Abstract

We present a comprehensive study of the transmission characteristics of all-fiber Sagnac interferometers (FSIs) based on fiber Bragg gratings (FBGs). Analytic and numerical models have been developed for the design and characterization of FBG FSIs that incorporate gratings of arbitrary fringe structure. The transmission, phase, and time delay responses of several representative configurations that incorporate uniform-period and chirped gratings with and without apodization have been investigated theoretically and experimentally. Excellent agreement between the theoretical results and real device characteristics has been found in all cases. Our study clearly reveals that fiber grating-based FSIs offer potentially significant practical advantages not only for conversion of the reflective response of the grating into a transmissive response without loss but also by providing near-zero dispersion in the transmission bands, which offers attractive prospects for filtering components in high-speed wavelength-division multiplexing transmission systems.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in an optical fiber waveguide: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
    [CrossRef]
  2. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
    [CrossRef]
  3. I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “UV-written in-fiber Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1994).
  4. W. W. Morey, T. J. Bailey, and W. H. Glenn, “Fiber Fabry–Perot interferometer using side exposed fiber Bragg gratings,” in Optical Fiber Communication, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper WA2, pp. 96–97.
  5. S. Legoubin, M. Douay, P. Bernage, P. Niay, S. Boj, and E. Delevaque, “Free spectral range variations of grating-based Fabry–Perot filters photowritten in optical fibers,” J. Opt. Soc. Am. A 17, 1687–1694 (1996).
  6. G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry–Perot-like filters in optical fiber,” IEEE Photonics Technol. Lett. 7, 78–80 (1995).
    [CrossRef]
  7. K. P. Koo, M. LeBlanc, T. E. Tsai, and S. T. Vohra, “Fiber-chirped grating Fabry–Perot sensor with multiple-wavelength addressable free-spectral range,” IEEE Photonics Technol. Lett. 10, 1006–1008 (1998).
    [CrossRef]
  8. F. Bilodeau, K. O. Hill, B. Malo, and J. Albert, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photonics Technol. Lett. 7, 388–390 (1995).
    [CrossRef]
  9. F. Bilodeau, K. O. Hill, B. Malo, D. C. Johnson, and J. Albert, “High-return loss narrowband all-fiber bandpass Bragg transmission filter,” IEEE Photonics Technol. Lett. 6, 80–82 (1994).
    [CrossRef]
  10. R. Kashyap, “A new class of fiber grating based band-pass filters: the asymmetric interferometer,” Opt. Commun. 153, 14–18 (1998).
    [CrossRef]
  11. B. Ortega, J. Capmany, D. Pastor, L. Tallone, and L. Boschis, “Analysis of the backreflected signal in an all-fiber bandpass Bragg transmission filter,” IEEE Photonics Technol. Lett. 10, 1124–1126 (1998).
    [CrossRef]
  12. K. O. Hill, D. C. Johnson, F. Bilodeau, and S. Faucher, “Narrow-bandwidth optical waveguide transmission filters,” Electron. Lett. 23, 465–466 (1987).
    [CrossRef]
  13. X. Shu, S. Jiang, and D. Huang, “Fiber grating Sagnac loop and its multiwavelength-laser application,” IEEE Photonics Technol. Lett. 12, 980–982 (2000).
    [CrossRef]
  14. R. H. Qu, H. Zhao, Z. J. Fang, E. Marin, and J. P. Meunier, “Configurable wavelength-selective switch based on fiber grating and fiber loop mirror,” IEEE Photonics Technol. Lett. 12, 1343–1345 (2000).
    [CrossRef]
  15. I. Golub and A. K. Atieh, “Tunable narrow-band filters using chirped fiber Bragg gratings placed in a loop mirror configuration,” in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper WY1.
  16. M. Yamada and K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Appl. Opt. 26, 3474–3478 (1987).
    [CrossRef] [PubMed]
  17. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [CrossRef]
  18. J. A. R. Williams, I. Bennion, K. Sugden, and N. J. Doran, “Fibre dispersion compensation using a chirped in-fibre Bragg grating,” Electron. Lett. 30, 985–987 (1994).
    [CrossRef]
  19. B. J. Eggleton, K. A. Ahmed, F. Ouellette, P. A. Krug, and H. F. Liu, “Recompression of pulses broadened by transmission through 10 km of non-dispersion-shift fiber at 1.55 um using 40-mm-long optical fiber Bragg gratings with tunablechirp and central wavelength,” IEEE Photonics Technol. Lett. 7, 494–496 (1995).
    [CrossRef]
  20. B. Malo, S. Theriault, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Apodised in-fiber Bragg grating reflectors photoimprinted using a phase mask,” Electron. Lett. 31, 223–225 (1995).
    [CrossRef]
  21. B. J. Eggleton, G. Lenz, N. Litchiniser, D. B. Patterson, and R. E. Slusher, “Implications of fiber grating dispersion for WDM communication systems,” IEEE Photonics Technol. Lett. 9, 1403–1405 (1995).
    [CrossRef]

