Abstract

We review the main techniques and the most recent experimental achievements obtained by our group on manipulation and control of picosecond optical pulse trains at 1.5-µm based on fiber Bragg grating (FBG) devices of interest in ultrafast optoelectronics. In particular, all-optical techniques for repetition-rate multiplication of picosecond mode-locked pulse trains that use linearly chirped FBGs and pulse-shaping techniques based on Fourier spectral filtering in a novel class of dispersive FBGs are presented. Theoretical and experimental results on the control of the light speed in FBG structures, including superluminal transmission and reflection of picosecond pulses, are also discussed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
    [Crossref]
  2. A. Weiner and A. Kan’an, “Femtosecond pulse shaping for synthesis, processing, and time-to-space conversion of ultrafast optical waveforms,” IEEE J. Sel. Top. Quantum Electron. 4, 317–331 (1998).
    [Crossref]
  3. A. Weiner, “Femtosecond pulse processing,” Opt. Quantum Electron. 32, 473–487 (2000).
    [Crossref]
  4. Dae-Sik-Kim, T. Khayim, A. Morimoto, and T. Kobayashi, “Ultrashort optical pulse shaping by electrooptic synthesizer,” IEICE Trans. Electron Devices E81, 260–263 (1998).
  5. A. Weiner, D. Leaird, J. Patel, and J. Wullert, “Programmable shaping of femtosecond pulses by use of a 128-element liquid-crystal phase modulator,” IEEE J. Quantum Electron. 28, 908–920 (1992).
    [Crossref]
  6. C. Hillegas, J. Tull, D. Goswami, D. Strickland, and W. Warren, “Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses,” Opt. Lett. 19, 737–739 (1994).
    [Crossref] [PubMed]
  7. G. I. A. Galvanauskas, D. Harter, M. Arbore, M. Proctor, and M. Fejer, “Engineerable femtosecond pulse shaping by second-harmonic generation with Fourier synthetic quasi-phase-matching gratings,” Opt. Lett. 23, 864–866 (1998).
    [Crossref]
  8. G. Imeshev, M. Arbore, M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, “Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,” J. Opt. Soc. Am. B 17, 304–318 (2000).
    [Crossref]
  9. H. Kurokawa, H. Tsuda, K. Okamato, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
    [Crossref]
  10. H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, and K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
    [Crossref]
  11. D. Leaird, S. Shen, A. Weiner, A. S. S. Kamei, M. Ishii, and K. Okamoto, “Generation of high-repetition-rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photonics Technol. Lett. 13, 221–223 (2001).
    [Crossref]
  12. J. Sipe, L. Poladian, and C. de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A 11, 1307–1320 (1994).
    [Crossref]
  13. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [Crossref]
  14. K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
    [Crossref]
  15. A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, London, 1999).
  16. P. Emplit, M. Haelterman, R. Kashyap, and M. De-Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett. 9, 1122–1124 (1997).
    [Crossref]
  17. R. Leners, P. Emplit, D. Foursa, M. Haelterman, and R. Kashyap, “6.1-GHz dark-soliton generation and propagation by a fiber Bragg grating pulse-shaping technique,” J. Opt. Soc. Am. B 14, 2339–2347 (1997).
    [Crossref]
  18. C. M. D. Sterke, B. Eggleton, and P. Krug, “High-intensity pulse propagation in uniform gratings and grating superstructures,” J. Lightwave Technol. 15, 1494–1502 (1997).
    [Crossref]
  19. L. Chen, S. Benjamin, P. Smith, and J. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol. 15, 1503–1512 (1997).
    [Crossref]
  20. L. Chen, S. Benjamin, P. Smith, J. Sipe, and S. Juma, “Ultrashort pulse propagation in multiple-grating fiber structures,” Opt. Lett. 22, 402–404 (1997).
    [Crossref] [PubMed]
  21. A. Grunnet-Jepsen, A. Johnson, E. Maniloff, T. Mossberg, M. Munroe, and J. Sweetser, “Demonstration of all-fiber sparse lightwave CDMA based on temporal phase encoding,” IEEE Photon. Technol. Lett. 11, 1283–1285 (1999).
    [Crossref]
  22. A. Grunnet-Jepsen, A. Johnson, E. Maniloff, T. Mossberg, M. Munroe, and J. Sweetser, “Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
    [Crossref]
  23. J. Azana and M. Muriel, “Temporal Talbot effect in fiber gratings and its applications,” Appl. Opt. 38, 6700–6704 (1999).
    [Crossref]
  24. J. Azana and M. Muriel, “Technique for multiplying the repetition rate of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings,” Opt. Lett. 24, 1672–1674 (1999).
    [Crossref]
  25. P. Chou, H. Haus, and J. Brennan, “Reconfigurable time-domain spectral shaping of an optical pulse stretched by a fiber Bragg grating,” Opt. Lett. 25, 524–526 (2000).
    [Crossref]
  26. P. Petropoulos, M. Ibsen, D. Richardson, and M. Zervas, “Generation of a 40-GHz pulse stream by pulse multiplication using a sampled fiber Bragg grating,” Opt. Lett. 25, 521–523 (2000).
    [Crossref]
  27. P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “A 10 Gbit/s, 160 Gchip/s OCDMA coding: decoding system based on superstructured fiber gratings,” in Optical Fiber Communication Conference, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), postdeadline paper PD9.
  28. S. Longhi, M. Marano, P. Laporta, O. Svelto, M. Belmonte, B. Agogliati, L. Arcangeli, V. Pruneri, M. N. Zervas, and M. Ibsen, “40-GHz pulse-train generation at 1.5 µm with a chirped fiber grating as a frequency multiplier,” Opt. Lett. 25, 1481–1483 (2000).
    [Crossref]
  29. S. Longhi, M. Marano, P. Laporta, and V. Pruneri, “Multiplication and reshaping of high-repetition-rate optical pulse trains using highly dispersive fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1498–1500 (2000).
    [Crossref]
  30. P. Petropoulos, M. Ibsen, A. Ellis, and D. Richardson, “Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating,” J. Lightwave Technol. 19, 746–752 (2001).
    [Crossref]
  31. M. Marano, S. Longhi, P. Laporta, M. Belmonte, and B. Agogliati, “All-optical square-pulse generation and multiplication at 1.5 µm by use of a novel class of fiber Bragg gratings,” Opt. Lett. 26, 1615–1617 (2001).
    [Crossref]
  32. G. Curatu, S. LaRochelle, C. Pare, and P. Belanger, “Pulse shaping with a phase-shifted fiber Bragg grating for antisymmetric pulse generation,” in Optical Pulse and Beam Propagation III, Y. B. Bard, ed. Proc. SPIE4271, 213–221 (2001).
    [Crossref]
  33. P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “Phase encoding and decoding of short pulses at 10 Gb/s using superstructured fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 154–156 (2001).
    [Crossref]
  34. P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “A comparative study of the performance of seven- and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings,” J. Lightwave Technol. 19, 1352–1365 (2001).
    [Crossref]
  35. A. Aceves, “Optical gap solitons: past, present and future; theory and experiments,” Chaos 10, 584–589 (2000).
    [Crossref]
  36. A. Asseh, H. Storoy, B. Sahlgren, and R. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15, 1419–1423 (1997).
    [Crossref]
  37. M. Ibsen, M. Durkin, M. Cole, and R. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998).
    [Crossref]
  38. M. Ibsen, M. Durkin, M. Cole, M. Zervas, and R. Laming, eds., Recent Advances in Long Dispersion Compensating Fibre Bragg Gratings (Institution of Electrical Engineers, London, UK, 1999).
  39. G.-H. Song and S.-Y. Shin, “Design of corrugated waveguide filters by the Gel’fand–Levitan–Marchenko inverse-scattering methods,” J. Opt. Soc. Am. A 2, 1905–1915 (1985).
    [Crossref]
  40. E. Peral, J. Capmany, and J. Marti, “Iterative solution to the Gel’Fand–Levitan–Marchenko coupled equations and application to synthesis of fiber gratings,” IEEE J. Quantum Electron. 32, 2078–2084 (1996).
    [Crossref]
  41. R. Feced, M. Zervas, and M. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).
    [Crossref]
  42. L. Poladian, “Simple grating synthesis algorithm,” Opt. Lett. 25, 787–789 (2000).
    [Crossref]
  43. J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37, 165–173 (2001).
    [Crossref]
  44. M. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43, 2139–2164 (1996).
    [Crossref]
  45. F. Mitschke and A. Morgner, “The temporal Talbot effect,” Opt. Photon. News 9, 45–47 (1998).
    [Crossref]
  46. I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, “High-repetition-rate optical pulse generation by using chirped optical pulses,” Electron. Lett. 34, 792–793 (1998).
    [Crossref]
  47. S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, and Y. Ogawa, “Repetition-frequency multiplication of mode-locked pulses using fiber dispersion,” J. Lightwave Technol. 16, 405–410 (1998).
    [Crossref]
  48. S. Arahira, Y. Katoh, and Y. Ogawa, “Generation and stabilization of ultrafast optical pulse trains with monolithic mode-locked laser diodes,” Opt. Quantum Electron. 33, 691–707 (2001).
    [Crossref]
  49. A. M. Steinberg, P. Kwiat, and R. Chiao, “Measurement of the single-photon tunneling time,” Phys. Rev. Lett. 71, 708–711 (1993).
    [Crossref] [PubMed]
  50. A. Enders and G. Nimtz, “Photonic tunneling time experiments,” Phys. Rev. B 47, 9605–9609 (1993).
    [Crossref]
  51. C. Spielmann, R. Szipocs, A. Stingl, and F. Krausz, “Tunneling of optical pulses through photonic bandgaps,” Phys. Rev. Lett. 73, 2308–2311 (1994).
