Abstract

Single-color optical-selectivity calculations are carried out for a number of transitions in the 570–620-nm wavelength range by a spectral-simulation method. The computed isotope ratio-enhancement factors are in good agreement with the values reported [J. Opt. Soc. Am. B 5, 2409–2416 (1988); Chem. Phys. Lett. 118, 134–139 (1985)]. The study results in the identification of six first-step excitation transitions for the selective ionization of the  91Zr isotope, for which the isotope ratio-enhancement factors are ∼10. The 4d25s2 3F4586.8268 nm4d25s5p 5F50 transition is found to be most efficient for selective excitation of the  91Zr isotope, whose isotope ratio-enhancement factor was nearly eight times greater than that of the previously reported transitions. The present calculations demonstrate the feasibility of selective excitation of the  91Zr isotope, despite the utilization of broadband lasers and larger Doppler widths of the atomic system.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Page, S. C. Dropinski, E. F. Worden, Jr., and J. A. D. Stockdale, “Progress in zirconium resonance ionization spectroscopy,” in Laser Isotope Separation, A. Paisner, ed., Proc. SPIE 1859, 49–63 (1993).
    [CrossRef]
  2. P. A. Hackett, H. D. Morrison, O. L. Bourne, B. Simard, and D. M. Rayner, “Pulsed single-mode laser ionization of hyperfine levels of zirconium-91,” J. Opt. Soc. Am. B 5, 2409–2416 (1988).
    [CrossRef]
  3. M. R. Humphries, O. L. Bourne, and P. A. Hackett, “Laser isotope separation of zirconium atoms cooled in a supersonic beam,” Chem. Phys. Lett. 118, 134–139 (1985).
    [CrossRef]
  4. L. W. Green, G. A. McRae, and P. A. Rochefort, “Selective resonant ionization of zirconium isotopes using intermediate-state alignment,” Phys. Rev. A 47A, 4946–4954 (1993).
    [CrossRef]
  5. O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, “A high resolution laser induced fluorescence study of a supersonic zirconium atomic beam,” Opt. Commun. 56, 403–408 (1986).
    [CrossRef]
  6. G. Chevalier, J. M. Gagne, and P. Pianarosa, “Isotope shifts in 91Zr from optogalvanic saturation spectroscopy,” Opt. Commun. 64, 127–130 (1987).
    [CrossRef]
  7. G. Chevalier, J. M. Gagne, and P. Pianarosa, “Hyperfine structures in 91Zr by saturation optogalvanic spectroscopy,” J. Opt. Soc. Am. B 5, 1492–1499 (1988).
    [CrossRef]
  8. D. S. Gough and P. Hannaford, “High quality saturated absorption spectroscopy in a sputtered vapor: application to hyperfine structure in Zr I,” Opt. Commun. 67, 209–213 (1988).
    [CrossRef]
  9. E. Langlois and J.-M. Gagne, “Zirconium isotope shift measurements using optogalvanic detection,” J. Opt. Soc. Am. B 10, 774–783 (1993).
    [CrossRef]
  10. C. Lim, K. Nomaru, and Y. Izawa, “Hyperfine structure constants and isotope shift determination in ZrI by laser-induced fluorescence spectroscopy,” Jpn. J. Appl. Phys., 37, 5049–5052 (1998).
    [CrossRef]
  11. S. Bouazza, D. S. Gough, P. Hannaford, and M. Wilson, “Hyperfine structure of odd-parity levels in 91Zr I,” J. Phys. B 33, 2355–2365 (2000).
    [CrossRef]
  12. S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125–131 (1978).
    [CrossRef]
  13. P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, “The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg series,” J. Chem. Phys. 85, 3194–3197 (1986).
    [CrossRef]
  14. C. E. Moore, Atomic Energy Levels (U.S. GPO, Washington, D.C., 1971).
  15. I. I. Sobelman, Atomic Spectra and Radiative Transitions (Springer-Verlag, Berlin, 1979).
  16. M. Sankari and M. V. Suryanarayana, “A theoretical study of the isotope selective excitation of 138La from 2D3/2, 5/2 states,” Spectrochim. Acta, Part B 52, 735–744 (1997).
    [CrossRef]
  17. M. V. Suryanarayana and M. Sankari, “Simulation of isotopic selectivities and isotope ratio enhancement factors for gadolinium and lanthanum using narrow band laser excitation,” Z. Phys. D 39, 35–40 (1997).
    [CrossRef]
  18. M. Sankari and M. V. Suryanarayana, “Studies on the isotope selective photoionisation of low abundant 168Yb isotope,” J. Phys. B 31, 261–273 (1998).
    [CrossRef]
  19. M. V. Suryanarayana, M. Sankari, and S. Gangadharan, “Determination of 6Li/7Li isotope ratio using two photon resonant three photon resonance ionisation mass spectrometry,” Int. J. Mass Spectrom. Ion Processes 173, 177–189 (1998).
    [CrossRef]
  20. M. Sankari, M. V. Suryanarayana, and S. Gangadharan, “Isotope selective excitation of 155Gd and 157Gd isotopes from 9D2–60 states using broadband lasers,” J. Nucl. Mat. 264, 122–132 (1999).
    [CrossRef]
  21. P. V. Kiran Kumar, M. V. Suryanarayana, and S. Gangadharan, “Selective excitation of odd gadolinium isotopes using two-color photoionization schemes,” J. Nucl. Mat. 282, 255–260 (2000).
    [CrossRef]
  22. M. V. Suryanarayana and M. Sankari, “Comparison of density matrix and spectral simulation approaches for the calculation of isotopic selectivities,” J. Quant. Spectrosc. Radiat. Transfer. 67, 65–77 (2000).
    [CrossRef]
  23. M. Sankari, P. V. Kiran Kumar, and M. V. Suryanarayana, “Optical selectivity calculations of calcium isotopes in a double-resonance ionization schemes,” J. Phys. B 33, 4927–4937 (2000).
    [CrossRef]