2000 (2)

X. Shu, S. Jiang, and D. Huang, “Fiber grating Sagnac loop and its multiwavelength-laser application,” IEEE Photonics Technol. Lett. 12, 980–982 (2000).
[CrossRef]

R. H. Qu, H. Zhao, Z. J. Fang, E. Marin, and J. P. Meunier, “Configurable wavelength-selective switch based on fiber grating and fiber loop mirror,” IEEE Photonics Technol. Lett. 12, 1343–1345 (2000).
[CrossRef]

1998 (3)

K. P. Koo, M. LeBlanc, T. E. Tsai, and S. T. Vohra, “Fiber-chirped grating Fabry–Perot sensor with multiple-wavelength addressable free-spectral range,” IEEE Photonics Technol. Lett. 10, 1006–1008 (1998).
[CrossRef]

R. Kashyap, “A new class of fiber grating based band-pass filters: the asymmetric interferometer,” Opt. Commun. 153, 14–18 (1998).
[CrossRef]

B. Ortega, J. Capmany, D. Pastor, L. Tallone, and L. Boschis, “Analysis of the backreflected signal in an all-fiber bandpass Bragg transmission filter,” IEEE Photonics Technol. Lett. 10, 1124–1126 (1998).
[CrossRef]

1997 (2)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

1996 (1)

S. Legoubin, M. Douay, P. Bernage, P. Niay, S. Boj, and E. Delevaque, “Free spectral range variations of grating-based Fabry–Perot filters photowritten in optical fibers,” J. Opt. Soc. Am. A 17, 1687–1694 (1996).

1995 (5)

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry–Perot-like filters in optical fiber,” IEEE Photonics Technol. Lett. 7, 78–80 (1995).
[CrossRef]

F. Bilodeau, K. O. Hill, B. Malo, and J. Albert, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photonics Technol. Lett. 7, 388–390 (1995).
[CrossRef]

B. J. Eggleton, K. A. Ahmed, F. Ouellette, P. A. Krug, and H. F. Liu, “Recompression of pulses broadened by transmission through 10 km of non-dispersion-shift fiber at 1.55 um using 40-mm-long optical fiber Bragg gratings with tunablechirp and central wavelength,” IEEE Photonics Technol. Lett. 7, 494–496 (1995).
[CrossRef]

B. Malo, S. Theriault, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Apodised in-fiber Bragg grating reflectors photoimprinted using a phase mask,” Electron. Lett. 31, 223–225 (1995).
[CrossRef]

B. J. Eggleton, G. Lenz, N. Litchiniser, D. B. Patterson, and R. E. Slusher, “Implications of fiber grating dispersion for WDM communication systems,” IEEE Photonics Technol. Lett. 9, 1403–1405 (1995).
[CrossRef]

1994 (3)

J. A. R. Williams, I. Bennion, K. Sugden, and N. J. Doran, “Fibre dispersion compensation using a chirped in-fibre Bragg grating,” Electron. Lett. 30, 985–987 (1994).
[CrossRef]

F. Bilodeau, K. O. Hill, B. Malo, D. C. Johnson, and J. Albert, “High-return loss narrowband all-fiber bandpass Bragg transmission filter,” IEEE Photonics Technol. Lett. 6, 80–82 (1994).
[CrossRef]

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “UV-written in-fiber Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1994).

1987 (2)

K. O. Hill, D. C. Johnson, F. Bilodeau, and S. Faucher, “Narrow-bandwidth optical waveguide transmission filters,” Electron. Lett. 23, 465–466 (1987).
[CrossRef]

M. Yamada and K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Appl. Opt. 26, 3474–3478 (1987).
[CrossRef] [PubMed]

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in an optical fiber waveguide: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Ahmed, K. A.

B. J. Eggleton, K. A. Ahmed, F. Ouellette, P. A. Krug, and H. F. Liu, “Recompression of pulses broadened by transmission through 10 km of non-dispersion-shift fiber at 1.55 um using 40-mm-long optical fiber Bragg gratings with tunablechirp and central wavelength,” IEEE Photonics Technol. Lett. 7, 494–496 (1995).
[CrossRef]

Albert, J.

