Abstract

Energy transfer at 1500 nm in lead fluoroborate glasses (PbOPbF2B2O3) codoped with Er3+ and Yb3+ is studied for the first time to the authors’ knowledge. A sample codoped with 1 mol. % of Yb2O3 and 0.01 mol. % of Er2O3 has a measured fluorescence lifetime of (1.30±0.07) ms and an energy transfer efficiency of 80%. Also, a large emission band, of 72.4 nm has a measured peak emission cross section of (0.73±0.06)×10-20cm2. The calculated Judd–Ofelt parameters are Ω2=(3.51±0.14)×10-20 cm2, Ω4=(1.09±0.07)×10-20 cm2, and Ω6=(0.94±0.07)×10-20 cm2. The temporal evolution of the Yb3+ fluorescence is fitted by use of the Yokota–Tanimoto expression to yield the Yb3+ diffusion constant [(1.6±0.2)×10-10 cm2 s-1] and the critical radius of Yb3+/Er3+ (18±1)×10-8 cm. Results with the singly doped samples produced are presented to clarify the energy transfer process.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Snitzer and R. Woodcock, “Yb3+–Er3+ glass laser (room temperature 3-level laser energy transfer from Yb3+ to Er3+),” Appl. Phys. Lett. 6, 45–49 (1965).
    [CrossRef]
  2. A. F. Obaton, C. Parent, G. Le Flem, P. Thony, A. Brenier, and G. Boulon, “Yb–Er codoped LaLiPO4 glass: a new eye-safe at 1535 nm,” J. Alloys Compd. 300, 123–130 (2000).
    [CrossRef]
  3. M. Okayasu, T. Takeshita, M. Yamada, O. Kogure, M. Horiguchi, M. Fukuda, A. Kozen, K. Oe, and S. Uehara, “High-power 0.98 μm GaInAs strained quantum well lasers for Er3+ doped fiber amplifier,” Electron. Lett. 25, 1563–1565 (1989).
    [CrossRef]
  4. R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low noise erbium doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026–1027 (1987).
    [CrossRef]
  5. S. Taccheo, G. Sorbello, P. Laporta, and C. Svelto, “Analysis of long-term absolute frequency stabilization of a bulk 1.5-m erbium microlaser to a grid of nine different wavelengths,” Electron. Lett. 34, 81–82 (1998).
    [CrossRef]
  6. J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. Christophe Chanteloup, and C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high field lasers,” IEEE J. Quantum Electron. 4, 376–384 (1998).
    [CrossRef]
  7. L. R. P. Kassab, S. H. Tatumi, A. S. Morais, L. C. Courrol, N. U. Wetter, and V. L. R. Salvador, “Spectroscopic properties of lead fluoroborate glasses doped with ytterbium,” Opt. Express 8, 585–589 (2001), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  8. L. R. P. Kassab, L. C. Courrol, N. U. Wetter, L. Gomes, V. L. R. Salvador, and A. S. Morais, “Lead fluoroborate glasses doped with ytterbium,” J. Alloys Compd. (to be published).
  9. P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11, 269–288 (1999).
    [CrossRef]
  10. B. Di Bartolo, Optical Properties of Ions in Solids (Plenum, New York, 1975), pp. 66–325.
  11. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution.II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
    [CrossRef]
  12. M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 157–272 (1967).
    [CrossRef]
  13. M. Yokota and O. Tanimoto, “Effects of difusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
    [CrossRef]
  14. L. C. Courrol, L. V. G. Tarelho, L. Gomes, N. D. Vieira, Jr., F. C. Cassanjes, and Y. Messaddeq, “Time dependence and energy transfer mechanism in Tm3+, Ho3+ and Tm3+–Ho3+ co-doped alkali niobium tellurite glasses sensitized by Yb3+,” J. Non-Cryst. Solids 284, 217–222 (2001).
    [CrossRef]
  15. S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode pumped bulk erbium ytterbium,” Appl. Phys. B 63, 425–436 (1996).
    [CrossRef]
  16. D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Stanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-Chih Liu, S. N. Houde-Walter, and J. S. Haydenc, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glasses,” J. Non-Cryst. Solids 263, 369–381 (2000).
    [CrossRef]
  17. Y. Yan, A. J. Faber, and H. de Waal, “Luminescence quenching by OH groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181, 283–290 (1995).
    [CrossRef]
  18. H. Ebendorff-Heidepriem, W. Seeber, and D. Ehrt, “Spectroscopic properties of Nd3+ ions in phosphate glasses,” J. Non-Cryst. Solids 183, 191–200 (1995).
    [CrossRef]
  19. E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5, 159–167 (1996).
    [CrossRef]
  20. M. P. Hehle, N. J. Cockroft, T. R. Gosnell, A. J. Bruce, G. Nykolak, and J. Schmulovich, “Uniform upconversion in high concentration Er3+-doped soda lime silicate and aluminosilicate glasses,” Opt. Lett. 22, 772–774 (1997).
    [CrossRef]
  21. S. N. Houde-Walter, P. M. Peers, J. F. Stebbins, and Q. Zeng, “Hydroxyl-contents and hydroxyl related concentration quenching in erbium-doped aluminophosphate, aluminosilicate and fluorosilicate glasses,” J. Non-Cryst. Solids 286, 118–131 (2001).
    [CrossRef]
  22. L. Zhang, H. Hu, and F. Lin, “Emission properties of highly doped Er fluoroaluminate glass,” Mater. Lett. 47, 189–193 (2001).
    [CrossRef]