2000

S. Bouazza, D. S. Gough, P. Hannaford, and M. Wilson, “Hyperfine structure of odd-parity levels in 91Zr I,” J. Phys. B 33, 2355–2365 (2000).
[CrossRef]

P. V. Kiran Kumar, M. V. Suryanarayana, and S. Gangadharan, “Selective excitation of odd gadolinium isotopes using two-color photoionization schemes,” J. Nucl. Mat. 282, 255–260 (2000).
[CrossRef]

M. V. Suryanarayana and M. Sankari, “Comparison of density matrix and spectral simulation approaches for the calculation of isotopic selectivities,” J. Quant. Spectrosc. Radiat. Transfer. 67, 65–77 (2000).
[CrossRef]

M. Sankari, P. V. Kiran Kumar, and M. V. Suryanarayana, “Optical selectivity calculations of calcium isotopes in a double-resonance ionization schemes,” J. Phys. B 33, 4927–4937 (2000).
[CrossRef]

1999

M. Sankari, M. V. Suryanarayana, and S. Gangadharan, “Isotope selective excitation of 155Gd and 157Gd isotopes from 9D2–60 states using broadband lasers,” J. Nucl. Mat. 264, 122–132 (1999).
[CrossRef]

1998

M. Sankari and M. V. Suryanarayana, “Studies on the isotope selective photoionisation of low abundant 168Yb isotope,” J. Phys. B 31, 261–273 (1998).
[CrossRef]

M. V. Suryanarayana, M. Sankari, and S. Gangadharan, “Determination of 6Li/7Li isotope ratio using two photon resonant three photon resonance ionisation mass spectrometry,” Int. J. Mass Spectrom. Ion Processes 173, 177–189 (1998).
[CrossRef]

