Abstract

A higher-order, multiple-scale asymptotic analysis is made of the perturbed nonlinear Schrödinger equation in a strong dispersion-managed optical transmission system. It is found that the averaged equation with the next-order term included significantly improves the description of the characteristics of dispersion-managed solitons. The derived equation is shown to support a new class of soliton solutions, namely, multihump solitons, which depend on both the map strength and dispersion profile. Numerical evidence of the regions of existence and stability of such new solitons is discussed.

© 2002 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. E. Walrafen and P. N. Krishnan, “Model analysis of the Raman spectrum from fused silica optical fibers,” Appl. Opt. 21, 359–360 (1982).
  2. R. H. Stolen, C. Lee, and R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984).
  3. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
  4. D. Hollenbeck, “Dynamics of a fiberoptic Raman amplifier,” Ph.D. dissertation (University of Texas at Dallas, Dallas, Tex., 2000).
  5. A. R. Chraplyvy, “Optical power limits in multichannel wavelength-division-multiplexed systems due to stimulated Raman scattering,” Electron. Lett. 20, 58–59 (1984).
  6. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
  7. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1997).
  8. R. J. Bell and P. Dean, “Atomic vibrations in vitreous silica,” Discuss. Faraday Soc. 50, 55–61 (1970).
  9. A. G. Revesz and G. E. Walrafen, “Structural interpretations for some Raman lines from vitreous silica,” J. Non-Cryst. Solids 54, 323–333 (1983).
  10. A. C. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge U. Press, New York, 1971), p. 100.
  11. A. Icsevgi and W. E. Lamb, Jr., “Propagation of light pulses in a laser amplifier,” Phys. Rev. 185, 517–545 (1969).

1989 (2)

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).

R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).

1984 (2)

A. R. Chraplyvy, “Optical power limits in multichannel wavelength-division-multiplexed systems due to stimulated Raman scattering,” Electron. Lett. 20, 58–59 (1984).

R. H. Stolen, C. Lee, and R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984).

1983 (1)

A. G. Revesz and G. E. Walrafen, “Structural interpretations for some Raman lines from vitreous silica,” J. Non-Cryst. Solids 54, 323–333 (1983).

1982 (1)

1970 (1)

R. J. Bell and P. Dean, “Atomic vibrations in vitreous silica,” Discuss. Faraday Soc. 50, 55–61 (1970).

1969 (1)

A. Icsevgi and W. E. Lamb, Jr., “Propagation of light pulses in a laser amplifier,” Phys. Rev. 185, 517–545 (1969).

Bell, R. J.

R. J. Bell and P. Dean, “Atomic vibrations in vitreous silica,” Discuss. Faraday Soc. 50, 55–61 (1970).

Blow, K. J.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).

Chraplyvy, A. R.

A. R. Chraplyvy, “Optical power limits in multichannel wavelength-division-multiplexed systems due to stimulated Raman scattering,” Electron. Lett. 20, 58–59 (1984).

Dean, P.

R. J. Bell and P. Dean, “Atomic vibrations in vitreous silica,” Discuss. Faraday Soc. 50, 55–61 (1970).

Gordon, J. P.

Haus, H. A.

Icsevgi, A.

A. Icsevgi and W. E. Lamb, Jr., “Propagation of light pulses in a laser amplifier,” Phys. Rev. 185, 517–545 (1969).

Jain, R. K.

Krishnan, P. N.

Lamb Jr., W. E.

A. Icsevgi and W. E. Lamb, Jr., “Propagation of light pulses in a laser amplifier,” Phys. Rev. 185, 517–545 (1969).

Lee, C.

Revesz, A. G.

A. G. Revesz and G. E. Walrafen, “Structural interpretations for some Raman lines from vitreous silica,” J. Non-Cryst. Solids 54, 323–333 (1983).

Stolen, R. H.

Tomlinson, W. J.

Walrafen, G. E.

A. G. Revesz and G. E. Walrafen, “Structural interpretations for some Raman lines from vitreous silica,” J. Non-Cryst. Solids 54, 323–333 (1983).

G. E. Walrafen and P. N. Krishnan, “Model analysis of the Raman spectrum from fused silica optical fibers,” Appl. Opt. 21, 359–360 (1982).

Wood, D.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).

Appl. Opt. (1)

Discuss. Faraday Soc. (1)

R. J. Bell and P. Dean, “Atomic vibrations in vitreous silica,” Discuss. Faraday Soc. 50, 55–61 (1970).

Electron. Lett. (1)

A. R. Chraplyvy, “Optical power limits in multichannel wavelength-division-multiplexed systems due to stimulated Raman scattering,” Electron. Lett. 20, 58–59 (1984).

IEEE J. Quantum Electron. (1)

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).

J. Non-Cryst. Solids (1)

A. G. Revesz and G. E. Walrafen, “Structural interpretations for some Raman lines from vitreous silica,” J. Non-Cryst. Solids 54, 323–333 (1983).

J. Opt. Soc. Am. B (2)

Phys. Rev. (1)

A. Icsevgi and W. E. Lamb, Jr., “Propagation of light pulses in a laser amplifier,” Phys. Rev. 185, 517–545 (1969).

Other (3)

D. Hollenbeck, “Dynamics of a fiberoptic Raman amplifier,” Ph.D. dissertation (University of Texas at Dallas, Dallas, Tex., 2000).

A. C. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge U. Press, New York, 1971), p. 100.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics