Abstract

Neodymium-doped yttria (Nd:Y2O3) is investigated as a solid-state laser material for frequency-tripled generation of ultraviolet laser wavelengths for use in remote sensing of ozone. Emphasis is placed both on the spectroscopy of the fundamental wavelengths at ∼0.914 µm and ∼0.946 µm to assess their feasibility for laser oscillation and on the absorption spectroscopy in the 0.8-µm wavelength region for determination of suitable pump sources. The temperature dependence of the emission and absorption characteristics of Nd:Y2O3 are examined, since aggressive cooling may be required for efficient ∼0.914-µm lasing due to its quasi four-level nature. Data for flash-lamp-pumped laser performance on the  4F3/24I11/2 is presented for Nd:Y2O3 and compared with Nd:YAG. Diode-pumped threshold-fluence and threshold-pump energy estimates for Nd:Y2O3 lasing on the  4F3/24I9/2 at 0.914 µm and 0.946 µm are calculated based on the data presented here. The measurements presented here for the Nd:Y2O3 indicate favorable absorption and emission properties. Favorable absorption properties in the ∼0.8-µm pump wavelength are compatible with a variety of potential pump sources. Favorable emission properties at reduced temperatures near 150 K indicate that Nd:Y2O3 operating at 0.914 µm and 0.946 µm will have normal-mode laser thresholds similar to that of room-temperature Nd:YAG operating at 0.946 µm. In Q-switched operation, however, Nd:Y2O3 is predicted to exceed the performance of Nd:YAG due to the lower 1.06/0.94 cross-section ratio, which helps to limit amplified spontaneous-emission effects. Although Nd:Y2O3 is not a new material, it has not been the topic of study due to growth problems associated with its high melting point. New advances in growth techniques and the favorable spectroscopic features of Nd:Y2O3 have inspired a new examination of this material.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kaminskii, Laser Crystals, 2nd ed. (Springer-Verlag, Berlin, 1990).
  2. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, Boca Raton, Fla., 1996).
  3. N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission: application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35, 101–109 (1999).
    [CrossRef]
  4. B. M. Walsh, N. P. Barnes, R. L. Hutchenson, and R. W. Equall, “Compositionally tuned 0.94-μm lasers; a comparative laser material study and demonstration of 100-mJ Q-switched lasing at 0.946 and 0.9441 μm,” IEEE J. Quantum Electron. 37, 1203–1209 (2001).
    [CrossRef]
  5. W. B. Grant, “Lidar for atmospheric and hydrospheric studies,” in Tunable Laser Applications, F. J. Duarte, ed. (Marcel Dekker, New York, 1995), p. 241.
  6. H. W. Goldstein, E. F. Nelson, P. W. Walsh, and D. White, “The heat capacities of yttrium oxide (Y2O3), lanthanum oxide (La2O3), and neodymium oxide (Nd2O3) from 16 to 300 K,” J. Phys. Chem. 63, 1445–1449 (1959).
    [CrossRef]
  7. K. A. Wickersheim and R. A. Lefever, “Infrared transmittance of crystalline yttrium oxide and related compounds,” J. Opt. Soc. Am. 51, 1147–1148 (1961).
    [CrossRef]
  8. N. T. McDevitt and A. D. Davidson, “Infrared lattice spectra of cubic rare earth oxides in the region 700 to 50 cm−1,” J. Opt. Soc. Am. 56, 636–638 (1966).
    [CrossRef]
  9. Y. Nigara, “Measurement of the optical constants of yttrium oxide,” Jpn. J. Appl. Phys. 7, 404–408 (1967).
    [CrossRef]
  10. P. H. Klein, “Thermal conductivity, thermal diffusivity, and specific heat of solids from a single experiment, with application to Y1.98Nd0.02O3,” J. Appl. Phys. 38, 1598–1603 (1967).
    [CrossRef]
  11. P. H. Klein and W. J. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77–300 K,” J. Appl. Phys. 38, 1603–1607 (1967).
    [CrossRef]
  12. N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites,” J. Chem. Phys. 76, 3877–3889 (1982).
    [CrossRef]
  13. B. M. Walsh, “Spectroscopy and excitation dynamics of the trivalent lanthanides Tm3+ and Ho3+ in LiYF4,” NASA Contractor Rep. 4689 (NASA Langley Research Center, Hampton, Va., 1995).
  14. L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int. 26, 589–592 (2000).
    [CrossRef]
  15. N. C. Chang, “Energy level and crystal field splittings of Nd3+ in yttrium oxide,” J. Chem. Phys. 44, 4044–4050 (1966).
    [CrossRef]
  16. W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth doped Y2O3 and LaF3 single crystals,” Phys. Rev. 145, 325–337 (1966).
    [CrossRef]
  17. G. M. Zverev, G. Ya. Kolodnyi, and A. I. Smirnov, “Optical spectra of Nd3+ in single crystals of scandium and yttrium oxides,” Opt. Spectrosc. 23, 325–327 (1967).
  18. M. J. Weber, “Radiative and multiphonon relaxation of rare-earth ions in Y2O3,” Phys. Rev. 171, 283–291 (1968).
    [CrossRef]
  19. Y. Sato, I. Shoji, T. Taira, and A. Ikesue, “Spectroscopic properties of neodymium-doped Y2O3 ceramics,” Advanced Solid State Lasers, Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 417–421.
  20. R. H. Hoskins and B. H. Soffer, “Stimulated emission from Y2O3:Nd3+,” Appl. Phys. Lett. 4, 22–23 (1964).
    [CrossRef]
  21. W. W. Holloway, Jr., M. Kestigian, and F. F. Y. Wang, “Temperature-dependent Nd fluorescence parameters and laser thresholds,” J. Opt. Soc. Am. 56, 1409–1410 (1966).
    [CrossRef]
  22. J. Stone and C. A. Burrus, “Nd:Y2O3 single crystal fiber laser: room-temperature cw operation at 1.07- and 1.35-μm wavelength,” J. Appl. Phys. 49, 2281–2287 (1978).
    [CrossRef]
  23. K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
    [CrossRef]
  24. L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New oxide crystals for solid state lasers,” Cryst. Res. Technol. 34, 255–260 (1999).
    [CrossRef]
  25. N. P. Barnes, K. E. Murray, and M. G. Jani, “Flash-lamppumped Ho:Tm:Cr:YAG and Ho:Tm:Er:YLF lasers: modeling of a single, long pulse length comparison,” Appl. Opt. 36, 3363–3374 (1997).
    [CrossRef] [PubMed]