2001 (4)

L. C. Courrol, L. V. G. Tarelho, L. Gomes, N. D. Vieira, Jr., F. C. Cassanjes, and Y. Messaddeq, “Time dependence and energy transfer mechanism in Tm3+, Ho3+ and Tm3+–Ho3+ co-doped alkali niobium tellurite glasses sensitized by Yb3+,” J. Non-Cryst. Solids 284, 217–222 (2001).
[CrossRef]

S. N. Houde-Walter, P. M. Peers, J. F. Stebbins, and Q. Zeng, “Hydroxyl-contents and hydroxyl related concentration quenching in erbium-doped aluminophosphate, aluminosilicate and fluorosilicate glasses,” J. Non-Cryst. Solids 286, 118–131 (2001).
[CrossRef]

L. Zhang, H. Hu, and F. Lin, “Emission properties of highly doped Er fluoroaluminate glass,” Mater. Lett. 47, 189–193 (2001).
[CrossRef]

L. R. P. Kassab, S. H. Tatumi, A. S. Morais, L. C. Courrol, N. U. Wetter, and V. L. R. Salvador, “Spectroscopic properties of lead fluoroborate glasses doped with ytterbium,” Opt. Express 8, 585–589 (2001), http://www.opticsexpress.org.
[CrossRef] [PubMed]

2000 (2)

A. F. Obaton, C. Parent, G. Le Flem, P. Thony, A. Brenier, and G. Boulon, “Yb–Er codoped LaLiPO4 glass: a new eye-safe at 1535 nm,” J. Alloys Compd. 300, 123–130 (2000).
[CrossRef]

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Stanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-Chih Liu, S. N. Houde-Walter, and J. S. Haydenc, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glasses,” J. Non-Cryst. Solids 263, 369–381 (2000).
[CrossRef]

1999 (1)

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11, 269–288 (1999).
[CrossRef]

1998 (2)

S. Taccheo, G. Sorbello, P. Laporta, and C. Svelto, “Analysis of long-term absolute frequency stabilization of a bulk 1.5-m erbium microlaser to a grid of nine different wavelengths,” Electron. Lett. 34, 81–82 (1998).
[CrossRef]

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. Christophe Chanteloup, and C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high field lasers,” IEEE J. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

1997 (1)

1996 (2)

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5, 159–167 (1996).
[CrossRef]

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode pumped bulk erbium ytterbium,” Appl. Phys. B 63, 425–436 (1996).
[CrossRef]

1995 (2)

Y. Yan, A. J. Faber, and H. de Waal, “Luminescence quenching by OH groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181, 283–290 (1995).
[CrossRef]

H. Ebendorff-Heidepriem, W. Seeber, and D. Ehrt, “Spectroscopic properties of Nd3+ ions in phosphate glasses,” J. Non-Cryst. Solids 183, 191–200 (1995).
[CrossRef]

1989 (1)

M. Okayasu, T. Takeshita, M. Yamada, O. Kogure, M. Horiguchi, M. Fukuda, A. Kozen, K. Oe, and S. Uehara, “High-power 0.98 μm GaInAs strained quantum well lasers for Er3+ doped fiber amplifier,” Electron. Lett. 25, 1563–1565 (1989).
[CrossRef]

1987 (1)

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low noise erbium doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026–1027 (1987).
[CrossRef]

1968 (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution.II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[CrossRef]

1967 (2)

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 157–272 (1967).
[CrossRef]

M. Yokota and O. Tanimoto, “Effects of difusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
[CrossRef]

1965 (1)

E. Snitzer and R. Woodcock, “Yb3+–Er3+ glass laser (room temperature 3-level laser energy transfer from Yb3+ to Er3+),” Appl. Phys. Lett. 6, 45–49 (1965).
[CrossRef]

Biswal, S.

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. Christophe Chanteloup, and C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high field lasers,” IEEE J. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

Boulon, G.

A. F. Obaton, C. Parent, G. Le Flem, P. Thony, A. Brenier, and G. Boulon, “Yb–Er codoped LaLiPO4 glass: a new eye-safe at 1535 nm,” J. Alloys Compd. 300, 123–130 (2000).
[CrossRef]

Brenier, A.

A. F. Obaton, C. Parent, G. Le Flem, P. Thony, A. Brenier, and G. Boulon, “Yb–Er codoped LaLiPO4 glass: a new eye-safe at 1535 nm,” J. Alloys Compd. 300, 123–130 (2000).
[CrossRef]

Bruce, A. J.

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution.II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[CrossRef]

Cassanjes, F. C.

L. C. Courrol, L. V. G. Tarelho, L. Gomes, N. D. Vieira, Jr., F. C. Cassanjes, and Y. Messaddeq, “Time dependence and energy transfer mechanism in Tm3+, Ho3+ and Tm3+–Ho3+ co-doped alkali niobium tellurite glasses sensitized by Yb3+,” J. Non-Cryst. Solids 284, 217–222 (2001).
[CrossRef]

Christophe Chanteloup, J.

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. Christophe Chanteloup, and C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high field lasers,” IEEE J. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

Cockroft, N. J.

Courrol, L. C.

L. C. Courrol, L. V. G. Tarelho, L. Gomes, N. D. Vieira, Jr., F. C. Cassanjes, and Y. Messaddeq, “Time dependence and energy transfer mechanism in Tm3+, Ho3+ and Tm3+–Ho3+ co-doped alkali niobium tellurite glasses sensitized by Yb3+,” J. Non-Cryst. Solids 284, 217–222 (2001).
[CrossRef]

L. R. P. Kassab, S. H. Tatumi, A. S. Morais, L. C. Courrol, N. U. Wetter, and V. L. R. Salvador, “Spectroscopic properties of lead fluoroborate glasses doped with ytterbium,” Opt. Express 8, 585–589 (2001), http://www.opticsexpress.org.
[CrossRef] [PubMed]

de Waal, H.

Y. Yan, A. J. Faber, and H. de Waal, “Luminescence quenching by OH groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181, 283–290 (1995).
[CrossRef]

Druon, F.

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. Christophe Chanteloup, and C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high field lasers,” IEEE J. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

Ebendorff-Heidepriem, H.

H. Ebendorff-Heidepriem, W. Seeber, and D. Ehrt, “Spectroscopic properties of Nd3+ ions in phosphate glasses,” J. Non-Cryst. Solids 183, 191–200 (1995).
[CrossRef]

Ehrt, D.

H. Ebendorff-Heidepriem, W. Seeber, and D. Ehrt, “Spectroscopic properties of Nd3+ ions in phosphate glasses,” J. Non-Cryst. Solids 183, 191–200 (1995).
[CrossRef]

Faber, A. J.

Y. Yan, A. J. Faber, and H. de Waal, “Luminescence quenching by OH groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181, 283–290 (1995).
[CrossRef]

Faure, J.

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. Christophe Chanteloup, and C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high field lasers,” IEEE J. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution.II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[CrossRef]

Fontaine, N.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Stanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-Chih Liu, S. N. Houde-Walter, and J. S. Haydenc, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glasses,” J. Non-Cryst. Solids 263, 369–381 (2000).
[CrossRef]

Fukuda, M.

