Abstract

We propose a terahertz pulse-shaping technique that can be accomplished by optical rectification in poled ferroelectric crystals. Simulation results show that arbitrary terahertz waveforms can be synthesized by the engineering of the domain structure of the poled crystals. The ratio of the domain length to the optical pulse length in the crystal turns out to be the crucial limiting factor to generating optimum terahertz fields and preventing waveform distortion.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53, 1555–1558 (1984).
    [CrossRef]
  2. K. P. Cheung and D. H. Auston, “Excitation of coherent phonon polaritons with femtosecond optical pulses,” Phys. Rev. Lett. 55, 2152–2155 (1985).
    [CrossRef] [PubMed]
  3. L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61, 1784–1786 (1992).
    [CrossRef]
  4. A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15-fs light pulses at 100-MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
    [CrossRef]
  5. R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191–3193 (2000).
    [CrossRef]
  6. E. Knoesel, M. Bonn, J. Shan, and T. F. Heinz, “Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy,” Phys. Rev. Lett. 86, 340–343 (2001).
    [CrossRef] [PubMed]
  7. C. Rønne, P. Åstrand, and S. R. Keiding, “THz spectroscopy of liquid H2O and D2O,” Phys. Rev. Lett. 82, 2888–2891 (1999).
    [CrossRef]
  8. T. I. Jeon, D. Grischkowsky, A. K. Mukherjee, and R. Menon, “Electrical characterization of conducting polypyrrole by THz time-domain spectroscopy,” Appl. Phys. Lett. 77, 2452–2454 (2000).
    [CrossRef]
  9. C. Zhang, K.-S. Lee, X.-C. Zhang, X. Wei, and Y. R. Shen, “Optical constants of ice Ih crystal at terahertz frequencies,” Appl. Phys. Lett. 79, 491–493 (2001).
    [CrossRef]
  10. M. Brucherseifer, M. Nagel, P. H. Bolivar, and H. Kurz, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
    [CrossRef]
  11. A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
    [CrossRef]
  12. A. M. Weiner, J. P. Heritage, and J. A. Salehi, “Encoding and decoding of femtosecond pulses,” Opt. Lett. 13, 300–302 (1988).
    [CrossRef] [PubMed]
  13. W. E. White, F. G. Patterson, R. L. Combs, D. F. Price, and R. L. Shepherd, “Compensation of higher-order frequency-dependent phase terms in chirped-pulse amplification systems,” Opt. Lett. 18, 1343–1345 (1993).
    [CrossRef] [PubMed]
  14. Y.-S. Lee, T. B. Norris, A. Maslov, D. S. Citrin, J. Prineas, G. Khitrova, and H. M. Gibbs, “Large-signal coherent control of normal modes in quantum-well semiconductor microcavity,” Appl. Phys. Lett. 78, 3941–3943 (2001).
    [CrossRef]
  15. B. Broers, L. D. Noordam, and H. B. van Linden van den Heuvall, “Diffraction and focusing of spectral energy in multiphoton processes,” Phys. Rev. A 46, 2749–2756 (1992).
    [CrossRef] [PubMed]
  16. S. A. Rice, “New ideas for guiding the evolution of a quantum system,” Science 258, 412 (1992).
    [CrossRef] [PubMed]
  17. Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrowband terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76, 2505–2507 (2000).
    [CrossRef]
  18. Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77, 1244–1246 (2000).
    [CrossRef]
  19. Y.-S. Lee, T. Meade, T. B. Norris, and A. Galvanauskas, “Tunable narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 78, 3583–3585 (2001).
    [CrossRef]
  20. Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanauskas, “Domain mapping of periodically poled lithium niobate via terahertz waveform analysis,” Appl. Phys. Lett. 77, 2488–2490 (2000).
    [CrossRef]
  21. F. Armani-Leplingard, J. J. Kingston, and D. K. Fork, “Second harmonic generation in LiTaO3 thin films by modal dispersion and quasi phase matching,” Appl. Phys. Lett. 68, 3695–3697 (1996).
    [CrossRef]
  22. J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90, 1489–1495 (2001).
    [CrossRef]
  23. A. S. Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in GaAsAlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing,” Opt. Lett. 25, 1370–1372 (2000).
    [CrossRef]
  24. K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, “Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate,” Opt. Lett. 25, 1714–1716 (2000).
    [CrossRef]
  25. P. Y. Han, M. Tani, F. Pan, and X.-C. Zhang, “Use of the organic crystal DAST for terahertz beam applications,” Opt. Lett. 25, 675–677 (2000).
    [CrossRef]