2001

B. M. Walsh, N. P. Barnes, R. L. Hutchenson, and R. W. Equall, “Compositionally tuned 0.94-μm lasers; a comparative laser material study and demonstration of 100-mJ Q-switched lasing at 0.946 and 0.9441 μm,” IEEE J. Quantum Electron. 37, 1203–1209 (2001).
[CrossRef]

2000

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int. 26, 589–592 (2000).
[CrossRef]

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

1999

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New oxide crystals for solid state lasers,” Cryst. Res. Technol. 34, 255–260 (1999).
[CrossRef]

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission: application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35, 101–109 (1999).
[CrossRef]

1997

1982

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites,” J. Chem. Phys. 76, 3877–3889 (1982).
[CrossRef]

1978

J. Stone and C. A. Burrus, “Nd:Y2O3 single crystal fiber laser: room-temperature cw operation at 1.07- and 1.35-μm wavelength,” J. Appl. Phys. 49, 2281–2287 (1978).
[CrossRef]

1968

M. J. Weber, “Radiative and multiphonon relaxation of rare-earth ions in Y2O3,” Phys. Rev. 171, 283–291 (1968).
[CrossRef]

1967

G. M. Zverev, G. Ya. Kolodnyi, and A. I. Smirnov, “Optical spectra of Nd3+ in single crystals of scandium and yttrium oxides,” Opt. Spectrosc. 23, 325–327 (1967).