M. Okayasu, T. Takeshita, M. Yamada, O. Kogure, M. Horiguchi, M. Fukuda, A. Kozen, K. Oe, and S. Uehara, “High-power 0.98 μm GaInAs strained quantum well lasers for Er3+ doped fiber amplifier,” Electron. Lett. 25, 1563–1565 (1989).
[CrossRef]

Funk, D. S.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Stanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-Chih Liu, S. N. Houde-Walter, and J. S. Haydenc, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glasses,” J. Non-Cryst. Solids 263, 369–381 (2000).
[CrossRef]

Gomes, L.

L. C. Courrol, L. V. G. Tarelho, L. Gomes, N. D. Vieira, Jr., F. C. Cassanjes, and Y. Messaddeq, “Time dependence and energy transfer mechanism in Tm3+, Ho3+ and Tm3+–Ho3+ co-doped alkali niobium tellurite glasses sensitized by Yb3+,” J. Non-Cryst. Solids 284, 217–222 (2001).
[CrossRef]

Gosnell, T. R.

Haydenc, J. S.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Stanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-Chih Liu, S. N. Houde-Walter, and J. S. Haydenc, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glasses,” J. Non-Cryst. Solids 263, 369–381 (2000).
[CrossRef]

Hehle, M. P.

Honninger, C.

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. Christophe Chanteloup, and C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high field lasers,” IEEE J. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

Horiguchi, M.

M. Okayasu, T. Takeshita, M. Yamada, O. Kogure, M. Horiguchi, M. Fukuda, A. Kozen, K. Oe, and S. Uehara, “High-power 0.98 μm GaInAs strained quantum well lasers for Er3+ doped fiber amplifier,” Electron. Lett. 25, 1563–1565 (1989).
[CrossRef]

Houde-Walter, S. N.

S. N. Houde-Walter, P. M. Peers, J. F. Stebbins, and Q. Zeng, “Hydroxyl-contents and hydroxyl related concentration quenching in erbium-doped aluminophosphate, aluminosilicate and fluorosilicate glasses,” J. Non-Cryst. Solids 286, 118–131 (2001).
[CrossRef]

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Stanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-Chih Liu, S. N. Houde-Walter, and J. S. Haydenc, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glasses,” J. Non-Cryst. Solids 263, 369–381 (2000).
[CrossRef]

Hu, H.

L. Zhang, H. Hu, and F. Lin, “Emission properties of highly doped Er fluoroaluminate glass,” Mater. Lett. 47, 189–193 (2001).
[CrossRef]

Itatani, J.

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. Christophe Chanteloup, and C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high field lasers,” IEEE J. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

Jauncey, I. M.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low noise erbium doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026–1027 (1987).
[CrossRef]

Kassab, L. R. P.

Kik, P. G.

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5, 159–167 (1996).
[CrossRef]

Kogure, O.

M. Okayasu, T. Takeshita, M. Yamada, O. Kogure, M. Horiguchi, M. Fukuda, A. Kozen, K. Oe, and S. Uehara, “High-power 0.98 μm GaInAs strained quantum well lasers for Er3+ doped fiber amplifier,” Electron. Lett. 25, 1563–1565 (1989).
[CrossRef]

Kozen, A.

M. Okayasu, T. Takeshita, M. Yamada, O. Kogure, M. Horiguchi, M. Fukuda, A. Kozen, K. Oe, and S. Uehara, “High-power 0.98 μm GaInAs strained quantum well lasers for Er3+ doped fiber amplifier,” Electron. Lett. 25, 1563–1565 (1989).
[CrossRef]

Laporta, P.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11, 269–288 (1999).
[CrossRef]

S. Taccheo, G. Sorbello, P. Laporta, and C. Svelto, “Analysis of long-term absolute frequency stabilization of a bulk 1.5-m erbium microlaser to a grid of nine different wavelengths,” Electron. Lett. 34, 81–82 (1998).
[CrossRef]

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode pumped bulk erbium ytterbium,” Appl. Phys. B 63, 425–436 (1996).
[CrossRef]

Le Flem, G.