C. Lim, K. Nomaru, and Y. Izawa, “Hyperfine structure constants and isotope shift determination in ZrI by laser-induced fluorescence spectroscopy,” Jpn. J. Appl. Phys., 37, 5049–5052 (1998).
[CrossRef]

1997

M. Sankari and M. V. Suryanarayana, “A theoretical study of the isotope selective excitation of 138La from 2D3/2, 5/2 states,” Spectrochim. Acta, Part B 52, 735–744 (1997).
[CrossRef]

M. V. Suryanarayana and M. Sankari, “Simulation of isotopic selectivities and isotope ratio enhancement factors for gadolinium and lanthanum using narrow band laser excitation,” Z. Phys. D 39, 35–40 (1997).
[CrossRef]

1993

R. H. Page, S. C. Dropinski, E. F. Worden, Jr., and J. A. D. Stockdale, “Progress in zirconium resonance ionization spectroscopy,” in Laser Isotope Separation, A. Paisner, ed., Proc. SPIE 1859, 49–63 (1993).
[CrossRef]

L. W. Green, G. A. McRae, and P. A. Rochefort, “Selective resonant ionization of zirconium isotopes using intermediate-state alignment,” Phys. Rev. A 47A, 4946–4954 (1993).
[CrossRef]

E. Langlois and J.-M. Gagne, “Zirconium isotope shift measurements using optogalvanic detection,” J. Opt. Soc. Am. B 10, 774–783 (1993).
[CrossRef]

1988

1987

G. Chevalier, J. M. Gagne, and P. Pianarosa, “Isotope shifts in 91Zr from optogalvanic saturation spectroscopy,” Opt. Commun. 64, 127–130 (1987).
[CrossRef]

1986

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, “A high resolution laser induced fluorescence study of a supersonic zirconium atomic beam,” Opt. Commun. 56, 403–408 (1986).
[CrossRef]

P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, “The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg series,” J. Chem. Phys. 85, 3194–3197 (1986).
[CrossRef]

1985

M. R. Humphries, O. L. Bourne, and P. A. Hackett, “Laser isotope separation of zirconium atoms cooled in a supersonic beam,” Chem. Phys. Lett. 118, 134–139 (1985).
[CrossRef]

1978

S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125–131 (1978).
[CrossRef]

Bouazza, S.

S. Bouazza, D. S. Gough, P. Hannaford, and M. Wilson, “Hyperfine structure of odd-parity levels in 91Zr I,” J. Phys. B 33, 2355–2365 (2000).
[CrossRef]

Bourne, O. L.

P. A. Hackett, H. D. Morrison, O. L. Bourne, B. Simard, and D. M. Rayner, “Pulsed single-mode laser ionization of hyperfine levels of zirconium-91,” J. Opt. Soc. Am. B 5, 2409–2416 (1988).
[CrossRef]

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, “A high resolution laser induced fluorescence study of a supersonic zirconium atomic beam,” Opt. Commun. 56, 403–408 (1986).
[CrossRef]

M. R. Humphries, O. L. Bourne, and P. A. Hackett, “Laser isotope separation of zirconium atoms cooled in a supersonic beam,” Chem. Phys. Lett. 118, 134–139 (1985).
[CrossRef]

Buttgenbach, S.

S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125–131 (1978).
[CrossRef]

Chevalier, G.

G. Chevalier, J. M. Gagne, and P. Pianarosa, “Hyperfine structures in 91Zr by saturation optogalvanic spectroscopy,” J. Opt. Soc. Am. B 5, 1492–1499 (1988).
[CrossRef]

G. Chevalier, J. M. Gagne, and P. Pianarosa, “Isotope shifts in 91Zr from optogalvanic saturation spectroscopy,” Opt. Commun. 64, 127–130 (1987).
[CrossRef]

Dicke, R.

S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125–131 (1978).
[CrossRef]

Dropinski, S. C.