2001

E. Knoesel, M. Bonn, J. Shan, and T. F. Heinz, “Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy,” Phys. Rev. Lett. 86, 340–343 (2001).
[CrossRef] [PubMed]

C. Zhang, K.-S. Lee, X.-C. Zhang, X. Wei, and Y. R. Shen, “Optical constants of ice Ih crystal at terahertz frequencies,” Appl. Phys. Lett. 79, 491–493 (2001).
[CrossRef]

Y.-S. Lee, T. B. Norris, A. Maslov, D. S. Citrin, J. Prineas, G. Khitrova, and H. M. Gibbs, “Large-signal coherent control of normal modes in quantum-well semiconductor microcavity,” Appl. Phys. Lett. 78, 3941–3943 (2001).
[CrossRef]

Y.-S. Lee, T. Meade, T. B. Norris, and A. Galvanauskas, “Tunable narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 78, 3583–3585 (2001).
[CrossRef]

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90, 1489–1495 (2001).
[CrossRef]

2000

P. Y. Han, M. Tani, F. Pan, and X.-C. Zhang, “Use of the organic crystal DAST for terahertz beam applications,” Opt. Lett. 25, 675–677 (2000).
[CrossRef]

A. S. Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in GaAsAlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing,” Opt. Lett. 25, 1370–1372 (2000).
[CrossRef]

K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, “Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate,” Opt. Lett. 25, 1714–1716 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanauskas, “Domain mapping of periodically poled lithium niobate via terahertz waveform analysis,” Appl. Phys. Lett. 77, 2488–2490 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrowband terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76, 2505–2507 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77, 1244–1246 (2000).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, and H. Kurz, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191–3193 (2000).
[CrossRef]

T. I. Jeon, D. Grischkowsky, A. K. Mukherjee, and R. Menon, “Electrical characterization of conducting polypyrrole by THz time-domain spectroscopy,” Appl. Phys. Lett. 77, 2452–2454 (2000).
[CrossRef]

1999

C. Rønne, P. Åstrand, and S. R. Keiding, “THz spectroscopy of liquid H2O and D2O,” Phys. Rev. Lett. 82, 2888–2891 (1999).
[CrossRef]

1996

F. Armani-Leplingard, J. J. Kingston, and D. K. Fork, “Second harmonic generation in LiTaO3 thin films by modal dispersion and quasi phase matching,” Appl. Phys. Lett. 68, 3695–3697 (1996).
[CrossRef]

1995

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
[CrossRef]

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15-fs light pulses at 100-MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

1993

1992

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61, 1784–1786 (1992).
[CrossRef]

B. Broers, L. D. Noordam, and H. B. van Linden van den Heuvall, “Diffraction and focusing of spectral energy in multiphoton processes,” Phys. Rev. A 46, 2749–2756 (1992).
[CrossRef] [PubMed]

S. A. Rice, “New ideas for guiding the evolution of a quantum system,” Science 258, 412 (1992).
[CrossRef] [PubMed]

1988

1985

K. P. Cheung and D. H. Auston, “Excitation of coherent phonon polaritons with femtosecond optical pulses,” Phys. Rev. Lett. 55, 2152–2155 (1985).
[CrossRef] [PubMed]

1984

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53, 1555–1558 (1984).
[CrossRef]

Aitchison, J. S.

Armani-Leplingard, F.

F. Armani-Leplingard, J. J. Kingston, and D. K. Fork, “Second harmonic generation in LiTaO3 thin films by modal dispersion and quasi phase matching,” Appl. Phys. Lett. 68, 3695–3697 (1996).
[CrossRef]

Arnold, J. M.

Åstrand, P.

C. Rønne, P. Åstrand, and S. R. Keiding, “THz spectroscopy of liquid H2O and D2O,” Phys. Rev. Lett. 82, 2888–2891 (1999).
[CrossRef]

Auston, D. H.

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61, 1784–1786 (1992).
[CrossRef]

K. P. Cheung and D. H. Auston, “Excitation of coherent phonon polaritons with femtosecond optical pulses,” Phys. Rev. Lett. 55, 2152–2155 (1985).
[CrossRef] [PubMed]

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53, 1555–1558 (1984).
[CrossRef]

Bolivar, P. H.