A. F. Obaton, C. Parent, G. Le Flem, P. Thony, A. Brenier, and G. Boulon, “Yb–Er codoped LaLiPO4 glass: a new eye-safe at 1535 nm,” J. Alloys Compd. 300, 123–130 (2000).
[CrossRef]

Lin, F.

L. Zhang, H. Hu, and F. Lin, “Emission properties of highly doped Er fluoroaluminate glass,” Mater. Lett. 47, 189–193 (2001).
[CrossRef]

Liu, W.-Chih

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Stanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-Chih Liu, S. N. Houde-Walter, and J. S. Haydenc, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glasses,” J. Non-Cryst. Solids 263, 369–381 (2000).
[CrossRef]

Longhi, S.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11, 269–288 (1999).
[CrossRef]

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode pumped bulk erbium ytterbium,” Appl. Phys. B 63, 425–436 (1996).
[CrossRef]

Mears, R. J.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low noise erbium doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026–1027 (1987).
[CrossRef]

Messaddeq, Y.

L. C. Courrol, L. V. G. Tarelho, L. Gomes, N. D. Vieira, Jr., F. C. Cassanjes, and Y. Messaddeq, “Time dependence and energy transfer mechanism in Tm3+, Ho3+ and Tm3+–Ho3+ co-doped alkali niobium tellurite glasses sensitized by Yb3+,” J. Non-Cryst. Solids 284, 217–222 (2001).
[CrossRef]

Morais, A. S.

Mourou, G. A.

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. Christophe Chanteloup, and C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high field lasers,” IEEE J. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

Nantel, M.

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. Christophe Chanteloup, and C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high field lasers,” IEEE J. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

Nees, J.

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. Christophe Chanteloup, and C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high field lasers,” IEEE J. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

Nishimura, A.

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. Christophe Chanteloup, and C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high field lasers,” IEEE J. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

Nykolak, G.

Obarski, G. E.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Stanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-Chih Liu, S. N. Houde-Walter, and J. S. Haydenc, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glasses,” J. Non-Cryst. Solids 263, 369–381 (2000).
[CrossRef]

Obaton, A. F.

A. F. Obaton, C. Parent, G. Le Flem, P. Thony, A. Brenier, and G. Boulon, “Yb–Er codoped LaLiPO4 glass: a new eye-safe at 1535 nm,” J. Alloys Compd. 300, 123–130 (2000).
[CrossRef]

Oe, K.

M. Okayasu, T. Takeshita, M. Yamada, O. Kogure, M. Horiguchi, M. Fukuda, A. Kozen, K. Oe, and S. Uehara, “High-power 0.98 μm GaInAs strained quantum well lasers for Er3+ doped fiber amplifier,” Electron. Lett. 25, 1563–1565 (1989).
[CrossRef]

Okayasu, M.

M. Okayasu, T. Takeshita, M. Yamada, O. Kogure, M. Horiguchi, M. Fukuda, A. Kozen, K. Oe, and S. Uehara, “High-power 0.98 μm GaInAs strained quantum well lasers for Er3+ doped fiber amplifier,” Electron. Lett. 25, 1563–1565 (1989).
[CrossRef]

Parent, C.

A. F. Obaton, C. Parent, G. Le Flem, P. Thony, A. Brenier, and G. Boulon, “Yb–Er codoped LaLiPO4 glass: a new eye-safe at 1535 nm,” J. Alloys Compd. 300, 123–130 (2000).
[CrossRef]

Payne, D. N.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low noise erbium doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026–1027 (1987).
[CrossRef]

Peers, P. M.

S. N. Houde-Walter, P. M. Peers, J. F. Stebbins, and Q. Zeng, “Hydroxyl-contents and hydroxyl related concentration quenching in erbium-doped aluminophosphate, aluminosilicate and fluorosilicate glasses,” J. Non-Cryst. Solids 286, 118–131 (2001).
[CrossRef]

Peskin, A. P.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Stanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-Chih Liu, S. N. Houde-Walter, and J. S. Haydenc, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glasses,” J. Non-Cryst. Solids 263, 369–381 (2000).
[CrossRef]

Peters, P. M.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Stanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-Chih Liu, S. N. Houde-Walter, and J. S. Haydenc, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glasses,” J. Non-Cryst. Solids 263, 369–381 (2000).
[CrossRef]

Polman, A.