B. Malo, S. Theriault, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Apodised in-fiber Bragg grating reflectors photoimprinted using a phase mask,” Electron. Lett. 31, 223–225 (1995).
[CrossRef]

F. Bilodeau, K. O. Hill, B. Malo, and J. Albert, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photonics Technol. Lett. 7, 388–390 (1995).
[CrossRef]

F. Bilodeau, K. O. Hill, B. Malo, D. C. Johnson, and J. Albert, “High-return loss narrowband all-fiber bandpass Bragg transmission filter,” IEEE Photonics Technol. Lett. 6, 80–82 (1994).
[CrossRef]

Bennion, I.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry–Perot-like filters in optical fiber,” IEEE Photonics Technol. Lett. 7, 78–80 (1995).
[CrossRef]

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “UV-written in-fiber Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1994).

J. A. R. Williams, I. Bennion, K. Sugden, and N. J. Doran, “Fibre dispersion compensation using a chirped in-fibre Bragg grating,” Electron. Lett. 30, 985–987 (1994).
[CrossRef]

Bernage, P.

S. Legoubin, M. Douay, P. Bernage, P. Niay, S. Boj, and E. Delevaque, “Free spectral range variations of grating-based Fabry–Perot filters photowritten in optical fibers,” J. Opt. Soc. Am. A 17, 1687–1694 (1996).

Bilodeau, F.

F. Bilodeau, K. O. Hill, B. Malo, and J. Albert, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photonics Technol. Lett. 7, 388–390 (1995).
[CrossRef]

B. Malo, S. Theriault, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Apodised in-fiber Bragg grating reflectors photoimprinted using a phase mask,” Electron. Lett. 31, 223–225 (1995).
[CrossRef]

F. Bilodeau, K. O. Hill, B. Malo, D. C. Johnson, and J. Albert, “High-return loss narrowband all-fiber bandpass Bragg transmission filter,” IEEE Photonics Technol. Lett. 6, 80–82 (1994).
[CrossRef]

K. O. Hill, D. C. Johnson, F. Bilodeau, and S. Faucher, “Narrow-bandwidth optical waveguide transmission filters,” Electron. Lett. 23, 465–466 (1987).
[CrossRef]

Boj, S.

S. Legoubin, M. Douay, P. Bernage, P. Niay, S. Boj, and E. Delevaque, “Free spectral range variations of grating-based Fabry–Perot filters photowritten in optical fibers,” J. Opt. Soc. Am. A 17, 1687–1694 (1996).

Boschis, L.

B. Ortega, J. Capmany, D. Pastor, L. Tallone, and L. Boschis, “Analysis of the backreflected signal in an all-fiber bandpass Bragg transmission filter,” IEEE Photonics Technol. Lett. 10, 1124–1126 (1998).
[CrossRef]

Capmany, J.

B. Ortega, J. Capmany, D. Pastor, L. Tallone, and L. Boschis, “Analysis of the backreflected signal in an all-fiber bandpass Bragg transmission filter,” IEEE Photonics Technol. Lett. 10, 1124–1126 (1998).
[CrossRef]

Delevaque, E.

S. Legoubin, M. Douay, P. Bernage, P. Niay, S. Boj, and E. Delevaque, “Free spectral range variations of grating-based Fabry–Perot filters photowritten in optical fibers,” J. Opt. Soc. Am. A 17, 1687–1694 (1996).

Doran, N. J.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “UV-written in-fiber Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1994).

J. A. R. Williams, I. Bennion, K. Sugden, and N. J. Doran, “Fibre dispersion compensation using a chirped in-fibre Bragg grating,” Electron. Lett. 30, 985–987 (1994).
[CrossRef]

Douay, M.

S. Legoubin, M. Douay, P. Bernage, P. Niay, S. Boj, and E. Delevaque, “Free spectral range variations of grating-based Fabry–Perot filters photowritten in optical fibers,” J. Opt. Soc. Am. A 17, 1687–1694 (1996).

Eggleton, B. J.

B. J. Eggleton, K. A. Ahmed, F. Ouellette, P. A. Krug, and H. F. Liu, “Recompression of pulses broadened by transmission through 10 km of non-dispersion-shift fiber at 1.55 um using 40-mm-long optical fiber Bragg gratings with tunablechirp and central wavelength,” IEEE Photonics Technol. Lett. 7, 494–496 (1995).
[CrossRef]

B. J. Eggleton, G. Lenz, N. Litchiniser, D. B. Patterson, and R. E. Slusher, “Implications of fiber grating dispersion for WDM communication systems,” IEEE Photonics Technol. Lett. 9, 1403–1405 (1995).
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

Fang, Z. J.

