Abstract

We have performed a detailed study of the polarization properties and switching behavior of holographic polymer-dispersed liquid-crystal gratings. A theoretical model [R. L. Sutherland, J. Opt. Soc. Am. B 19, 2995 (2002)] is compared with a number of observed phenomena in reflection and transmission gratings made with different types of liquid crystals under a variety of experimental conditions. Anomalous polarization effects are described and interpreted. We show that a wide variation of holographic polymer-dispersed liquid-crystal grating properties can be explained in terms of the statistics of droplet orientational distributions.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Ashmead, M. M. Popovich, J. Clark, S. F. Sagan, and R. T. Smith, “Application-specific integrated lenses (ASILS) for the next generation of wearable displays,”in Helmet-and Head-Mounted Displays V, R. J. Lewandowski, L. A. Haworth, and H. J. Girolamo, eds., Proc. SPIE 4021, 180–186 (2000).
    [CrossRef]
  2. K. Tanaka, K. Kato, and M. Date, “Fabrication of holographic polymer-dispersed liquid crystal (HPDLC) with high reflection efficiency,” Jpn. J. Appl. Phys. 38, L277–L278 (1999).
    [CrossRef]
  3. C. C. Bowley and G. P. Crawford, “Improved reflective displays based on polymer-dispersed liquid crystals,” J. Opt. Technol. 67, 717–722 (2000).
    [CrossRef]
  4. R. Smith and M. Popovich, “Application-specific integrated filters for color-sequential microdisplay-based projection applications,” J. Soc. Inf. Disp. 9, 203–244 (2000).
    [CrossRef]
  5. S. Qian, J. Colegrove, P.-Y. Liu, and X. Quan, “Organic-based electrically switchable Bragg gratings and their applications in photonics and telecommunications.,” in Organic Photonic Materials and Devices III, B. E. Kippelen and D. D. C. Bradley, eds, Proc. SPIE 4279, 69–77 (2001).
    [CrossRef]
  6. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
    [CrossRef]
  7. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
    [CrossRef]
  8. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer-dispersed liquid crystals,” Polymer 36, 2699–2708 (1995).
    [CrossRef]
  9. T. Karasawa and Y. Taketomi, “Effects of material systems on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392 (1997).
    [CrossRef]
  10. J. J. Butler and M. S. Malcuit, “Diffraction properties of highly birefringent liquid-crystal composite gratings,” Opt. Lett. 25, 420–422 (2000).
    [CrossRef]
  11. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
    [CrossRef]
  12. M. Jazbinšek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
    [CrossRef]
  13. J. J. Butler, M. S. Malcuit, and M. A. Rodriguez, “Diffractive properties of highly birefringent volume gratings: investigation,” J. Opt. Soc. Am. B 19, 183–189 (2002).
    [CrossRef]
  14. R. L. Sutherland, “Polarization and switching properties of holographic polymer-dispersed liquid crystals. I. Theoretical model,” J. Opt. Soc. Am. B 19, 2995–3003 (2002).
    [CrossRef]
  15. H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55, 109–126 (1976).
    [CrossRef]
  16. G. Cipparrone, A. Mazzulla, and G. Russo, “Diffraction from holographic gratings in polymer-dispersed liquid crystals recorded by means of polarization light patterns,” J. Opt. Soc. Am. B 18, 1821–1826 (2001).
    [CrossRef]
  17. R. L. Sutherland, L. V. Natarajan, T. J. Bunning, and V. P. Tondiglia, “Switchable holographic polymer-dispersed liquid crystals,” in Handbook of Advanced Electronic and Photonic Materials and Devices, H. S. Nalwa, ed. (Academic, San Diego, Calif., 2000), pp. 75–81.

2002 (2)

2001 (4)

G. Cipparrone, A. Mazzulla, and G. Russo, “Diffraction from holographic gratings in polymer-dispersed liquid crystals recorded by means of polarization light patterns,” J. Opt. Soc. Am. B 18, 1821–1826 (2001).
[CrossRef]

S. Qian, J. Colegrove, P.-Y. Liu, and X. Quan, “Organic-based electrically switchable Bragg gratings and their applications in photonics and telecommunications.,” in Organic Photonic Materials and Devices III, B. E. Kippelen and D. D. C. Bradley, eds, Proc. SPIE 4279, 69–77 (2001).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

M. Jazbinšek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
[CrossRef]

2000 (4)

A. C. Ashmead, M. M. Popovich, J. Clark, S. F. Sagan, and R. T. Smith, “Application-specific integrated lenses (ASILS) for the next generation of wearable displays,”in Helmet-and Head-Mounted Displays V, R. J. Lewandowski, L. A. Haworth, and H. J. Girolamo, eds., Proc. SPIE 4021, 180–186 (2000).
[CrossRef]

R. Smith and M. Popovich, “Application-specific integrated filters for color-sequential microdisplay-based projection applications,” J. Soc. Inf. Disp. 9, 203–244 (2000).
[CrossRef]

C. C. Bowley and G. P. Crawford, “Improved reflective displays based on polymer-dispersed liquid crystals,” J. Opt. Technol. 67, 717–722 (2000).
[CrossRef]

J. J. Butler and M. S. Malcuit, “Diffraction properties of highly birefringent liquid-crystal composite gratings,” Opt. Lett. 25, 420–422 (2000).
[CrossRef]

1999 (1)

K. Tanaka, K. Kato, and M. Date, “Fabrication of holographic polymer-dispersed liquid crystal (HPDLC) with high reflection efficiency,” Jpn. J. Appl. Phys. 38, L277–L278 (1999).
[CrossRef]

1997 (1)

T. Karasawa and Y. Taketomi, “Effects of material systems on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392 (1997).
[CrossRef]

1995 (1)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer-dispersed liquid crystals,” Polymer 36, 2699–2708 (1995).
[CrossRef]

1994 (1)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

1993 (1)

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

1976 (1)

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55, 109–126 (1976).
[CrossRef]

Adams, W. W.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer-dispersed liquid crystals,” Polymer 36, 2699–2708 (1995).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Ashmead, A. C.

A. C. Ashmead, M. M. Popovich, J. Clark, S. F. Sagan, and R. T. Smith, “Application-specific integrated lenses (ASILS) for the next generation of wearable displays,”in Helmet-and Head-Mounted Displays V, R. J. Lewandowski, L. A. Haworth, and H. J. Girolamo, eds., Proc. SPIE 4021, 180–186 (2000).
[CrossRef]

Bowley, C. C.

Bunning, T. J.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer-dispersed liquid crystals,” Polymer 36, 2699–2708 (1995).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Butler, J. J.

Cipparrone, G.

Clark, J.

A. C. Ashmead, M. M. Popovich, J. Clark, S. F. Sagan, and R. T. Smith, “Application-specific integrated lenses (ASILS) for the next generation of wearable displays,”in Helmet-and Head-Mounted Displays V, R. J. Lewandowski, L. A. Haworth, and H. J. Girolamo, eds., Proc. SPIE 4021, 180–186 (2000).
[CrossRef]

Colegrove, J.

S. Qian, J. Colegrove, P.-Y. Liu, and X. Quan, “Organic-based electrically switchable Bragg gratings and their applications in photonics and telecommunications.,” in Organic Photonic Materials and Devices III, B. E. Kippelen and D. D. C. Bradley, eds, Proc. SPIE 4279, 69–77 (2001).
[CrossRef]

Crawford, G. P.

M. Jazbinšek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
[CrossRef]

C. C. Bowley and G. P. Crawford, “Improved reflective displays based on polymer-dispersed liquid crystals,” J. Opt. Technol. 67, 717–722 (2000).
[CrossRef]

Date, M.

K. Tanaka, K. Kato, and M. Date, “Fabrication of holographic polymer-dispersed liquid crystal (HPDLC) with high reflection efficiency,” Jpn. J. Appl. Phys. 38, L277–L278 (1999).
[CrossRef]

Fontecchio, A. K.

M. Jazbinšek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
[CrossRef]

Jazbinšek, M.

M. Jazbinšek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
[CrossRef]

Karasawa, T.

T. Karasawa and Y. Taketomi, “Effects of material systems on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392 (1997).
[CrossRef]

Kato, K.

K. Tanaka, K. Kato, and M. Date, “Fabrication of holographic polymer-dispersed liquid crystal (HPDLC) with high reflection efficiency,” Jpn. J. Appl. Phys. 38, L277–L278 (1999).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55, 109–126 (1976).
[CrossRef]

Liu, P.-Y.