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5, 159–167 (1996).
[CrossRef]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution.II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[CrossRef]

Reekie, L.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low noise erbium doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026–1027 (1987).
[CrossRef]

Salvador, V. L. R.

Schmulovich, J.

Seeber, W.

H. Ebendorff-Heidepriem, W. Seeber, and D. Ehrt, “Spectroscopic properties of Nd3+ ions in phosphate glasses,” J. Non-Cryst. Solids 183, 191–200 (1995).
[CrossRef]

Snitzer, E.

E. Snitzer and R. Woodcock, “Yb3+–Er3+ glass laser (room temperature 3-level laser energy transfer from Yb3+ to Er3+),” Appl. Phys. Lett. 6, 45–49 (1965).
[CrossRef]

Snoeks, E.

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5, 159–167 (1996).
[CrossRef]

Sorbello, G.

S. Taccheo, G. Sorbello, P. Laporta, and C. Svelto, “Analysis of long-term absolute frequency stabilization of a bulk 1.5-m erbium microlaser to a grid of nine different wavelengths,” Electron. Lett. 34, 81–82 (1998).
[CrossRef]

Stanford, N. A.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Stanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-Chih Liu, S. N. Houde-Walter, and J. S. Haydenc, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glasses,” J. Non-Cryst. Solids 263, 369–381 (2000).
[CrossRef]

Stebbins, J. F.

S. N. Houde-Walter, P. M. Peers, J. F. Stebbins, and Q. Zeng, “Hydroxyl-contents and hydroxyl related concentration quenching in erbium-doped aluminophosphate, aluminosilicate and fluorosilicate glasses,” J. Non-Cryst. Solids 286, 118–131 (2001).
[CrossRef]

Svelto, C.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11, 269–288 (1999).
[CrossRef]

S. Taccheo, G. Sorbello, P. Laporta, and C. Svelto, “Analysis of long-term absolute frequency stabilization of a bulk 1.5-m erbium microlaser to a grid of nine different wavelengths,” Electron. Lett. 34, 81–82 (1998).
[CrossRef]

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode pumped bulk erbium ytterbium,” Appl. Phys. B 63, 425–436 (1996).
[CrossRef]

Svelto, O.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11, 269–288 (1999).
[CrossRef]

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode pumped bulk erbium ytterbium,” Appl. Phys. B 63, 425–436 (1996).
[CrossRef]

Taccheo, S.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11, 269–288 (1999).
[CrossRef]

S. Taccheo, G. Sorbello, P. Laporta, and C. Svelto, “Analysis of long-term absolute frequency stabilization of a bulk 1.5-m erbium microlaser to a grid of nine different wavelengths,” Electron. Lett. 34, 81–82 (1998).
[CrossRef]

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode pumped bulk erbium ytterbium,” Appl. Phys. B 63, 425–436 (1996).
[CrossRef]

Takeshita, T.

M. Okayasu, T. Takeshita, M. Yamada, O. Kogure, M. Horiguchi, M. Fukuda, A. Kozen, K. Oe, and S. Uehara, “High-power 0.98 μm GaInAs strained quantum well lasers for Er3+ doped fiber amplifier,” Electron. Lett. 25, 1563–1565 (1989).
[CrossRef]

Takuma, H.

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. Christophe Chanteloup, and C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high field lasers,” IEEE J. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

Tanimoto, O.

M. Yokota and O. Tanimoto, “Effects of difusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
[CrossRef]

Tarelho, L. V. G.

L. C. Courrol, L. V. G. Tarelho, L. Gomes, N. D. Vieira, Jr., F. C. Cassanjes, and Y. Messaddeq, “Time dependence and energy transfer mechanism in Tm3+, Ho3+ and Tm3+–Ho3+ co-doped alkali niobium tellurite glasses sensitized by Yb3+,” J. Non-Cryst. Solids 284, 217–222 (2001).
[CrossRef]

Tatumi, S. H.

Thony, P.

A. F. Obaton, C. Parent, G. Le Flem, P. Thony, A. Brenier, and G. Boulon, “Yb–Er codoped LaLiPO4 glass: a new eye-safe at 1535 nm,” J. Alloys Compd. 300, 123–130 (2000).
[CrossRef]

Uehara, S.

M. Okayasu, T. Takeshita, M. Yamada, O. Kogure, M. Horiguchi, M. Fukuda, A. Kozen, K. Oe, and S. Uehara, “High-power 0.98 μm GaInAs strained quantum well lasers for Er3+ doped fiber amplifier,” Electron. Lett. 25, 1563–1565 (1989).
[CrossRef]

Veasey, D. L.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Stanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-Chih Liu, S. N. Houde-Walter, and J. S. Haydenc, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glasses,” J. Non-Cryst. Solids 263, 369–381 (2000).
[CrossRef]

Vieira Jr., N. D.

L. C. Courrol, L. V. G. Tarelho, L. Gomes, N. D. Vieira, Jr., F. C. Cassanjes, and Y. Messaddeq, “Time dependence and energy transfer mechanism in Tm3+, Ho3+ and Tm3+–Ho3+ co-doped alkali niobium tellurite glasses sensitized by Yb3+,” J. Non-Cryst. Solids 284, 217–222 (2001).
[CrossRef]

Weber, M. J.

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 157–272 (1967).
[CrossRef]

Wetter, N. U.

Woodcock, R.

E. Snitzer and R. Woodcock, “Yb3+–Er3+ glass laser (room temperature 3-level laser energy transfer from Yb3+ to Er3+),” Appl. Phys. Lett. 6, 45–49 (1965).
[CrossRef]

Yamada, M.

M. Okayasu, T. Takeshita, M. Yamada, O. Kogure, M. Horiguchi, M. Fukuda, A. Kozen, K. Oe, and S. Uehara, “High-power 0.98 μm GaInAs strained quantum well lasers for Er3+ doped fiber amplifier,” Electron. Lett. 25, 1563–1565 (1989).
[CrossRef]

Yan, Y.

Y. Yan, A. J. Faber, and H. de Waal, “Luminescence quenching by OH groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181, 283–290 (1995).
[CrossRef]

Yokota, M.

M. Yokota and O. Tanimoto, “Effects of difusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
[CrossRef]

Young, M.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Stanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-Chih Liu, S. N. Houde-Walter, and J. S. Haydenc, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glasses,” J. Non-Cryst. Solids 263, 369–381 (2000).
[CrossRef]

Zeng, Q.

S. N. Houde-Walter, P. M. Peers, J. F. Stebbins, and Q. Zeng, “Hydroxyl-contents and hydroxyl related concentration quenching in erbium-doped aluminophosphate, aluminosilicate and fluorosilicate glasses,” J. Non-Cryst. Solids 286, 118–131 (2001).
[CrossRef]

Zhang, L.

L. Zhang, H. Hu, and F. Lin, “Emission properties of highly doped Er fluoroaluminate glass,” Mater. Lett. 47, 189–193 (2001).
[CrossRef]

Appl. Phys. B (1)

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode pumped bulk erbium ytterbium,” Appl. Phys. B 63, 425–436 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

E. Snitzer and R. Woodcock, “Yb3+–Er3+ glass laser (room temperature 3-level laser energy transfer from Yb3+ to Er3+),” Appl. Phys. Lett. 6, 45–49 (1965).
[CrossRef]

Electron. Lett. (3)

M. Okayasu, T. Takeshita, M. Yamada, O. Kogure, M. Horiguchi, M. Fukuda, A. Kozen, K. Oe, and S. Uehara, “High-power 0.98 μm GaInAs strained quantum well lasers for Er3+ doped fiber amplifier,” Electron. Lett. 25, 1563–1565 (1989).
[CrossRef]

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low noise erbium doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026–1027 (1987).
[CrossRef]

S. Taccheo, G. Sorbello, P. Laporta, and C. Svelto, “Analysis of long-term absolute frequency stabilization of a bulk 1.5-m erbium microlaser to a grid of nine different wavelengths,” Electron. Lett. 34, 81–82 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. Christophe Chanteloup, and C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high field lasers,” IEEE J. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

J. Alloys Compd. (1)

A. F. Obaton, C. Parent, G. Le Flem, P. Thony, A. Brenier, and G. Boulon, “Yb–Er codoped LaLiPO4 glass: a new eye-safe at 1535 nm,” J. Alloys Compd. 300, 123–130 (2000).
[CrossRef]