M. Brucherseifer, M. Nagel, P. H. Bolivar, and H. Kurz, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Bonn, M.

E. Knoesel, M. Bonn, J. Shan, and T. F. Heinz, “Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy,” Phys. Rev. Lett. 86, 340–343 (2001).
[CrossRef] [PubMed]

Bonvalet, A.

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15-fs light pulses at 100-MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Brodschelm, A.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191–3193 (2000).
[CrossRef]

Broers, B.

B. Broers, L. D. Noordam, and H. B. van Linden van den Heuvall, “Diffraction and focusing of spectral energy in multiphoton processes,” Phys. Rev. A 46, 2749–2756 (1992).
[CrossRef] [PubMed]

Brown, C. T. A.

Brucherseifer, M.

M. Brucherseifer, M. Nagel, P. H. Bolivar, and H. Kurz, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Bryce, A. C.

Cheung, K. P.

K. P. Cheung and D. H. Auston, “Excitation of coherent phonon polaritons with femtosecond optical pulses,” Phys. Rev. Lett. 55, 2152–2155 (1985).
[CrossRef] [PubMed]

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53, 1555–1558 (1984).
[CrossRef]

Citrin, D. S.

Y.-S. Lee, T. B. Norris, A. Maslov, D. S. Citrin, J. Prineas, G. Khitrova, and H. M. Gibbs, “Large-signal coherent control of normal modes in quantum-well semiconductor microcavity,” Appl. Phys. Lett. 78, 3941–3943 (2001).
[CrossRef]

Clemens, R.

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90, 1489–1495 (2001).
[CrossRef]

Combs, R. L.

DeCamp, M.

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77, 1244–1246 (2000).
[CrossRef]

Ebrahimzadeh, M.

Fork, D. K.

F. Armani-Leplingard, J. J. Kingston, and D. K. Fork, “Second harmonic generation in LiTaO3 thin films by modal dispersion and quasi phase matching,” Appl. Phys. Lett. 68, 3695–3697 (1996).
[CrossRef]

Galvanauskas, A.

Y.-S. Lee, T. Meade, T. B. Norris, and A. Galvanauskas, “Tunable narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 78, 3583–3585 (2001).
[CrossRef]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrowband terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76, 2505–2507 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77, 1244–1246 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanauskas, “Domain mapping of periodically poled lithium niobate via terahertz waveform analysis,” Appl. Phys. Lett. 77, 2488–2490 (2000).
[CrossRef]

Gibbs, H. M.

Y.-S. Lee, T. B. Norris, A. Maslov, D. S. Citrin, J. Prineas, G. Khitrova, and H. M. Gibbs, “Large-signal coherent control of normal modes in quantum-well semiconductor microcavity,” Appl. Phys. Lett. 78, 3941–3943 (2001).
[CrossRef]

Grischkowsky, D.

T. I. Jeon, D. Grischkowsky, A. K. Mukherjee, and R. Menon, “Electrical characterization of conducting polypyrrole by THz time-domain spectroscopy,” Appl. Phys. Lett. 77, 2452–2454 (2000).
[CrossRef]

Han, P. Y.

Hatanaka, T.

Heinz, T. F.

E. Knoesel, M. Bonn, J. Shan, and T. F. Heinz, “Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy,” Phys. Rev. Lett. 86, 340–343 (2001).
[CrossRef] [PubMed]

Hellström, J.

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90, 1489–1495 (2001).
[CrossRef]

Helmy, A. S.

Heritage, J. P.

Huber, R.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191–3193 (2000).
[CrossRef]

Hutchings, D. C.

Ito, H.

Jeon, T. I.

T. I. Jeon, D. Grischkowsky, A. K. Mukherjee, and R. Menon, “Electrical characterization of conducting polypyrrole by THz time-domain spectroscopy,” Appl. Phys. Lett. 77, 2452–2454 (2000).
[CrossRef]

Joffre, M.

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15-fs light pulses at 100-MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Karlsson, H.

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90, 1489–1495 (2001).
[CrossRef]

Kawase, K.

Keiding, S. R.

C. Rønne, P. Åstrand, and S. R. Keiding, “THz spectroscopy of liquid H2O and D2O,” Phys. Rev. Lett. 82, 2888–2891 (1999).
[CrossRef]

Khitrova, G.