S. Qian, J. Colegrove, P.-Y. Liu, and X. Quan, “Organic-based electrically switchable Bragg gratings and their applications in photonics and telecommunications.,” in Organic Photonic Materials and Devices III, B. E. Kippelen and D. D. C. Bradley, eds, Proc. SPIE 4279, 69–77 (2001).
[CrossRef]

Malcuit, M. S.

Mazzulla, A.

Natarajan, L. V.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer-dispersed liquid crystals,” Polymer 36, 2699–2708 (1995).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Olenik, I. D.

M. Jazbinšek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
[CrossRef]

Popovich, M.

R. Smith and M. Popovich, “Application-specific integrated filters for color-sequential microdisplay-based projection applications,” J. Soc. Inf. Disp. 9, 203–244 (2000).
[CrossRef]

Popovich, M. M.

A. C. Ashmead, M. M. Popovich, J. Clark, S. F. Sagan, and R. T. Smith, “Application-specific integrated lenses (ASILS) for the next generation of wearable displays,”in Helmet-and Head-Mounted Displays V, R. J. Lewandowski, L. A. Haworth, and H. J. Girolamo, eds., Proc. SPIE 4021, 180–186 (2000).
[CrossRef]

Qian, S.

S. Qian, J. Colegrove, P.-Y. Liu, and X. Quan, “Organic-based electrically switchable Bragg gratings and their applications in photonics and telecommunications.,” in Organic Photonic Materials and Devices III, B. E. Kippelen and D. D. C. Bradley, eds, Proc. SPIE 4279, 69–77 (2001).
[CrossRef]

Quan, X.

S. Qian, J. Colegrove, P.-Y. Liu, and X. Quan, “Organic-based electrically switchable Bragg gratings and their applications in photonics and telecommunications.,” in Organic Photonic Materials and Devices III, B. E. Kippelen and D. D. C. Bradley, eds, Proc. SPIE 4279, 69–77 (2001).
[CrossRef]

Rodriguez, M. A.

Russo, G.

Sagan, S. F.

A. C. Ashmead, M. M. Popovich, J. Clark, S. F. Sagan, and R. T. Smith, “Application-specific integrated lenses (ASILS) for the next generation of wearable displays,”in Helmet-and Head-Mounted Displays V, R. J. Lewandowski, L. A. Haworth, and H. J. Girolamo, eds., Proc. SPIE 4021, 180–186 (2000).
[CrossRef]

Smith, R.

R. Smith and M. Popovich, “Application-specific integrated filters for color-sequential microdisplay-based projection applications,” J. Soc. Inf. Disp. 9, 203–244 (2000).
[CrossRef]

Smith, R. T.

A. C. Ashmead, M. M. Popovich, J. Clark, S. F. Sagan, and R. T. Smith, “Application-specific integrated lenses (ASILS) for the next generation of wearable displays,”in Helmet-and Head-Mounted Displays V, R. J. Lewandowski, L. A. Haworth, and H. J. Girolamo, eds., Proc. SPIE 4021, 180–186 (2000).
[CrossRef]

Sutherland, R. L.

R. L. Sutherland, “Polarization and switching properties of holographic polymer-dispersed liquid crystals. I. Theoretical model,” J. Opt. Soc. Am. B 19, 2995–3003 (2002).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer-dispersed liquid crystals,” Polymer 36, 2699–2708 (1995).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Taketomi, Y.

T. Karasawa and Y. Taketomi, “Effects of material systems on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392 (1997).
[CrossRef]

Tanaka, K.

K. Tanaka, K. Kato, and M. Date, “Fabrication of holographic polymer-dispersed liquid crystal (HPDLC) with high reflection efficiency,” Jpn. J. Appl. Phys. 38, L277–L278 (1999).
[CrossRef]

Tondiglia, V. P.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer-dispersed liquid crystals,” Polymer 36, 2699–2708 (1995).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Vezie, D. L.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer-dispersed liquid crystals,” Polymer 36, 2699–2708 (1995).
[CrossRef]

Zgonik, M.