R. H. Page, S. C. Dropinski, E. F. Worden, Jr., and J. A. D. Stockdale, “Progress in zirconium resonance ionization spectroscopy,” in Laser Isotope Separation, A. Paisner, ed., Proc. SPIE 1859, 49–63 (1993).
[CrossRef]

Gagne, J. M.

G. Chevalier, J. M. Gagne, and P. Pianarosa, “Hyperfine structures in 91Zr by saturation optogalvanic spectroscopy,” J. Opt. Soc. Am. B 5, 1492–1499 (1988).
[CrossRef]

G. Chevalier, J. M. Gagne, and P. Pianarosa, “Isotope shifts in 91Zr from optogalvanic saturation spectroscopy,” Opt. Commun. 64, 127–130 (1987).
[CrossRef]

Gagne, J.-M.

Gangadharan, S.

P. V. Kiran Kumar, M. V. Suryanarayana, and S. Gangadharan, “Selective excitation of odd gadolinium isotopes using two-color photoionization schemes,” J. Nucl. Mat. 282, 255–260 (2000).
[CrossRef]

M. Sankari, M. V. Suryanarayana, and S. Gangadharan, “Isotope selective excitation of 155Gd and 157Gd isotopes from 9D2–60 states using broadband lasers,” J. Nucl. Mat. 264, 122–132 (1999).
[CrossRef]

M. V. Suryanarayana, M. Sankari, and S. Gangadharan, “Determination of 6Li/7Li isotope ratio using two photon resonant three photon resonance ionisation mass spectrometry,” Int. J. Mass Spectrom. Ion Processes 173, 177–189 (1998).
[CrossRef]

Gebauer, H.

S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125–131 (1978).
[CrossRef]

Gough, D. S.

S. Bouazza, D. S. Gough, P. Hannaford, and M. Wilson, “Hyperfine structure of odd-parity levels in 91Zr I,” J. Phys. B 33, 2355–2365 (2000).
[CrossRef]

D. S. Gough and P. Hannaford, “High quality saturated absorption spectroscopy in a sputtered vapor: application to hyperfine structure in Zr I,” Opt. Commun. 67, 209–213 (1988).
[CrossRef]

Green, L. W.

L. W. Green, G. A. McRae, and P. A. Rochefort, “Selective resonant ionization of zirconium isotopes using intermediate-state alignment,” Phys. Rev. A 47A, 4946–4954 (1993).
[CrossRef]

Hackett, P. A.

P. A. Hackett, H. D. Morrison, O. L. Bourne, B. Simard, and D. M. Rayner, “Pulsed single-mode laser ionization of hyperfine levels of zirconium-91,” J. Opt. Soc. Am. B 5, 2409–2416 (1988).
[CrossRef]

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, “A high resolution laser induced fluorescence study of a supersonic zirconium atomic beam,” Opt. Commun. 56, 403–408 (1986).
[CrossRef]

P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, “The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg series,” J. Chem. Phys. 85, 3194–3197 (1986).
[CrossRef]

M. R. Humphries, O. L. Bourne, and P. A. Hackett, “Laser isotope separation of zirconium atoms cooled in a supersonic beam,” Chem. Phys. Lett. 118, 134–139 (1985).
[CrossRef]

Hannaford, P.

S. Bouazza, D. S. Gough, P. Hannaford, and M. Wilson, “Hyperfine structure of odd-parity levels in 91Zr I,” J. Phys. B 33, 2355–2365 (2000).
[CrossRef]

D. S. Gough and P. Hannaford, “High quality saturated absorption spectroscopy in a sputtered vapor: application to hyperfine structure in Zr I,” Opt. Commun. 67, 209–213 (1988).
[CrossRef]

Humphries, M. R.

P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, “The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg series,” J. Chem. Phys. 85, 3194–3197 (1986).
[CrossRef]

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, “A high resolution laser induced fluorescence study of a supersonic zirconium atomic beam,” Opt. Commun. 56, 403–408 (1986).
[CrossRef]

M. R. Humphries, O. L. Bourne, and P. A. Hackett, “Laser isotope separation of zirconium atoms cooled in a supersonic beam,” Chem. Phys. Lett. 118, 134–139 (1985).
[CrossRef]

Izawa, Y.

C. Lim, K. Nomaru, and Y. Izawa, “Hyperfine structure constants and isotope shift determination in ZrI by laser-induced fluorescence spectroscopy,” Jpn. J. Appl. Phys., 37, 5049–5052 (1998).
[CrossRef]

Kiran Kumar, P. V.

M. Sankari, P. V. Kiran Kumar, and M. V. Suryanarayana, “Optical selectivity calculations of calcium isotopes in a double-resonance ionization schemes,” J. Phys. B 33, 4927–4937 (2000).
[CrossRef]

Kuhnen, R.

S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125–131 (1978).
[CrossRef]

Kumar, P. V. Kiran

P. V. Kiran Kumar, M. V. Suryanarayana, and S. Gangadharan, “Selective excitation of odd gadolinium isotopes using two-color photoionization schemes,” J. Nucl. Mat. 282, 255–260 (2000).
[CrossRef]

Langlois, E.

Lim, C.

C. Lim, K. Nomaru, and Y. Izawa, “Hyperfine structure constants and isotope shift determination in ZrI by laser-induced fluorescence spectroscopy,” Jpn. J. Appl. Phys., 37, 5049–5052 (1998).
[CrossRef]

McRae, G. A.

L. W. Green, G. A. McRae, and P. A. Rochefort, “Selective resonant ionization of zirconium isotopes using intermediate-state alignment,” Phys. Rev. A 47A, 4946–4954 (1993).
[CrossRef]

Mitchell, S. A.

P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, “The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg series,” J. Chem. Phys. 85, 3194–3197 (1986).
[CrossRef]

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, “A high resolution laser induced fluorescence study of a supersonic zirconium atomic beam,” Opt. Commun. 56, 403–408 (1986).
[CrossRef]

Morrison, H. D.

Nomaru, K.

C. Lim, K. Nomaru, and Y. Izawa, “Hyperfine structure constants and isotope shift determination in ZrI by laser-induced fluorescence spectroscopy,” Jpn. J. Appl. Phys., 37, 5049–5052 (1998).
[CrossRef]

Page, R. H.

R. H. Page, S. C. Dropinski, E. F. Worden, Jr., and J. A. D. Stockdale, “Progress in zirconium resonance ionization spectroscopy,” in Laser Isotope Separation, A. Paisner, ed., Proc. SPIE 1859, 49–63 (1993).
[CrossRef]

Pianarosa, P.

G. Chevalier, J. M. Gagne, and P. Pianarosa, “Hyperfine structures in 91Zr by saturation optogalvanic spectroscopy,” J. Opt. Soc. Am. B 5, 1492–1499 (1988).
[CrossRef]

G. Chevalier, J. M. Gagne, and P. Pianarosa, “Isotope shifts in 91Zr from optogalvanic saturation spectroscopy,” Opt. Commun. 64, 127–130 (1987).
[CrossRef]

Rayner, D. M.

P. A. Hackett, H. D. Morrison, O. L. Bourne, B. Simard, and D. M. Rayner, “Pulsed single-mode laser ionization of hyperfine levels of zirconium-91,” J. Opt. Soc. Am. B 5, 2409–2416 (1988).
[CrossRef]

P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, “The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg series,” J. Chem. Phys. 85, 3194–3197 (1986).
[CrossRef]

Rochefort, P. A.

L. W. Green, G. A. McRae, and P. A. Rochefort, “Selective resonant ionization of zirconium isotopes using intermediate-state alignment,” Phys. Rev. A 47A, 4946–4954 (1993).
[CrossRef]

Sankari, M.

M. V. Suryanarayana and M. Sankari, “Comparison of density matrix and spectral simulation approaches for the calculation of isotopic selectivities,” J. Quant. Spectrosc. Radiat. Transfer. 67, 65–77 (2000).
[CrossRef]

M. Sankari, P. V. Kiran Kumar, and M. V. Suryanarayana, “Optical selectivity calculations of calcium isotopes in a double-resonance ionization schemes,” J. Phys. B 33, 4927–4937 (2000).
[CrossRef]

M. Sankari, M. V. Suryanarayana, and S. Gangadharan, “Isotope selective excitation of 155Gd and 157Gd isotopes from 9D2–60 states using broadband lasers,” J. Nucl. Mat. 264, 122–132 (1999).
[CrossRef]

M. V. Suryanarayana, M. Sankari, and S. Gangadharan, “Determination of 6Li/7Li isotope ratio using two photon resonant three photon resonance ionisation mass spectrometry,” Int. J. Mass Spectrom. Ion Processes 173, 177–189 (1998).
[CrossRef]

M. Sankari and M. V. Suryanarayana, “Studies on the isotope selective photoionisation of low abundant 168Yb isotope,” J. Phys. B 31, 261–273 (1998).
[CrossRef]

M. V. Suryanarayana and M. Sankari, “Simulation of isotopic selectivities and isotope ratio enhancement factors for gadolinium and lanthanum using narrow band laser excitation,” Z. Phys. D 39, 35–40 (1997).
[CrossRef]

M. Sankari and M. V. Suryanarayana, “A theoretical study of the isotope selective excitation of 138La from 2D3/2, 5/2 states,” Spectrochim. Acta, Part B 52, 735–744 (1997).
[CrossRef]

Simard, B.

Stockdale, J. A. D.

R. H. Page, S. C. Dropinski, E. F. Worden, Jr., and J. A. D. Stockdale, “Progress in zirconium resonance ionization spectroscopy,” in Laser Isotope Separation, A. Paisner, ed., Proc. SPIE 1859, 49–63 (1993).
[CrossRef]

Suryanarayana, M. V.

M. Sankari, P. V. Kiran Kumar, and M. V. Suryanarayana, “Optical selectivity calculations of calcium isotopes in a double-resonance ionization schemes,” J. Phys. B 33, 4927–4937 (2000).
[CrossRef]

M. V. Suryanarayana and M. Sankari, “Comparison of density matrix and spectral simulation approaches for the calculation of isotopic selectivities,” J. Quant. Spectrosc. Radiat. Transfer. 67, 65–77 (2000).
[CrossRef]

P. V. Kiran Kumar, M. V. Suryanarayana, and S. Gangadharan, “Selective excitation of odd gadolinium isotopes using two-color photoionization schemes,” J. Nucl. Mat. 282, 255–260 (2000).
[CrossRef]

M. Sankari, M. V. Suryanarayana, and S. Gangadharan, “Isotope selective excitation of 155Gd and 157Gd isotopes from 9D2–60 states using broadband lasers,” J. Nucl. Mat. 264, 122–132 (1999).
[CrossRef]

M. V. Suryanarayana, M. Sankari, and S. Gangadharan, “Determination of 6Li/7Li isotope ratio using two photon resonant three photon resonance ionisation mass spectrometry,” Int. J. Mass Spectrom. Ion Processes 173, 177–189 (1998).
[CrossRef]

M. Sankari and M. V. Suryanarayana, “Studies on the isotope selective photoionisation of low abundant 168Yb isotope,” J. Phys. B 31, 261–273 (1998).
[CrossRef]

M. V. Suryanarayana and M. Sankari, “Simulation of isotopic selectivities and isotope ratio enhancement factors for gadolinium and lanthanum using narrow band laser excitation,” Z. Phys. D 39, 35–40 (1997).
[CrossRef]

M. Sankari and M. V. Suryanarayana, “A theoretical study of the isotope selective excitation of 138La from 2D3/2, 5/2 states,” Spectrochim. Acta, Part B 52, 735–744 (1997).
[CrossRef]

Traber, F.