Y.-S. Lee, T. B. Norris, A. Maslov, D. S. Citrin, J. Prineas, G. Khitrova, and H. M. Gibbs, “Large-signal coherent control of normal modes in quantum-well semiconductor microcavity,” Appl. Phys. Lett. 78, 3941–3943 (2001).
[CrossRef]

Kingston, J. J.

F. Armani-Leplingard, J. J. Kingston, and D. K. Fork, “Second harmonic generation in LiTaO3 thin films by modal dispersion and quasi phase matching,” Appl. Phys. Lett. 68, 3695–3697 (1996).
[CrossRef]

Kleckner, T. C.

Kleinman, D. A.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53, 1555–1558 (1984).
[CrossRef]

Knoesel, E.

E. Knoesel, M. Bonn, J. Shan, and T. F. Heinz, “Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy,” Phys. Rev. Lett. 86, 340–343 (2001).
[CrossRef] [PubMed]

Kurz, H.

M. Brucherseifer, M. Nagel, P. H. Bolivar, and H. Kurz, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Laurell, F.

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90, 1489–1495 (2001).
[CrossRef]

Lee, K.-S.

C. Zhang, K.-S. Lee, X.-C. Zhang, X. Wei, and Y. R. Shen, “Optical constants of ice Ih crystal at terahertz frequencies,” Appl. Phys. Lett. 79, 491–493 (2001).
[CrossRef]

Lee, Y.-S.

Y.-S. Lee, T. Meade, T. B. Norris, and A. Galvanauskas, “Tunable narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 78, 3583–3585 (2001).
[CrossRef]

Y.-S. Lee, T. B. Norris, A. Maslov, D. S. Citrin, J. Prineas, G. Khitrova, and H. M. Gibbs, “Large-signal coherent control of normal modes in quantum-well semiconductor microcavity,” Appl. Phys. Lett. 78, 3941–3943 (2001).
[CrossRef]

Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanauskas, “Domain mapping of periodically poled lithium niobate via terahertz waveform analysis,” Appl. Phys. Lett. 77, 2488–2490 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77, 1244–1246 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrowband terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76, 2505–2507 (2000).
[CrossRef]

Leitenstorfer, A.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191–3193 (2000).
[CrossRef]

Marsh, J. H.

Martin, J. L.

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15-fs light pulses at 100-MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Maslov, A.

Y.-S. Lee, T. B. Norris, A. Maslov, D. S. Citrin, J. Prineas, G. Khitrova, and H. M. Gibbs, “Large-signal coherent control of normal modes in quantum-well semiconductor microcavity,” Appl. Phys. Lett. 78, 3941–3943 (2001).
[CrossRef]

Meade, T.

Y.-S. Lee, T. Meade, T. B. Norris, and A. Galvanauskas, “Tunable narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 78, 3583–3585 (2001).
[CrossRef]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrowband terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76, 2505–2507 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77, 1244–1246 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanauskas, “Domain mapping of periodically poled lithium niobate via terahertz waveform analysis,” Appl. Phys. Lett. 77, 2488–2490 (2000).
[CrossRef]

Menon, R.

T. I. Jeon, D. Grischkowsky, A. K. Mukherjee, and R. Menon, “Electrical characterization of conducting polypyrrole by THz time-domain spectroscopy,” Appl. Phys. Lett. 77, 2452–2454 (2000).
[CrossRef]

Migus, A.

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15-fs light pulses at 100-MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Moutzouris, K.

Mukherjee, A. K.

T. I. Jeon, D. Grischkowsky, A. K. Mukherjee, and R. Menon, “Electrical characterization of conducting polypyrrole by THz time-domain spectroscopy,” Appl. Phys. Lett. 77, 2452–2454 (2000).
[CrossRef]

Nagel, M.

M. Brucherseifer, M. Nagel, P. H. Bolivar, and H. Kurz, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Nakamura, K.

Naudeau, M. L.

Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanauskas, “Domain mapping of periodically poled lithium niobate via terahertz waveform analysis,” Appl. Phys. Lett. 77, 2488–2490 (2000).
[CrossRef]

Noordam, L. D.

B. Broers, L. D. Noordam, and H. B. van Linden van den Heuvall, “Diffraction and focusing of spectral energy in multiphoton processes,” Phys. Rev. A 46, 2749–2756 (1992).
[CrossRef] [PubMed]

Norris, T. B.