Y. Nigara, “Measurement of the optical constants of yttrium oxide,” Jpn. J. Appl. Phys. 7, 404–408 (1967).
[CrossRef]

P. H. Klein, “Thermal conductivity, thermal diffusivity, and specific heat of solids from a single experiment, with application to Y1.98Nd0.02O3,” J. Appl. Phys. 38, 1598–1603 (1967).
[CrossRef]

P. H. Klein and W. J. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77–300 K,” J. Appl. Phys. 38, 1603–1607 (1967).
[CrossRef]

1966

N. T. McDevitt and A. D. Davidson, “Infrared lattice spectra of cubic rare earth oxides in the region 700 to 50 cm−1,” J. Opt. Soc. Am. 56, 636–638 (1966).
[CrossRef]

W. W. Holloway, Jr., M. Kestigian, and F. F. Y. Wang, “Temperature-dependent Nd fluorescence parameters and laser thresholds,” J. Opt. Soc. Am. 56, 1409–1410 (1966).
[CrossRef]

N. C. Chang, “Energy level and crystal field splittings of Nd3+ in yttrium oxide,” J. Chem. Phys. 44, 4044–4050 (1966).
[CrossRef]

W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth doped Y2O3 and LaF3 single crystals,” Phys. Rev. 145, 325–337 (1966).
[CrossRef]

1964

R. H. Hoskins and B. H. Soffer, “Stimulated emission from Y2O3:Nd3+,” Appl. Phys. Lett. 4, 22–23 (1964).
[CrossRef]

1961

1959

H. W. Goldstein, E. F. Nelson, P. W. Walsh, and D. White, “The heat capacities of yttrium oxide (Y2O3), lanthanum oxide (La2O3), and neodymium oxide (Nd2O3) from 16 to 300 K,” J. Phys. Chem. 63, 1445–1449 (1959).
[CrossRef]

Barnes, N. P.

B. M. Walsh, N. P. Barnes, R. L. Hutchenson, and R. W. Equall, “Compositionally tuned 0.94-μm lasers; a comparative laser material study and demonstration of 100-mJ Q-switched lasing at 0.946 and 0.9441 μm,” IEEE J. Quantum Electron. 37, 1203–1209 (2001).
[CrossRef]

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission: application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35, 101–109 (1999).
[CrossRef]

N. P. Barnes, K. E. Murray, and M. G. Jani, “Flash-lamppumped Ho:Tm:Cr:YAG and Ho:Tm:Er:YLF lasers: modeling of a single, long pulse length comparison,” Appl. Opt. 36, 3363–3374 (1997).
[CrossRef] [PubMed]

Basun, S. A.

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Burrus, C. A.

J. Stone and C. A. Burrus, “Nd:Y2O3 single crystal fiber laser: room-temperature cw operation at 1.07- and 1.35-μm wavelength,” J. Appl. Phys. 49, 2281–2287 (1978).
[CrossRef]

Chang, N. C.

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites,” J. Chem. Phys. 76, 3877–3889 (1982).
[CrossRef]

N. C. Chang, “Energy level and crystal field splittings of Nd3+ in yttrium oxide,” J. Chem. Phys. 44, 4044–4050 (1966).
[CrossRef]

Croft, W. J.

P. H. Klein and W. J. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77–300 K,” J. Appl. Phys. 38, 1603–1607 (1967).
[CrossRef]

Davidson, A. D.

Equall, R. W.

B. M. Walsh, N. P. Barnes, R. L. Hutchenson, and R. W. Equall, “Compositionally tuned 0.94-μm lasers; a comparative laser material study and demonstration of 100-mJ Q-switched lasing at 0.946 and 0.9441 μm,” IEEE J. Quantum Electron. 37, 1203–1209 (2001).
[CrossRef]

Fornasiero, L.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int. 26, 589–592 (2000).
[CrossRef]

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New oxide crystals for solid state lasers,” Cryst. Res. Technol. 34, 255–260 (1999).
[CrossRef]

Goldstein, H. W.