S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125–131 (1978).
[CrossRef]

Wilson, M.

S. Bouazza, D. S. Gough, P. Hannaford, and M. Wilson, “Hyperfine structure of odd-parity levels in 91Zr I,” J. Phys. B 33, 2355–2365 (2000).
[CrossRef]

Worden Jr., E. F.

R. H. Page, S. C. Dropinski, E. F. Worden, Jr., and J. A. D. Stockdale, “Progress in zirconium resonance ionization spectroscopy,” in Laser Isotope Separation, A. Paisner, ed., Proc. SPIE 1859, 49–63 (1993).
[CrossRef]

Chem. Phys. Lett.

M. R. Humphries, O. L. Bourne, and P. A. Hackett, “Laser isotope separation of zirconium atoms cooled in a supersonic beam,” Chem. Phys. Lett. 118, 134–139 (1985).
[CrossRef]

Int. J. Mass Spectrom. Ion Processes

M. V. Suryanarayana, M. Sankari, and S. Gangadharan, “Determination of 6Li/7Li isotope ratio using two photon resonant three photon resonance ionisation mass spectrometry,” Int. J. Mass Spectrom. Ion Processes 173, 177–189 (1998).
[CrossRef]

J. Chem. Phys.

P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, “The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg series,” J. Chem. Phys. 85, 3194–3197 (1986).
[CrossRef]

J. Nucl. Mat.

M. Sankari, M. V. Suryanarayana, and S. Gangadharan, “Isotope selective excitation of 155Gd and 157Gd isotopes from 9D2–60 states using broadband lasers,” J. Nucl. Mat. 264, 122–132 (1999).
[CrossRef]

P. V. Kiran Kumar, M. V. Suryanarayana, and S. Gangadharan, “Selective excitation of odd gadolinium isotopes using two-color photoionization schemes,” J. Nucl. Mat. 282, 255–260 (2000).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B

S. Bouazza, D. S. Gough, P. Hannaford, and M. Wilson, “Hyperfine structure of odd-parity levels in 91Zr I,” J. Phys. B 33, 2355–2365 (2000).
[CrossRef]

M. Sankari and M. V. Suryanarayana, “Studies on the isotope selective photoionisation of low abundant 168Yb isotope,” J. Phys. B 31, 261–273 (1998).
[CrossRef]

M. Sankari, P. V. Kiran Kumar, and M. V. Suryanarayana, “Optical selectivity calculations of calcium isotopes in a double-resonance ionization schemes,” J. Phys. B 33, 4927–4937 (2000).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer.

M. V. Suryanarayana and M. Sankari, “Comparison of density matrix and spectral simulation approaches for the calculation of isotopic selectivities,” J. Quant. Spectrosc. Radiat. Transfer. 67, 65–77 (2000).
[CrossRef]

Jpn. J. Appl. Phys.

C. Lim, K. Nomaru, and Y. Izawa, “Hyperfine structure constants and isotope shift determination in ZrI by laser-induced fluorescence spectroscopy,” Jpn. J. Appl. Phys., 37, 5049–5052 (1998).
[CrossRef]

Opt. Commun.

D. S. Gough and P. Hannaford, “High quality saturated absorption spectroscopy in a sputtered vapor: application to hyperfine structure in Zr I,” Opt. Commun. 67, 209–213 (1988).
[CrossRef]

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, “A high resolution laser induced fluorescence study of a supersonic zirconium atomic beam,” Opt. Commun. 56, 403–408 (1986).
[CrossRef]

G. Chevalier, J. M. Gagne, and P. Pianarosa, “Isotope shifts in 91Zr from optogalvanic saturation spectroscopy,” Opt. Commun. 64, 127–130 (1987).
[CrossRef]

