection in photonic air-sphere crystals,” Phys. Rev. Lett. 83, 2730–2733 (1999).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound States and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
[CrossRef] [PubMed]

Z. Y. Li, L. L. Lin, and Z. Q. Zhang, “Spontaneous emission from photonic crystals: full vectorial calculations,” Phys. Rev. Lett. 84, 4341–4344 (2000).
[CrossRef] [PubMed]

S. Y. Zhu, Y. Yang, H. Chen, H. Zheng, and M. S. Zubairy, “Spontaneous radiation and Lamb shift in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2136–2139 (2000).
[CrossRef] [PubMed]

Science (1)

J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802–804 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Normalized emission rate for a dipole in the center of a dielectric sphere with refractive index 3.0 and radius r.

Fig. 2
Fig. 2

Visualization of the spatial distribution of dielectric material in a (3a)3 crystallite. The axis labels are in units of numerical grid points used for simulations.

Fig. 3
Fig. 3

Conventional unit cell with a set of high-symmetry points in real space

Fig. 4
Fig. 4

Normalized emission rate of a z-polarized dipole at the four high-symmetry points in the inverted-opal structure.

Fig. 5
Fig. 5

Normalized emission rate along the path P3P1 with dipole polarization perpendicular to the path.

Fig. 6
Fig. 6

Normalized emission rate along the path P3P1 with dipole polarization parallel to the path.

Fig. 7
Fig. 7

Normalized emission rate along the path P3P2 for a z-polarized dipole.

Fig. 8
Fig. 8

Normalized emission rate for a z-polarized dipole at P3 in the center unit cell of crystallites with different edge length 1.

Fig. 9
Fig. 9

Normalized emission rate for a z-polarized dipole at P3 in different unit cells of a l=7a crystallite; path from center to the +x surface.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

=0t0j(r0, t)E(r0, t)dt,
(ω)=Re[j*(r0, ω)E(r0, ω)],
Γ(ω)=cav(ω)free(ω).

Metrics