Abstract

A wavelength band of 40-Gbit/s–based 81-channel dense-wavelength–division multiplexing of a carrier-suppressed (CS) return-to-zero (RZ), i.e., CS-RZ format is simultaneously generated by use of a single supercontinuum (SC) source pumped by an optically multiplexed 40-Gbit/s CS-RZ signal. Because the SC is generated while coherent characteristics are maintained, CS multiplexing in each wavelength-division multiplexing (WDM) channel is multiplied. Furthermore, because a single mode-locked laser-diode (MLLD) pulse is an originated signal source, the WDM channel spacing is strongly locked by the microwave mode-locking frequency. As a result, the proposed technique would be favorably applicable to cost-effective multichannel frequency standardization when the center wavelength of the MLLD is locked to an ITU grid. Transmission of 3.24-Tbit/s (81-channel×40-Gbit/s) DWDM in the CS-RZ format with a 66-nm continuous signal band in the C and the L wavelengths is experimentally demonstrated by use of tellurite-based erubium-doped fiber amplifiers.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Harada, K. Shimizu, T. Kudou, and T. Ozeki, “Hierarchical optical path cross-connect systems for large scale WDM networks,” in Optical Fiber Communication Conference (OFC) 1999 Digest (Optical Society of America, Washington, D.C., 1999), paper WM55, pp. 356–358.
  2. Y. Miyamoto, A. Hirano, A. Sano, H. Toba, K. Murata, and O. Mitomi, “320 bit/s (8×40 Gbit/s) WDM transmission over 376-km zero-dispersion-flattened line with 120-km repeater spacing using carrier-suppressed return-to-zero pulse format,” in Optical Amplifiers and their Applications, S. Kinoshita, J. C. Livas, and G. van den Hoven, eds., Vol. 30 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), paper ODP4, pp. PdP4–1–PdP4–4.
  3. Y. Kobayashi, K. Kinjo, K. Ishida, T. Sugihara, S. Kajiya, N. Suzuki, and K. Shimizu, “A comparison among pure-RZ, CS-RZ and SSB-RZ formats in 1 Tbit/s (50×20 Gbit/s, 0.4 nm spacing) WDM transmission over 4, 000 km,” presented at the Twenty-sixth European Conference on Optical Communication (ECOC 2000), Munich, Germany, September 3–7 (2000), paper PDP 1.7.
  4. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
    [CrossRef]
  5. R. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, Berlin, 1989).
  6. Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing supercontinuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett. 11, 322–324 (1999).
    [CrossRef]
  7. H. Sotobayashi and K. Kitayama, “325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,” Electron. Lett. 34, 1336–1337 (1998).
    [CrossRef]
  8. H. Sotobayashi and K. Kitayama, “Broadcast-and-select OCDM/WDM network by using 10-Gbit/s spectrum-sliced supercontinuum BPSK pulse code sequences,” Electron. Lett. 35, 1966–1967 (1999).
    [CrossRef]
  9. H. Sotobayashi and K. Kitayama, “Observation of phase conservation in multiwavelength BPSK pulse-sequence generation at 10 Gbits/s by use of a spectrum-sliced supercontinuum in an optical fiber,” Opt. Lett. 24, 1820–1822 (1999).
    [CrossRef]
  10. J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87, 270801–1–270801–4 (2001).
    [CrossRef]
  11. M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
    [CrossRef]
  12. T. Ito, K. Fukuchi, Y. Inada, T. Tsuzaki, M. Harumoto, M. Kakui, and K. Fujii, “3.2-Tb/s–1500-km WDM transmission experiment using 64-nm hybrid repeater amplifiers,” in Optical Fiber Communication Conference (OFC) 2000, Vol. 37 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper PD21, Vol. 4, pp. 239–241.
  13. S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated Symmetric Mach-Zehnder all-optical switch,” IEEE Photon. Technol. Lett. 12, 425–427 (2000).
    [CrossRef]

2001 (1)

J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87, 270801–1–270801–4 (2001).
[CrossRef]

2000 (2)

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated Symmetric Mach-Zehnder all-optical switch,” IEEE Photon. Technol. Lett. 12, 425–427 (2000).
[CrossRef]

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

1999 (3)

Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing supercontinuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett. 11, 322–324 (1999).
[CrossRef]

H. Sotobayashi and K. Kitayama, “Broadcast-and-select OCDM/WDM network by using 10-Gbit/s spectrum-sliced supercontinuum BPSK pulse code sequences,” Electron. Lett. 35, 1966–1967 (1999).
[CrossRef]

H. Sotobayashi and K. Kitayama, “Observation of phase conservation in multiwavelength BPSK pulse-sequence generation at 10 Gbits/s by use of a spectrum-sliced supercontinuum in an optical fiber,” Opt. Lett. 24, 1820–1822 (1999).
[CrossRef]

1998 (2)

H. Sotobayashi and K. Kitayama, “325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,” Electron. Lett. 34, 1336–1337 (1998).
[CrossRef]

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[CrossRef]

Abe, M.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Hall, J. L.