R. H. Qu, H. Zhao, Z. J. Fang, E. Marin, and J. P. Meunier, “Configurable wavelength-selective switch based on fiber grating and fiber loop mirror,” IEEE Photonics Technol. Lett. 12, 1343–1345 (2000).
[CrossRef]

Faucher, S.

K. O. Hill, D. C. Johnson, F. Bilodeau, and S. Faucher, “Narrow-bandwidth optical waveguide transmission filters,” Electron. Lett. 23, 465–466 (1987).
[CrossRef]

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in an optical fiber waveguide: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

F. Bilodeau, K. O. Hill, B. Malo, and J. Albert, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photonics Technol. Lett. 7, 388–390 (1995).
[CrossRef]

B. Malo, S. Theriault, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Apodised in-fiber Bragg grating reflectors photoimprinted using a phase mask,” Electron. Lett. 31, 223–225 (1995).
[CrossRef]

F. Bilodeau, K. O. Hill, B. Malo, D. C. Johnson, and J. Albert, “High-return loss narrowband all-fiber bandpass Bragg transmission filter,” IEEE Photonics Technol. Lett. 6, 80–82 (1994).
[CrossRef]

K. O. Hill, D. C. Johnson, F. Bilodeau, and S. Faucher, “Narrow-bandwidth optical waveguide transmission filters,” Electron. Lett. 23, 465–466 (1987).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in an optical fiber waveguide: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Huang, D.

X. Shu, S. Jiang, and D. Huang, “Fiber grating Sagnac loop and its multiwavelength-laser application,” IEEE Photonics Technol. Lett. 12, 980–982 (2000).
[CrossRef]

Jiang, S.

X. Shu, S. Jiang, and D. Huang, “Fiber grating Sagnac loop and its multiwavelength-laser application,” IEEE Photonics Technol. Lett. 12, 980–982 (2000).
[CrossRef]

Johnson, D. C.

B. Malo, S. Theriault, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Apodised in-fiber Bragg grating reflectors photoimprinted using a phase mask,” Electron. Lett. 31, 223–225 (1995).
[CrossRef]

F. Bilodeau, K. O. Hill, B. Malo, D. C. Johnson, and J. Albert, “High-return loss narrowband all-fiber bandpass Bragg transmission filter,” IEEE Photonics Technol. Lett. 6, 80–82 (1994).
[CrossRef]

K. O. Hill, D. C. Johnson, F. Bilodeau, and S. Faucher, “Narrow-bandwidth optical waveguide transmission filters,” Electron. Lett. 23, 465–466 (1987).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in an optical fiber waveguide: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Kashyap, R.

R. Kashyap, “A new class of fiber grating based band-pass filters: the asymmetric interferometer,” Opt. Commun. 153, 14–18 (1998).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in an optical fiber waveguide: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Koo, K. P.

K. P. Koo, M. LeBlanc, T. E. Tsai, and S. T. Vohra, “Fiber-chirped grating Fabry–Perot sensor with multiple-wavelength addressable free-spectral range,” IEEE Photonics Technol. Lett. 10, 1006–1008 (1998).
[CrossRef]

Krug, P. A.

B. J. Eggleton, K. A. Ahmed, F. Ouellette, P. A. Krug, and H. F. Liu, “Recompression of pulses broadened by transmission through 10 km of non-dispersion-shift fiber at 1.55 um using 40-mm-long optical fiber Bragg gratings with tunablechirp and central wavelength,” IEEE Photonics Technol. Lett. 7, 494–496 (1995).
[CrossRef]

LeBlanc, M.

K. P. Koo, M. LeBlanc, T. E. Tsai, and S. T. Vohra, “Fiber-chirped grating Fabry–Perot sensor with multiple-wavelength addressable free-spectral range,” IEEE Photonics Technol. Lett. 10, 1006–1008 (1998).
[CrossRef]

Legoubin, S.

S. Legoubin, M. Douay, P. Bernage, P. Niay, S. Boj, and E. Delevaque, “Free spectral range variations of grating-based Fabry–Perot filters photowritten in optical fibers,” J. Opt. Soc. Am. A 17, 1687–1694 (1996).

Lenz, G.