Y.-S. Lee, T. Meade, T. B. Norris, and A. Galvanauskas, “Tunable narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 78, 3583–3585 (2001).
[CrossRef]

Y.-S. Lee, T. B. Norris, A. Maslov, D. S. Citrin, J. Prineas, G. Khitrova, and H. M. Gibbs, “Large-signal coherent control of normal modes in quantum-well semiconductor microcavity,” Appl. Phys. Lett. 78, 3941–3943 (2001).
[CrossRef]

Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanauskas, “Domain mapping of periodically poled lithium niobate via terahertz waveform analysis,” Appl. Phys. Lett. 77, 2488–2490 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77, 1244–1246 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrowband terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76, 2505–2507 (2000).
[CrossRef]

Pan, F.

Pasiskevicius, V.

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90, 1489–1495 (2001).
[CrossRef]

Patterson, F. G.

Perlin, V.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrowband terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76, 2505–2507 (2000).
[CrossRef]

Price, D. F.

Prineas, J.

Y.-S. Lee, T. B. Norris, A. Maslov, D. S. Citrin, J. Prineas, G. Khitrova, and H. M. Gibbs, “Large-signal coherent control of normal modes in quantum-well semiconductor microcavity,” Appl. Phys. Lett. 78, 3941–3943 (2001).
[CrossRef]

Rice, S. A.

S. A. Rice, “New ideas for guiding the evolution of a quantum system,” Science 258, 412 (1992).
[CrossRef] [PubMed]

Rønne, C.

C. Rønne, P. Åstrand, and S. R. Keiding, “THz spectroscopy of liquid H2O and D2O,” Phys. Rev. Lett. 82, 2888–2891 (1999).
[CrossRef]

Salehi, J. A.

Shan, J.

E. Knoesel, M. Bonn, J. Shan, and T. F. Heinz, “Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy,” Phys. Rev. Lett. 86, 340–343 (2001).
[CrossRef] [PubMed]

Shen, Y. R.

C. Zhang, K.-S. Lee, X.-C. Zhang, X. Wei, and Y. R. Shen, “Optical constants of ice Ih crystal at terahertz frequencies,” Appl. Phys. Lett. 79, 491–493 (2001).
[CrossRef]

Shepherd, R. L.

Stanley, C. R.

Takahashi, H.

Tani, M.

Taniuchi, T.

Tauser, F.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191–3193 (2000).
[CrossRef]

Valdmanis, J. A.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53, 1555–1558 (1984).
[CrossRef]

van Linden van den Heuvall, H. B.

B. Broers, L. D. Noordam, and H. B. van Linden van den Heuvall, “Diffraction and focusing of spectral energy in multiphoton processes,” Phys. Rev. A 46, 2749–2756 (1992).
[CrossRef] [PubMed]

Wei, X.

C. Zhang, K.-S. Lee, X.-C. Zhang, X. Wei, and Y. R. Shen, “Optical constants of ice Ih crystal at terahertz frequencies,” Appl. Phys. Lett. 79, 491–493 (2001).
[CrossRef]

Weiner, A. M.

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
[CrossRef]

A. M. Weiner, J. P. Heritage, and J. A. Salehi, “Encoding and decoding of femtosecond pulses,” Opt. Lett. 13, 300–302 (1988).
[CrossRef] [PubMed]

White, W. E.

Winful, H.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrowband terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76, 2505–2507 (2000).
[CrossRef]

Xu, L.

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61, 1784–1786 (1992).
[CrossRef]

Zhang, C.

C. Zhang, K.-S. Lee, X.-C. Zhang, X. Wei, and Y. R. Shen, “Optical constants of ice Ih crystal at terahertz frequencies,” Appl. Phys. Lett. 79, 491–493 (2001).
[CrossRef]

Zhang, X.-C.

C. Zhang, K.-S. Lee, X.-C. Zhang, X. Wei, and Y. R. Shen, “Optical constants of ice Ih crystal at terahertz frequencies,” Appl. Phys. Lett. 79, 491–493 (2001).
[CrossRef]

P. Y. Han, M. Tani, F. Pan, and X.-C. Zhang, “Use of the organic crystal DAST for terahertz beam applications,” Opt. Lett. 25, 675–677 (2000).
[CrossRef]

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61, 1784–1786 (1992).
[CrossRef]

Appl. Phys. Lett.