J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87, 270801–1–270801–4 (2001).
[CrossRef]

Hatakeyama, H.

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated Symmetric Mach-Zehnder all-optical switch,” IEEE Photon. Technol. Lett. 12, 425–427 (2000).
[CrossRef]

Inoue, Y.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Itoh, M.

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated Symmetric Mach-Zehnder all-optical switch,” IEEE Photon. Technol. Lett. 12, 425–427 (2000).
[CrossRef]

Kanamori, T.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[CrossRef]

Kato, T.

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated Symmetric Mach-Zehnder all-optical switch,” IEEE Photon. Technol. Lett. 12, 425–427 (2000).
[CrossRef]

Kikuchi, K.

Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing supercontinuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett. 11, 322–324 (1999).
[CrossRef]

Kitayama, K.

H. Sotobayashi and K. Kitayama, “Broadcast-and-select OCDM/WDM network by using 10-Gbit/s spectrum-sliced supercontinuum BPSK pulse code sequences,” Electron. Lett. 35, 1966–1967 (1999).
[CrossRef]

H. Sotobayashi and K. Kitayama, “Observation of phase conservation in multiwavelength BPSK pulse-sequence generation at 10 Gbits/s by use of a spectrum-sliced supercontinuum in an optical fiber,” Opt. Lett. 24, 1820–1822 (1999).
[CrossRef]

H. Sotobayashi and K. Kitayama, “325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,” Electron. Lett. 34, 1336–1337 (1998).
[CrossRef]

Kobayashi, K.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[CrossRef]

Ma, L. S.

J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87, 270801–1–270801–4 (2001).
[CrossRef]

Mori, A.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[CrossRef]

Mori, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Morioka, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Nakamura, S.

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated Symmetric Mach-Zehnder all-optical switch,” IEEE Photon. Technol. Lett. 12, 425–427 (2000).
[CrossRef]

Nishida, Y.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[CrossRef]

Ohara, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Ohishi, Y.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[CrossRef]

Oikawa, K.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[CrossRef]

Ono, H.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[CrossRef]

Sasaki, J.

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated Symmetric Mach-Zehnder all-optical switch,” IEEE Photon. Technol. Lett. 12, 425–427 (2000).
[CrossRef]

Sasaki, T.

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated Symmetric Mach-Zehnder all-optical switch,” IEEE Photon. Technol. Lett. 12, 425–427 (2000).
[CrossRef]

Sato, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Sato, K.-I.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Shibata, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Shimoda, T.

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated Symmetric Mach-Zehnder all-optical switch,” IEEE Photon. Technol. Lett. 12, 425–427 (2000).
[CrossRef]

Sotobayashi, H.

H. Sotobayashi and K. Kitayama, “Broadcast-and-select OCDM/WDM network by using 10-Gbit/s spectrum-sliced supercontinuum BPSK pulse code sequences,” Electron. Lett. 35, 1966–1967 (1999).
[CrossRef]

H. Sotobayashi and K. Kitayama, “Observation of phase conservation in multiwavelength BPSK pulse-sequence generation at 10 Gbits/s by use of a spectrum-sliced supercontinuum in an optical fiber,” Opt. Lett. 24, 1820–1822 (1999).
[CrossRef]

H. Sotobayashi and K. Kitayama, “325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,” Electron. Lett. 34, 1336–1337 (1998).
[CrossRef]

Sugimoto, T.

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated Symmetric Mach-Zehnder all-optical switch,” IEEE Photon. Technol. Lett. 12, 425–427 (2000).
[CrossRef]

Tajima, K.

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated Symmetric Mach-Zehnder all-optical switch,” IEEE Photon. Technol. Lett. 12, 425–427 (2000).
[CrossRef]

Takara, H.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Takushima, Y.

Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing supercontinuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett. 11, 322–324 (1999).
[CrossRef]

Tamanuki, T.

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated Symmetric Mach-Zehnder all-optical switch,” IEEE Photon. Technol. Lett. 12, 425–427 (2000).
[CrossRef]

Ueno, Y.