Phys. Rev. A

L. W. Green, G. A. McRae, and P. A. Rochefort, “Selective resonant ionization of zirconium isotopes using intermediate-state alignment,” Phys. Rev. A 47A, 4946–4954 (1993).
[CrossRef]

Proc. SPIE

R. H. Page, S. C. Dropinski, E. F. Worden, Jr., and J. A. D. Stockdale, “Progress in zirconium resonance ionization spectroscopy,” in Laser Isotope Separation, A. Paisner, ed., Proc. SPIE 1859, 49–63 (1993).
[CrossRef]

Spectrochim. Acta, Part B

M. Sankari and M. V. Suryanarayana, “A theoretical study of the isotope selective excitation of 138La from 2D3/2, 5/2 states,” Spectrochim. Acta, Part B 52, 735–744 (1997).
[CrossRef]

Z. Phys. A

S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125–131 (1978).
[CrossRef]

Z. Phys. D

M. V. Suryanarayana and M. Sankari, “Simulation of isotopic selectivities and isotope ratio enhancement factors for gadolinium and lanthanum using narrow band laser excitation,” Z. Phys. D 39, 35–40 (1997).
[CrossRef]

Other

C. E. Moore, Atomic Energy Levels (U.S. GPO, Washington, D.C., 1971).

I. I. Sobelman, Atomic Spectra and Radiative Transitions (Springer-Verlag, Berlin, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Transitions studied for the calculation of isotope ratio-enhancement factors (91α).

Fig. 2
Fig. 2

(A) Isotope ratio-enhancement factor (91α) as a function of laser detuning for the  91Zr isotope for the 593.5216-nm transition for a Doppler width of 22 MHz and laser linewidth of 500 MHz. (B) Simulated excitation spectrum of the even isotopes (solid curve) and odd  91Zr isotope (dashed curve). Intensity of the  91Zr isotope is multiplied by a factor of 10.

Fig. 3
Fig. 3

(A) Isotope ratio-enhancement factor (91α) as a function of laser detuning for the  91Zr isotope for the 586.8268-nm transition for a Doppler width of 500 MHz and laser linewidth of 500 MHz. (B) Simulated excitation spectrum of the even isotopes (solid curve) and odd  91Zr isotope (dashed curve). Intensity of the  91Zr isotope is multiplied by a factor of 10.

Fig. 4
Fig. 4

Plot of the isotope ratio-enhancement factor for  91Zr isotope as a function of laser linewidth. The Doppler width is considered to be 500 MHz.

Tables (5)

Tables Icon

Table 1 Isotope Shifts for the Zirconium Isotopes for the Various Transitions Studied

Tables Icon

Table 2 Magnetic Dipole (A) and Electric Quadrupole (B) Constants for the Various Energy Levels of  91Zr Isotope

Tables Icon

Table 3 Comparison of the Computed Isotope Ratio-Enhancement Factor (91α) and the Abundance of  91Zr in the Excited Plume with the Earlier Reported Values

Tables Icon

Table 4 Isotope Ratio-Enhancement Factor of  91Zr Isotope for Different Transitions for Laser Linewidth of 500 MHz and Doppler Width of 500 MHz

Tables Icon

Table 5 Isotope Ratio-Enhancement Factor for  91Zr for Different Transitions for Laser Linewidth of 100 MHz and Doppler Width of 22 MHz

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I(F-F)(2F+1)(2F+1)JFIFJ12,
WF=WJ+C2A+3C(C+1)-4I(I+1)J(J+1)8I(2I-1)J(2J-1)B,
C=F(F+1)-I(I+1)-J(J+1).
L(ν)G(ν)dν.
S(ω)=IM1(ω)Iall(ω),
S=i-1kSi,
S=Sopt×Sion,
α91=A91A-A91eA91A-A91n.
ηion=I(Δ)I(0),
ηsel-ion=S×ηion.

Metrics