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61, 1784–1786 (1992).
[CrossRef]

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15-fs light pulses at 100-MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191–3193 (2000).
[CrossRef]

T. I. Jeon, D. Grischkowsky, A. K. Mukherjee, and R. Menon, “Electrical characterization of conducting polypyrrole by THz time-domain spectroscopy,” Appl. Phys. Lett. 77, 2452–2454 (2000).
[CrossRef]

C. Zhang, K.-S. Lee, X.-C. Zhang, X. Wei, and Y. R. Shen, “Optical constants of ice Ih crystal at terahertz frequencies,” Appl. Phys. Lett. 79, 491–493 (2001).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, and H. Kurz, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrowband terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76, 2505–2507 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77, 1244–1246 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, T. B. Norris, and A. Galvanauskas, “Tunable narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 78, 3583–3585 (2001).
[CrossRef]

Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanauskas, “Domain mapping of periodically poled lithium niobate via terahertz waveform analysis,” Appl. Phys. Lett. 77, 2488–2490 (2000).
[CrossRef]

F. Armani-Leplingard, J. J. Kingston, and D. K. Fork, “Second harmonic generation in LiTaO3 thin films by modal dispersion and quasi phase matching,” Appl. Phys. Lett. 68, 3695–3697 (1996).
[CrossRef]

Y.-S. Lee, T. B. Norris, A. Maslov, D. S. Citrin, J. Prineas, G. Khitrova, and H. M. Gibbs, “Large-signal coherent control of normal modes in quantum-well semiconductor microcavity,” Appl. Phys. Lett. 78, 3941–3943 (2001).
[CrossRef]

J. Appl. Phys.

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90, 1489–1495 (2001).
[CrossRef]

Opt. Lett.

Phys. Rev. A

B. Broers, L. D. Noordam, and H. B. van Linden van den Heuvall, “Diffraction and focusing of spectral energy in multiphoton processes,” Phys. Rev. A 46, 2749–2756 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53, 1555–1558 (1984).
[CrossRef]

K. P. Cheung and D. H. Auston, “Excitation of coherent phonon polaritons with femtosecond optical pulses,” Phys. Rev. Lett. 55, 2152–2155 (1985).
[CrossRef] [PubMed]

E. Knoesel, M. Bonn, J. Shan, and T. F. Heinz, “Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy,” Phys. Rev. Lett. 86, 340–343 (2001).
[CrossRef] [PubMed]

C. Rønne, P. Åstrand, and S. R. Keiding, “THz spectroscopy of liquid H2O and D2O,” Phys. Rev. Lett. 82, 2888–2891 (1999).
[CrossRef]

Prog. Quantum Electron.

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
[CrossRef]

Science

S. A. Rice, “New ideas for guiding the evolution of a quantum system,” Science 258, 412 (1992).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Numerical solutions of (a) a zero-area double pulse, (b) a chirped pulse, and (c) alternating THz pulses. (d), (e), and (f) The corresponding spectra from poled LN structures with 15 domains. Diagrams of the domain structures are inserted.

Fig. 2
Fig. 2

THz waveforms generated from a PPLN crystal when temporally separated two optical pulses are irradiated on the crystal. The optical pulse duration is 200 fs, and the domain length is 20 µm. THz absorption is neglected in (a) Δϕ=π and (b) Δϕ=0. The decay time is 2 ps in (c) Δϕ=π and (d) Δϕ=0.

Fig. 3
Fig. 3

THz (a) waveforms and (b) corresponding spectra from PPLNs with various domain lengths when the optical pulse length in crystal is fixed. The ratios of domain length to pulse length in crystal (d/dτ) is 0.44, 1.1, 2.2, 4.4, and 11. The dimensionless time delay and frequency are defined as tn=vot/d and νn=νd/vo, respectively. The unit of the THz field is arbitrary.

Fig. 4
Fig. 4

(a) THz amplitude and (b) the ratio of the fundamental frequency intensity to the total intensity versus d/dw.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

L(z, t)=02(z-vot)2vo2τ2-1exp-(z-vot)2vo2τ22P(2)(z, t)t2,
ETHz(t)=0L±Lz-vot-L-zvtdz=i=1N(-1)i-1li-1liLz-vot-L-zvtdz,
li-1liLdz=01-vovt  -ξ exp-ξ2vo2τ2ξi-1ξi
ξi=1-vovtli+vovtL-vot.
FTHz(t)=i=1N(-1)i-1[Fi(t)-Fi-1(t)]
Fi(t)=0ξivovt-1 exp-ξi2vo2τ2.

Metrics