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated Symmetric Mach-Zehnder all-optical switch,” IEEE Photon. Technol. Lett. 12, 425–427 (2000).
[CrossRef]

Yamada, E.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Yamada, M.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[CrossRef]

Ye, J.

J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87, 270801–1–270801–4 (2001).
[CrossRef]

Electron. Lett. (3)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

H. Sotobayashi and K. Kitayama, “325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,” Electron. Lett. 34, 1336–1337 (1998).
[CrossRef]

H. Sotobayashi and K. Kitayama, “Broadcast-and-select OCDM/WDM network by using 10-Gbit/s spectrum-sliced supercontinuum BPSK pulse code sequences,” Electron. Lett. 35, 1966–1967 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[CrossRef]

Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing supercontinuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett. 11, 322–324 (1999).
[CrossRef]

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated Symmetric Mach-Zehnder all-optical switch,” IEEE Photon. Technol. Lett. 12, 425–427 (2000).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87, 270801–1–270801–4 (2001).
[CrossRef]

Other (5)

R. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, Berlin, 1989).

K. Harada, K. Shimizu, T. Kudou, and T. Ozeki, “Hierarchical optical path cross-connect systems for large scale WDM networks,” in Optical Fiber Communication Conference (OFC) 1999 Digest (Optical Society of America, Washington, D.C., 1999), paper WM55, pp. 356–358.

Y. Miyamoto, A. Hirano, A. Sano, H. Toba, K. Murata, and O. Mitomi, “320 bit/s (8×40 Gbit/s) WDM transmission over 376-km zero-dispersion-flattened line with 120-km repeater spacing using carrier-suppressed return-to-zero pulse format,” in Optical Amplifiers and their Applications, S. Kinoshita, J. C. Livas, and G. van den Hoven, eds., Vol. 30 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), paper ODP4, pp. PdP4–1–PdP4–4.

Y. Kobayashi, K. Kinjo, K. Ishida, T. Sugihara, S. Kajiya, N. Suzuki, and K. Shimizu, “A comparison among pure-RZ, CS-RZ and SSB-RZ formats in 1 Tbit/s (50×20 Gbit/s, 0.4 nm spacing) WDM transmission over 4, 000 km,” presented at the Twenty-sixth European Conference on Optical Communication (ECOC 2000), Munich, Germany, September 3–7 (2000), paper PDP 1.7.

T. Ito, K. Fukuchi, Y. Inada, T. Tsuzaki, M. Harumoto, M. Kakui, and K. Fujii, “3.2-Tb/s–1500-km WDM transmission experiment using 64-nm hybrid repeater amplifiers,” in Optical Fiber Communication Conference (OFC) 2000, Vol. 37 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper PD21, Vol. 4, pp. 239–241.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Operating principles of (a) CS-RZ generation in the optical domain by use of time-delayed optical multiplexer with a phase shifter and (b) simultaneous wavelength-band generation of frequency-standardized DWDM in the CS-RZ format by use of SC generation and spectrum slicing.

Fig. 2
Fig. 2

Experimental setup of the simultaneous generation and transmission of a 3.24-Tbit/s (81-channel WDM×40-Gbit/s) wavelength band in the CS-RZ format. OTDM, optical TDM; CS-MUX, carrier-suppressed multiplexing; PHSE, phase; SCF, SC fiber; SMF, single-mode fiber; BERT, BER tester; Opt., Optically; Pre-amp., preamplified; RDF, reversed-dispersion fiber; SMZ, symmetric Mach–Zehnder switch.

Fig. 3
Fig. 3

Measured optical spectra of the SC at the output of a SC fiber (upper trace); the signals before transmission (middle trace); the signals after transmission and amplification by a T-EDFA (lower trace). Ch., channel.

Fig. 4
Fig. 4

(a) Experimental setup for verification of multiwavelength CS-RZ generation in the time domain. The correlation output of channels (b) 1, (c) 41, (d) 42, and (e) 81.

Fig. 5
Fig. 5

Measured optical spectra after 80 km transmission and WDM DEMUX of channels (a) 1, (b) 41, (c) 42, and (d) 81. Measured eye diagrams of channels (e) 1, (f) 41, (g) 42, and (h) 81.

Fig. 6
Fig. 6

Measured eye diagrams after 10-Gbit/s DEMUX of channels (a) 41, (b) 42. (c) Measured BERs. (d) Receiver sensitivity at a BER of 1×10-9 of 81 WDM channels.

Metrics