H. W. Goldstein, E. F. Nelson, P. W. Walsh, and D. White, “The heat capacities of yttrium oxide (Y2O3), lanthanum oxide (La2O3), and neodymium oxide (Nd2O3) from 16 to 300 K,” J. Phys. Chem. 63, 1445–1449 (1959).
[CrossRef]

Gruber, J. B.

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites,” J. Chem. Phys. 76, 3877–3889 (1982).
[CrossRef]

Holloway Jr., W. W.

Hoskins, R. H.

R. H. Hoskins and B. H. Soffer, “Stimulated emission from Y2O3:Nd3+,” Appl. Phys. Lett. 4, 22–23 (1964).
[CrossRef]

Huber, G.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int. 26, 589–592 (2000).
[CrossRef]

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New oxide crystals for solid state lasers,” Cryst. Res. Technol. 34, 255–260 (1999).
[CrossRef]

Hutchenson, R. L.

B. M. Walsh, N. P. Barnes, R. L. Hutchenson, and R. W. Equall, “Compositionally tuned 0.94-μm lasers; a comparative laser material study and demonstration of 100-mJ Q-switched lasing at 0.946 and 0.9441 μm,” IEEE J. Quantum Electron. 37, 1203–1209 (2001).
[CrossRef]

Jani, M. G.

Kestigian, M.

Klein, P. H.

P. H. Klein, “Thermal conductivity, thermal diffusivity, and specific heat of solids from a single experiment, with application to Y1.98Nd0.02O3,” J. Appl. Phys. 38, 1598–1603 (1967).
[CrossRef]

P. H. Klein and W. J. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77–300 K,” J. Appl. Phys. 38, 1603–1607 (1967).
[CrossRef]

Kolodnyi, G. Ya.

G. M. Zverev, G. Ya. Kolodnyi, and A. I. Smirnov, “Optical spectra of Nd3+ in single crystals of scandium and yttrium oxides,” Opt. Spectrosc. 23, 325–327 (1967).

Krupke, W. F.

W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth doped Y2O3 and LaF3 single crystals,” Phys. Rev. 145, 325–337 (1966).
[CrossRef]

Kuch, S.

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Leavitt, R. P.

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites,” J. Chem. Phys. 76, 3877–3889 (1982).
[CrossRef]

Lefever, R. A.

McDevitt, N. T.

Mix, E.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int. 26, 589–592 (2000).
[CrossRef]

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New oxide crystals for solid state lasers,” Cryst. Res. Technol. 34, 255–260 (1999).
[CrossRef]

Morrison, C. A.

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites,” J. Chem. Phys. 76, 3877–3889 (1982).
[CrossRef]

Murray, K. E.

Nelson, E. F.

H. W. Goldstein, E. F. Nelson, P. W. Walsh, and D. White, “The heat capacities of yttrium oxide (Y2O3), lanthanum oxide (La2O3), and neodymium oxide (Nd2O3) from 16 to 300 K,” J. Phys. Chem. 63, 1445–1449 (1959).
[CrossRef]

Nigara, Y.

Y. Nigara, “Measurement of the optical constants of yttrium oxide,” Jpn. J. Appl. Phys. 7, 404–408 (1967).
[CrossRef]

Petermann, K.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int. 26, 589–592 (2000).
[CrossRef]

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New oxide crystals for solid state lasers,” Cryst. Res. Technol. 34, 255–260 (1999).
[CrossRef]

Peters, V.

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int. 26, 589–592 (2000).
[CrossRef]

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New oxide crystals for solid state lasers,” Cryst. Res. Technol. 34, 255–260 (1999).
[CrossRef]

Smirnov, A. I.

G. M. Zverev, G. Ya. Kolodnyi, and A. I. Smirnov, “Optical spectra of Nd3+ in single crystals of scandium and yttrium oxides,” Opt. Spectrosc. 23, 325–327 (1967).

Soffer, B. H.

R. H. Hoskins and B. H. Soffer, “Stimulated emission from Y2O3:Nd3+,” Appl. Phys. Lett. 4, 22–23 (1964).
[CrossRef]

Stone, J.