M. Jazbinšek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
[CrossRef]

Appl. Phys. Lett. (2)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55, 109–126 (1976).
[CrossRef]

Chem. Mater. (1)

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

J. Appl. Phys. (1)

M. Jazbinšek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Opt. Technol. (1)

J. Soc. Inf. Disp. (1)

R. Smith and M. Popovich, “Application-specific integrated filters for color-sequential microdisplay-based projection applications,” J. Soc. Inf. Disp. 9, 203–244 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (2)

T. Karasawa and Y. Taketomi, “Effects of material systems on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392 (1997).
[CrossRef]

K. Tanaka, K. Kato, and M. Date, “Fabrication of holographic polymer-dispersed liquid crystal (HPDLC) with high reflection efficiency,” Jpn. J. Appl. Phys. 38, L277–L278 (1999).
[CrossRef]

Opt. Lett. (1)

Polymer (1)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Vezie, and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer-dispersed liquid crystals,” Polymer 36, 2699–2708 (1995).
[CrossRef]

Proc. SPIE (2)

S. Qian, J. Colegrove, P.-Y. Liu, and X. Quan, “Organic-based electrically switchable Bragg gratings and their applications in photonics and telecommunications.,” in Organic Photonic Materials and Devices III, B. E. Kippelen and D. D. C. Bradley, eds, Proc. SPIE 4279, 69–77 (2001).
[CrossRef]

A. C. Ashmead, M. M. Popovich, J. Clark, S. F. Sagan, and R. T. Smith, “Application-specific integrated lenses (ASILS) for the next generation of wearable displays,”in Helmet-and Head-Mounted Displays V, R. J. Lewandowski, L. A. Haworth, and H. J. Girolamo, eds., Proc. SPIE 4021, 180–186 (2000).
[CrossRef]

Other (1)

R. L. Sutherland, L. V. Natarajan, T. J. Bunning, and V. P. Tondiglia, “Switchable holographic polymer-dispersed liquid crystals,” in Handbook of Advanced Electronic and Photonic Materials and Devices, H. S. Nalwa, ed. (Academic, San Diego, Calif., 2000), pp. 75–81.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental arrangements for characterizing HPDLC transmission and reflection gratings: (a) transmission gratings, (b) reflection gratings.

Fig. 2
Fig. 2

Diffraction efficiency of a reflection HPDLC grating as a function of wavelength at different field values: (a) Experimental data. The insert shows the switching data, peak efficiency versus reduced field E/Ec. (b) Model calculations.

Fig. 3
Fig. 3

Diffraction efficiency of a reflection HPDLC grating as a function of reduced field E/Ec.

Fig. 4
Fig. 4

Diffraction-efficiency polarization anisotropy in HPDLC reflection gratings as a function of liquid-crystal type and recording polarization.

Fig. 5
Fig. 5

Diffraction efficiency as a function of polarization angle for light at normal incidence on a HPDLC reflection grating.

Fig. 6
Fig. 6

Peak diffraction efficiency of a reflection HPDLC grating as a function of reduced field E/Ec: (a) θρ=0, (b) θρ=0.106π (30°, external), and (c) θρ=0.153π (45°, external).

Fig. 7
Fig. 7

Peak diffraction efficiency of a transmission HPDLC grating as a function of reduced field E/Ec for s-polarized and p-polarized light.

Fig. 8
Fig. 8

Peak diffraction efficiency of a transmission HPDLC grating as a function of reduced field E/Ec for p-polarized light. Data are given for both the zero and first orders.

Fig. 9
Fig. 9

Peak diffraction efficiency of transmission HPDLC gratings as a function of reduced field E/Ec for p-polarized light illustrating effects of overmodulation.

Fig. 10
Fig. 10

Peak diffraction efficiency of transmission HPDLC gratings as a function of reduced field E/Ec probed with p-polarized, near infrared light at relatively large Bragg angles.

Fig. 11
Fig. 11

Diffraction-efficiency polarization anisotropy in HPDLC transmission gratings as a function of liquid-crystal type and incident angle.

Tables (2)

Tables Icon

Table 1 Sample Recipes

Tables Icon

Table 2 Summary of Model Parameters

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε(0)=(1-αfc)εp+αfcεd,
ε(1)=2 fcπ sin(απ)(εd-εp).
η=ηs+(ηp-ηs)cos2 ψ.

Metrics