B. J. Eggleton, G. Lenz, N. Litchiniser, D. B. Patterson, and R. E. Slusher, “Implications of fiber grating dispersion for WDM communication systems,” IEEE Photonics Technol. Lett. 9, 1403–1405 (1995).
[CrossRef]

Litchiniser, N.

B. J. Eggleton, G. Lenz, N. Litchiniser, D. B. Patterson, and R. E. Slusher, “Implications of fiber grating dispersion for WDM communication systems,” IEEE Photonics Technol. Lett. 9, 1403–1405 (1995).
[CrossRef]

Liu, H. F.

B. J. Eggleton, K. A. Ahmed, F. Ouellette, P. A. Krug, and H. F. Liu, “Recompression of pulses broadened by transmission through 10 km of non-dispersion-shift fiber at 1.55 um using 40-mm-long optical fiber Bragg gratings with tunablechirp and central wavelength,” IEEE Photonics Technol. Lett. 7, 494–496 (1995).
[CrossRef]

Malo, B.

B. Malo, S. Theriault, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Apodised in-fiber Bragg grating reflectors photoimprinted using a phase mask,” Electron. Lett. 31, 223–225 (1995).
[CrossRef]

F. Bilodeau, K. O. Hill, B. Malo, and J. Albert, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photonics Technol. Lett. 7, 388–390 (1995).
[CrossRef]

F. Bilodeau, K. O. Hill, B. Malo, D. C. Johnson, and J. Albert, “High-return loss narrowband all-fiber bandpass Bragg transmission filter,” IEEE Photonics Technol. Lett. 6, 80–82 (1994).
[CrossRef]

Marin, E.

R. H. Qu, H. Zhao, Z. J. Fang, E. Marin, and J. P. Meunier, “Configurable wavelength-selective switch based on fiber grating and fiber loop mirror,” IEEE Photonics Technol. Lett. 12, 1343–1345 (2000).
[CrossRef]

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Meunier, J. P.

R. H. Qu, H. Zhao, Z. J. Fang, E. Marin, and J. P. Meunier, “Configurable wavelength-selective switch based on fiber grating and fiber loop mirror,” IEEE Photonics Technol. Lett. 12, 1343–1345 (2000).
[CrossRef]

Niay, P.

S. Legoubin, M. Douay, P. Bernage, P. Niay, S. Boj, and E. Delevaque, “Free spectral range variations of grating-based Fabry–Perot filters photowritten in optical fibers,” J. Opt. Soc. Am. A 17, 1687–1694 (1996).

Ortega, B.

B. Ortega, J. Capmany, D. Pastor, L. Tallone, and L. Boschis, “Analysis of the backreflected signal in an all-fiber bandpass Bragg transmission filter,” IEEE Photonics Technol. Lett. 10, 1124–1126 (1998).
[CrossRef]

Ouellette, F.

B. J. Eggleton, K. A. Ahmed, F. Ouellette, P. A. Krug, and H. F. Liu, “Recompression of pulses broadened by transmission through 10 km of non-dispersion-shift fiber at 1.55 um using 40-mm-long optical fiber Bragg gratings with tunablechirp and central wavelength,” IEEE Photonics Technol. Lett. 7, 494–496 (1995).
[CrossRef]

Pastor, D.

B. Ortega, J. Capmany, D. Pastor, L. Tallone, and L. Boschis, “Analysis of the backreflected signal in an all-fiber bandpass Bragg transmission filter,” IEEE Photonics Technol. Lett. 10, 1124–1126 (1998).
[CrossRef]

Patterson, D. B.

B. J. Eggleton, G. Lenz, N. Litchiniser, D. B. Patterson, and R. E. Slusher, “Implications of fiber grating dispersion for WDM communication systems,” IEEE Photonics Technol. Lett. 9, 1403–1405 (1995).
[CrossRef]

Poole, S. B.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry–Perot-like filters in optical fiber,” IEEE Photonics Technol. Lett. 7, 78–80 (1995).
[CrossRef]

Qu, R. H.

R. H. Qu, H. Zhao, Z. J. Fang, E. Marin, and J. P. Meunier, “Configurable wavelength-selective switch based on fiber grating and fiber loop mirror,” IEEE Photonics Technol. Lett. 12, 1343–1345 (2000).
[CrossRef]

Sakuda, K.

Shu, X.

X. Shu, S. Jiang, and D. Huang, “Fiber grating Sagnac loop and its multiwavelength-laser application,” IEEE Photonics Technol. Lett. 12, 980–982 (2000).
[CrossRef]

Slusher, R. E.