J. Chem. Phys. (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution.II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[CrossRef]

J. Non-Cryst. Solids (5)

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Stanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-Chih Liu, S. N. Houde-Walter, and J. S. Haydenc, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glasses,” J. Non-Cryst. Solids 263, 369–381 (2000).
[CrossRef]

Y. Yan, A. J. Faber, and H. de Waal, “Luminescence quenching by OH groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181, 283–290 (1995).
[CrossRef]

H. Ebendorff-Heidepriem, W. Seeber, and D. Ehrt, “Spectroscopic properties of Nd3+ ions in phosphate glasses,” J. Non-Cryst. Solids 183, 191–200 (1995).
[CrossRef]

S. N. Houde-Walter, P. M. Peers, J. F. Stebbins, and Q. Zeng, “Hydroxyl-contents and hydroxyl related concentration quenching in erbium-doped aluminophosphate, aluminosilicate and fluorosilicate glasses,” J. Non-Cryst. Solids 286, 118–131 (2001).
[CrossRef]

L. C. Courrol, L. V. G. Tarelho, L. Gomes, N. D. Vieira, Jr., F. C. Cassanjes, and Y. Messaddeq, “Time dependence and energy transfer mechanism in Tm3+, Ho3+ and Tm3+–Ho3+ co-doped alkali niobium tellurite glasses sensitized by Yb3+,” J. Non-Cryst. Solids 284, 217–222 (2001).
[CrossRef]

J. Phys. Soc. Jpn. (1)

M. Yokota and O. Tanimoto, “Effects of difusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
[CrossRef]

Mater. Lett. (1)

L. Zhang, H. Hu, and F. Lin, “Emission properties of highly doped Er fluoroaluminate glass,” Mater. Lett. 47, 189–193 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (2)

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5, 159–167 (1996).
[CrossRef]

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11, 269–288 (1999).
[CrossRef]

Phys. Rev. (1)

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 157–272 (1967).
[CrossRef]

Other (2)

B. Di Bartolo, Optical Properties of Ions in Solids (Plenum, New York, 1975), pp. 66–325.

L. R. P. Kassab, L. C. Courrol, N. U. Wetter, L. Gomes, V. L. R. Salvador, and A. S. Morais, “Lead fluoroborate glasses doped with ytterbium,” J. Alloys Compd. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Energy transfer between Yb3+ and Er3+.

Fig. 2
Fig. 2

Emission spectra of Yb3+ for the lead fluoroborate glass (excitation at 968 nm).

Fig. 3
Fig. 3

Absorption cross-section spectrum of Yb3+ for the lead fluoroborate glass that has been singly doped with 1 mol. % of Yb2O3.

Fig. 4
Fig. 4

Emission spectra of Er3+ for the lead fluoroborate glass, related to the  4I13/24I15/2 transition (excitation at 968 nm).

Fig. 5
Fig. 5

Emission cross-section spectrum of Er3+, related to the  4I13/24I15/2 transition, for lead fluoroborate glass codoped with Yb2O3 (1 mol. %) and Er2O3 (0.01 mol. %).

Fig. 6
Fig. 6

Time evolution of the Yb3+ fluorescence in lead fluoroborate glasses singly doped with Yb2O3 and codoped with Yb2O3 and Er2O3. The evolution was also fitted by use of the Yokota–Tanimoto expression.

Tables (1)

Tables Icon

Table 1 Fluorescence Lifetimes τ of Singly and Codoped Lead Fluoroborate Glasses

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

mc2πe2ρλp2  k(λ)dλ
=8π2mc3h(2J+1)λp (n2+2)2Sed9n+nSmd,
Sed=t=2,4,6 Ωt|SLJ||Ut||SLJ|2,
fmd=8π2mcSmdn3h(2J+1)λp=fn,
Ω2=(3.51±0.14)×10-20 cm2,
Ω4=(1.09±0.07)×10-20 cm2,
Ω6=(0.94±0.07)×10-20 cm2.
AR=64π4e23h(2J+1)λ3 n(n2+2)2Sed9+n3Smd.
σem=λ4AR8πn2cΔλEFF,
N(t)=exp-tτ-bt1/21+10.87x+15.50x21+8.743x3/4,

Metrics