J. Stone and C. A. Burrus, “Nd:Y2O3 single crystal fiber laser: room-temperature cw operation at 1.07- and 1.35-μm wavelength,” J. Appl. Phys. 49, 2281–2287 (1978).
[CrossRef]

Walsh, B. M.

B. M. Walsh, N. P. Barnes, R. L. Hutchenson, and R. W. Equall, “Compositionally tuned 0.94-μm lasers; a comparative laser material study and demonstration of 100-mJ Q-switched lasing at 0.946 and 0.9441 μm,” IEEE J. Quantum Electron. 37, 1203–1209 (2001).
[CrossRef]

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission: application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35, 101–109 (1999).
[CrossRef]

Walsh, P. W.

H. W. Goldstein, E. F. Nelson, P. W. Walsh, and D. White, “The heat capacities of yttrium oxide (Y2O3), lanthanum oxide (La2O3), and neodymium oxide (Nd2O3) from 16 to 300 K,” J. Phys. Chem. 63, 1445–1449 (1959).
[CrossRef]

Wang, F. F. Y.

Weber, M. J.

M. J. Weber, “Radiative and multiphonon relaxation of rare-earth ions in Y2O3,” Phys. Rev. 171, 283–291 (1968).
[CrossRef]

White, D.

H. W. Goldstein, E. F. Nelson, P. W. Walsh, and D. White, “The heat capacities of yttrium oxide (Y2O3), lanthanum oxide (La2O3), and neodymium oxide (Nd2O3) from 16 to 300 K,” J. Phys. Chem. 63, 1445–1449 (1959).
[CrossRef]

Wickersheim, K. A.

Zverev, G. M.

G. M. Zverev, G. Ya. Kolodnyi, and A. I. Smirnov, “Optical spectra of Nd3+ in single crystals of scandium and yttrium oxides,” Opt. Spectrosc. 23, 325–327 (1967).

Appl. Opt.

Appl. Phys. Lett.

R. H. Hoskins and B. H. Soffer, “Stimulated emission from Y2O3:Nd3+,” Appl. Phys. Lett. 4, 22–23 (1964).
[CrossRef]

Ceram. Int.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int. 26, 589–592 (2000).
[CrossRef]

Cryst. Res. Technol.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New oxide crystals for solid state lasers,” Cryst. Res. Technol. 34, 255–260 (1999).
[CrossRef]

IEEE J. Quantum Electron.

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission: application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35, 101–109 (1999).
[CrossRef]

B. M. Walsh, N. P. Barnes, R. L. Hutchenson, and R. W. Equall, “Compositionally tuned 0.94-μm lasers; a comparative laser material study and demonstration of 100-mJ Q-switched lasing at 0.946 and 0.9441 μm,” IEEE J. Quantum Electron. 37, 1203–1209 (2001).
[CrossRef]

J. Appl. Phys.

P. H. Klein, “Thermal conductivity, thermal diffusivity, and specific heat of solids from a single experiment, with application to Y1.98Nd0.02O3,” J. Appl. Phys. 38, 1598–1603 (1967).
[CrossRef]

P. H. Klein and W. J. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77–300 K,” J. Appl. Phys. 38, 1603–1607 (1967).
[CrossRef]

J. Stone and C. A. Burrus, “Nd:Y2O3 single crystal fiber laser: room-temperature cw operation at 1.07- and 1.35-μm wavelength,” J. Appl. Phys. 49, 2281–2287 (1978).
[CrossRef]

J. Chem. Phys.

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites,” J. Chem. Phys. 76, 3877–3889 (1982).
[CrossRef]

N. C. Chang, “Energy level and crystal field splittings of Nd3+ in yttrium oxide,” J. Chem. Phys. 44, 4044–4050 (1966).
[CrossRef]

J. Lumin.

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. Chem.

H. W. Goldstein, E. F. Nelson, P. W. Walsh, and D. White, “The heat capacities of yttrium oxide (Y2O3), lanthanum oxide (La2O3), and neodymium oxide (Nd2O3) from 16 to 300 K,” J. Phys. Chem. 63, 1445–1449 (1959).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Nigara, “Measurement of the optical constants of yttrium oxide,” Jpn. J. Appl. Phys. 7, 404–408 (1967).
[CrossRef]

Opt. Spectrosc.