B. J. Eggleton, G. Lenz, N. Litchiniser, D. B. Patterson, and R. E. Slusher, “Implications of fiber grating dispersion for WDM communication systems,” IEEE Photonics Technol. Lett. 9, 1403–1405 (1995).
[CrossRef]

Sugden, K.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry–Perot-like filters in optical fiber,” IEEE Photonics Technol. Lett. 7, 78–80 (1995).
[CrossRef]

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “UV-written in-fiber Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1994).

J. A. R. Williams, I. Bennion, K. Sugden, and N. J. Doran, “Fibre dispersion compensation using a chirped in-fibre Bragg grating,” Electron. Lett. 30, 985–987 (1994).
[CrossRef]

Tallone, L.

B. Ortega, J. Capmany, D. Pastor, L. Tallone, and L. Boschis, “Analysis of the backreflected signal in an all-fiber bandpass Bragg transmission filter,” IEEE Photonics Technol. Lett. 10, 1124–1126 (1998).
[CrossRef]

Theriault, S.

B. Malo, S. Theriault, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Apodised in-fiber Bragg grating reflectors photoimprinted using a phase mask,” Electron. Lett. 31, 223–225 (1995).
[CrossRef]

Town, G. E.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry–Perot-like filters in optical fiber,” IEEE Photonics Technol. Lett. 7, 78–80 (1995).
[CrossRef]

Tsai, T. E.

K. P. Koo, M. LeBlanc, T. E. Tsai, and S. T. Vohra, “Fiber-chirped grating Fabry–Perot sensor with multiple-wavelength addressable free-spectral range,” IEEE Photonics Technol. Lett. 10, 1006–1008 (1998).
[CrossRef]

Vohra, S. T.

K. P. Koo, M. LeBlanc, T. E. Tsai, and S. T. Vohra, “Fiber-chirped grating Fabry–Perot sensor with multiple-wavelength addressable free-spectral range,” IEEE Photonics Technol. Lett. 10, 1006–1008 (1998).
[CrossRef]

Williams, J. A. R.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry–Perot-like filters in optical fiber,” IEEE Photonics Technol. Lett. 7, 78–80 (1995).
[CrossRef]

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “UV-written in-fiber Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1994).

J. A. R. Williams, I. Bennion, K. Sugden, and N. J. Doran, “Fibre dispersion compensation using a chirped in-fibre Bragg grating,” Electron. Lett. 30, 985–987 (1994).
[CrossRef]

Yamada, M.

Zhang, L.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “UV-written in-fiber Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1994).

Zhao, H.

R. H. Qu, H. Zhao, Z. J. Fang, E. Marin, and J. P. Meunier, “Configurable wavelength-selective switch based on fiber grating and fiber loop mirror,” IEEE Photonics Technol. Lett. 12, 1343–1345 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in an optical fiber waveguide: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Electron. Lett. (3)

K. O. Hill, D. C. Johnson, F. Bilodeau, and S. Faucher, “Narrow-bandwidth optical waveguide transmission filters,” Electron. Lett. 23, 465–466 (1987).
[CrossRef]

J. A. R. Williams, I. Bennion, K. Sugden, and N. J. Doran, “Fibre dispersion compensation using a chirped in-fibre Bragg grating,” Electron. Lett. 30, 985–987 (1994).
[CrossRef]

B. Malo, S. Theriault, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Apodised in-fiber Bragg grating reflectors photoimprinted using a phase mask,” Electron. Lett. 31, 223–225 (1995).
[CrossRef]

IEEE Photonics Technol. Lett. (9)

B. J. Eggleton, G. Lenz, N. Litchiniser, D. B. Patterson, and R. E. Slusher, “Implications of fiber grating dispersion for WDM communication systems,” IEEE Photonics Technol. Lett. 9, 1403–1405 (1995).
[CrossRef]

B. J. Eggleton, K. A. Ahmed, F. Ouellette, P. A. Krug, and H. F. Liu, “Recompression of pulses broadened by transmission through 10 km of non-dispersion-shift fiber at 1.55 um using 40-mm-long optical fiber Bragg gratings with tunablechirp and central wavelength,” IEEE Photonics Technol. Lett. 7, 494–496 (1995).
[CrossRef]

X. Shu, S. Jiang, and D. Huang, “Fiber grating Sagnac loop and its multiwavelength-laser application,” IEEE Photonics Technol. Lett. 12, 980–982 (2000).
[CrossRef]

R. H. Qu, H. Zhao, Z. J. Fang, E. Marin, and J. P. Meunier, “Configurable wavelength-selective switch based on fiber grating and fiber loop mirror,” IEEE Photonics Technol. Lett. 12, 1343–1345 (2000).
[CrossRef]

B. Ortega, J. Capmany, D. Pastor, L. Tallone, and L. Boschis, “Analysis of the backreflected signal in an all-fiber bandpass Bragg transmission filter,” IEEE Photonics Technol. Lett. 10, 1124–1126 (1998).
[CrossRef]

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry–Perot-like filters in optical fiber,” IEEE Photonics Technol. Lett. 7, 78–80 (1995).
[CrossRef]

K. P. Koo, M. LeBlanc, T. E. Tsai, and S. T. Vohra, “Fiber-chirped grating Fabry–Perot sensor with multiple-wavelength addressable free-spectral range,” IEEE Photonics Technol. Lett. 10, 1006–1008 (1998).
[CrossRef]

F. Bilodeau, K. O. Hill, B. Malo, and J. Albert, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photonics Technol. Lett. 7, 388–390 (1995).
[CrossRef]

F. Bilodeau, K. O. Hill, B. Malo, D. C. Johnson, and J. Albert, “High-return loss narrowband all-fiber bandpass Bragg transmission filter,” IEEE Photonics Technol. Lett. 6, 80–82 (1994).
[CrossRef]

J. Lightwave Technol. (2)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

S. Legoubin, M. Douay, P. Bernage, P. Niay, S. Boj, and E. Delevaque, “Free spectral range variations of grating-based Fabry–Perot filters photowritten in optical fibers,” J. Opt. Soc. Am. A 17, 1687–1694 (1996).

Opt. Commun. (1)

R. Kashyap, “A new class of fiber grating based band-pass filters: the asymmetric interferometer,” Opt. Commun. 153, 14–18 (1998).
[CrossRef]

Opt. Quantum Electron. (1)

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “UV-written in-fiber Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1994).

Other (2)

W. W. Morey, T. J. Bailey, and W. H. Glenn, “Fiber Fabry–Perot interferometer using side exposed fiber Bragg gratings,” in Optical Fiber Communication, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper WA2, pp. 96–97.

I. Golub and A. K. Atieh, “Tunable narrow-band filters using chirped fiber Bragg gratings placed in a loop mirror configuration,” in Optical Fiber Communication Conference (OFC), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper WY1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

All-fiber Sagnac interferometer with a fiber grating in the loop: FC, fiber coupler.

Fig. 2
Fig. 2

Calculated comb filter responses of three FBG FSIs with different channel spacings: (a) 0.8 nm, (b) 0.4 nm, and (c) 0.2 nm. (Solid curves, reflection spectra of the gratings.)

Fig. 3
Fig. 3

Schematic diagram of light propagation in a chirped fiber grating with light incident upon both ends of the grating.

Fig. 4
Fig. 4

Calculated transmission spectra of three LCFBG FSIs with (a) ΔL=0 mm, (b) ΔL=-4.5 mm, and (c) ΔL=7 mm.

Fig. 5
Fig. 5

Calculated transmission spectra of tanh-function apodized FBG FSIs: (a) ΔL=4.2 mm, (b) ΔL=8.3 mm.

Fig. 6
Fig. 6

Calculated transmission spectra of tanh-function apodized LCFBG FSIs: (a) ΔL=0 mm, (b) ΔL=-6 mm, (c) ΔL=6 mm.

Fig. 7
Fig. 7

Measured transmission spectra of two unapodized FBG FSIs: (a) ΔL=3 mm, (b) ΔL=2.7 mm.

Fig. 8
Fig. 8

Measured transmission spectra of three unapodized LCFBG FSIs: (a) ΔL=0 mm, (b) ΔL=-4.5 mm, (c) ΔL=7 mm.

Fig. 9
Fig. 9

Measured transmission spectra of two FSIs that use apodized uniform-period fiber gratings.

Fig. 10
Fig. 10

Measured transmission spectra of raised-cosine apodized LCFBG FSIs: (a) ΔL=0 mm, (b) ΔL=-6 mm, (c) ΔL=4 mm.

Fig. 11
Fig. 11

Calculated transmission responses of uniform grating Sagnac loops with K=0.75 and K=0.5.

Fig. 12
Fig. 12

Calculated time delays of a FBG and of a FBG FSI whose spectrum is shown in Fig. 5(a).