G. M. Zverev, G. Ya. Kolodnyi, and A. I. Smirnov, “Optical spectra of Nd3+ in single crystals of scandium and yttrium oxides,” Opt. Spectrosc. 23, 325–327 (1967).

Phys. Rev.

M. J. Weber, “Radiative and multiphonon relaxation of rare-earth ions in Y2O3,” Phys. Rev. 171, 283–291 (1968).
[CrossRef]

W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth doped Y2O3 and LaF3 single crystals,” Phys. Rev. 145, 325–337 (1966).
[CrossRef]

Other

Y. Sato, I. Shoji, T. Taira, and A. Ikesue, “Spectroscopic properties of neodymium-doped Y2O3 ceramics,” Advanced Solid State Lasers, Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 417–421.

B. M. Walsh, “Spectroscopy and excitation dynamics of the trivalent lanthanides Tm3+ and Ho3+ in LiYF4,” NASA Contractor Rep. 4689 (NASA Langley Research Center, Hampton, Va., 1995).

W. B. Grant, “Lidar for atmospheric and hydrospheric studies,” in Tunable Laser Applications, F. J. Duarte, ed. (Marcel Dekker, New York, 1995), p. 241.

A. Kaminskii, Laser Crystals, 2nd ed. (Springer-Verlag, Berlin, 1990).

A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, Boca Raton, Fla., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Absorption cross-section spectra of Nd:Y2O3 from 300 to 1100 nm.

Fig. 2
Fig. 2

Emission cross-section spectra of Nd:Y2O3 from 800 to 1500 nm.

Fig. 3
Fig. 3

Comparison of energy levels in Nd:YAG and Nd:Y2O3.

Fig. 4
Fig. 4

Line position versus temperature of selected absorption lines in Nd:Y2O3.

Fig. 5
Fig. 5

Linewidth (FWHM) versus temperature of selected absorption lines in Nd:Y2O3.

Fig. 6
Fig. 6

Cross section versus temperature of selected absorption lines in Nd:Y2O3.

Fig. 7
Fig. 7

Lower laser-level population versus temperature of the Z3 and Z5 levels in Nd:Y2O3 and the Z5 level in Nd:YAG.

Fig. 8
Fig. 8

Upper laser-level population versus temperature of the R1 level in Nd:Y2O3 and Nd:YAG.

Fig. 9
Fig. 9

Flash-lamp-pumped laser-performance comparison of Nd:Y2O3 (1.07 µm) and Nd:YAG (1.06 µm) operating on the  4F3/24I11/2 transition.

Tables (6)

Tables Icon

Table 1 Physical Properties of Y3O3,Y3Al5O12, and YLiF4

Tables Icon

Table 2 Emission Cross Sections at 0.914 and 0.946 µm versus Temperature in Nd:Y2O3a

Tables Icon

Table 3 Calculated Line Strengths, Branching Ratios, and Transition Probabilities in Nd3+ Y2O3 from a Judd–Ofelt Analysis

Tables Icon

Table 4 Comparison of Measured and Judd–Ofelt Lifetimes and Branching Ratios of the  4F3/2 Manifold in Nd:Y2O3

Tables Icon

Table 5 Performance Comparison of Flashlamp-Pumped  4F3/24I11/2 Lasing in Nd:Y2O3 and Nd:YAG

Tables Icon

Table 6 Diode-Pumped Threshold Population, Threshold Fluence, and Threshold Energy Calculations for Diode End-Pumped  4F3/24I9/2 Laser Operation

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n2(λ)=A+Bλ2λ2-C+Dλ2λ2-E,
NTH=(γ-1)γCNNs-ln(RMRL)2σeγ
γ=1+flfu,
FTH=NTH hcλp  τpηQτf 11-exp(-τp/τf)×11-exp(-CNNsσa),
ETH=πwL2FTH.

Metrics