Fig. 13
Fig. 13

Calculated time delay and reflection spectrum of a FP cavity formed by two identical gratings. Inset, time delay and reflection spectra of the grating.

Fig. 14
Fig. 14

Calculated time delay of the FSI whose transmission spectrum is shown in Fig. 6(a). The time delay of the grating alone is also shown (solid curve).

Fig. 15
Fig. 15

Measured time delay responses of (a) an apodized FBG FSI and (b) an apodized LCFBG-FSI. Dotted curves, transmission spectra of the Sagnac loops; thick solid curves, their corresponding time delay responses; thin solid curves, the time delay responses of the gratings alone.

Equations (49)

Equations on this page are rendered with MathJax. Learn more.

E1t=Ein,E2t=0.
E3a=1-KEin,
E4a=jKEin,
E3t=E3arg exp(-j2βL1)+E4atg exp[-jβ(L1+L2)],
E4t=E4arg exp(-j2βL2)+E3atg exp[(-jβ(L1+L2)],
E1a=1-KE3t+jKE4t,
E2a=jKE3t+1-KE4t.
r=E1aEin=(1-K)rg exp(-j2βL1)+Krg exp(-j2βL2)-2jK(1-K)tg exp[-jβ(L1+L2)],
t=E2aEin=jK(1-K)[rg exp(-j2βL1)+rg exp(-j2βL2)]-(1-2K)tg×exp[-jβ(L1+L2)].
rg=Rg(λ) exp[-jφ(λ)],
rg=Rg(λ) exp[-jφ(λ)],
T=Rg(λ)cos2βΔL+φ(λ)-φ(λ)2,
FSR=c2neΔL+c[τ(λ)-τ(λ)],
τ(λ)=-λ22πc dφdλ,
τ(λ)=-λ22πc dφdλ,
T=Rg(λ)cos2(βΔL),
FSR=c2neΔL.
T=Rg(λ),
Tcoupler=1-KjKjK1-K.
Tfiber1(2)=exp[-jβL1(2)]00exp[jβL1(2)],
Tgrating=T1T2T2*T1*.
E3aE4a=TcouplerE1tE2t,
E1aE2a=TcouplerE3tE4t,
E4tE4a=Tfiber2TgratingTfiber1E3aE3t.
r=E1aEin=2jK(1-K)-KT2-(1-K)(T2)*(T1)*,
t=E2aEin=1-2K+jK(1-K)[T2-(T2)*](T1)*,
T1=T1 exp[-jβ(L1+L2)],
T2=T2 exp[jβ(L1-L2)].
Fi=cosh(γiLgi)-j δiγi sinh(γiLgi)-j κiγi sinh(γiLgi)j κiγi sinh(γiLgi)cosh(γiLgi)+j δiγi sinh(γiLgi),
δi=β-πΛi,
γi=κi2-δi2.
Tgrating=T1T2T2*T1*=FMFM-1  Fi  F1.
T=[(1-2K)1-δ2/κ2+2K(1-K) sinh(κ2-δ2Lg)cos(βΔL)]2cosh2(κ2-δ2Lg)-δ2/κ2.
T=sinh2(κ2-δ2Lg)cosh2(κ2-δ2Lg)-δ2/κ2 cos2(βΔL).
T=sinh2(κ2-δ2Lg)cosh2(κ2-δ2Lg)-δ2/κ2.
Δλ=λ22neΔL.
FWHMFBG=λΔnηne,
Num=2ΔnΔLηλ.
FWHMbandpass=λ24neΔL.
τ(λ)2neLe(λ)c,
τ(λ)2ne[Lg-Le(λ)]c.
FSRc2neΔLeff,
ΔLeff=ΔL-Lg+2Le(λ).
λ=λ1+λ22-ΔLLg(λ2-λ1).
ψSagnac(λ)=arctancos(2βL1+φ)+cos(2βL2+φ)sin(2βL1+φ)+sin(2βL2+φ).
ψSagnac(λ)
=arctancos(2βL1+φ)+cos(2βL1+φ-2βΔL)sin(2βL1+φ)+sin(2βL1+φ-2βΔL),
τSagnac(λ)=-λ22πc dψSagnacdλ=τ(λ)+ne(L1+L2)c 1+cos(2βΔL)1+cos(2βΔL).
τSagnac(λ)=-λ22πc dψSagnacdλ=τ(λ)+τ(λ)2+ne(L1+L2)c×1+cos(2βΔL+φ-φ)1+cos(2βΔL+φ-φ).

Metrics