    [Crossref] [PubMed]
  52. A. M. Steinberg and R. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49, 2071–2075 (1994).
    [Crossref] [PubMed]
  53. R. Chiao and A. Steinberg, “Tunneling times and superluminality,” Prog. Opt. XXXVII, 345–405 (1997).
    [Crossref]
  54. G. Nimtz and W. Heitmann, “Superluminal photonic tunneling and quantum electronics,” Prog. Quantum Electron. 21, 81–108 (1999).
    [Crossref]
  55. M. Kash, V. Sautenkov, A. Zibrov, L. Hollber, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
    [Crossref]
  56. D. Budker, D. Kimball, S. Rochester, and V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
    [Crossref]
  57. L. Hau, S. Harris, Z. Dutton, and C. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [Crossref]
  58. C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
    [Crossref] [PubMed]
  59. J. Marangos, “Faster than a speeding photon,” Nature 406, 243–244 (2000).
    [Crossref] [PubMed]
  60. L. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
    [Crossref] [PubMed]
  61. E. Recami, F. Fontana, and R. Garavaglia, “Special relativity and superluminal motions: a discussion of some recent experiments,” Int. J. Mod. Phys. A 15, 2793–2812 (2000).
    [Crossref]
  62. V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. D. L. Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
    [Crossref]
  63. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 17, 253902 1–4 (2001).
  64. M. Scalora, J. P. Dowling, A. S. Manka, C. M. Bowden, and J. W. Haus, “Pulse propagation near highly reflective surfaces: applications to photonic bandgap structures and the question of superluminal tunneling times,” Phys. Rev. A 52, 726–734 (1995).
    [Crossref] [PubMed]
  65. M. Scalora, R. J. Flynn, S. B. Reinhardth, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, J. P. Dowling, and R. P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
    [Crossref]
  66. P. Balcou and L. Dutriaux, “Dual optical tunneling times in frustrated total internal reflection,” Phys. Rev. Lett. 78, 851–854 (1997).
    [Crossref]
  67. P. Pereira, “Closed formulas for tunneling time in superlattices,” Phys. Rev. Lett. 84, 1772–1775 (2000).
    [Crossref]
  68. V. Olkhovsky, E. Recami, and G. Salesi, “Tunneling through two successive barriers and the Hartman (superluminal) effect,” (Los Alamos National Laboratory, Albuquerque, N.Mex., 2000), http://xxx.lanl.gov/abs/quant-ph/0002022 .
  69. J. Khurgin, “Light slowing down in moiré-fiber gratings and its implications for nonlinear optics,” Phys. Rev. A 62, 013821 1–4 (2000).
    [Crossref]
  70. G. Lenz, J. Eggleton, C. Madsen, and R. Slusher, “Optical delay lines based on optical filters,” J. Lightwave Technol. 37, 525–532 (2001).
  71. S. Longhi, “Superluminal pulse reflection in asymmetric one-dimensional photonic band gaps,” Phys. Rev. E 64, 03760 1–3 (2001).
    [Crossref]
  72. S. Longhi, M. Marano, P. Laporta, and M. Belmonte, “Superluminal optical pulse propagation at 1.5 µm in periodic fiber Bragg gratings,” Phys. Rev. E 64, 055602 (R) 1–4 (2001).
    [Crossref]
  73. F. Ghiringhelli and M. Zervas, “Time delay distribution in Bragg gratings,” Phys. Rev. E 65, 036604 1–13 (2002).
    [Crossref]
  74. S. Longhi, M. Marano, P. Laporta, M. Belmonte, and P. Crespi, “Experimental observation of superluminal pulse reflection in a double-Lorentzian photonic band gap,” Phys. Rev. E 65, 045602(R) 1–4 (2002).
    [Crossref]
  75. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
  76. L. Poladian, “Resonance mode expansions and exact solutions for nonuniform gratings,” Phys. Rev. E 54, 2963–2975 (1996).
    [Crossref]
  77. B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibers,” Electron. Lett. 30, 1620–1622 (1994).
    [Crossref]
  78. I. Kay, “The inverse scattering problem when the reflection coefficient is a rational function,” Commun. Pure Appl. Math. 13, 371–393 (1960).
    [Crossref]
  79. W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning technique,” Opt. Lett. 20, 2051–2053 (1995).
    [Crossref] [PubMed]
  80. B. Costa, M. Puleo, and E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in single-mode optical fibres using LEDs,” Electron. Lett. 19, 1074–1076 (1983).
    [Crossref]
  81. S. Ryu, Y. Horiuchi, and K. Mochizuki, “Novel chromatic dispersion measurement method over continuous gigahertz tuning range,” J. Lightwave Technol. 7, 1177–1180 (1989).
    [Crossref]
  82. T. Hartman, “Tunneling of a wave packet,” J. Appl. Phys. 33, 3427–3434 (1962).
    [Crossref]
  83. S. Longhi, P. Laporta, M. Belmonte, and E. Recami, “Measurement of superluminal optical tunneling times in double-barrier photonic band gaps,” Phys. Rev. E 65, 046610 1–6 (2002).
    [Crossref]
  84. L. Poladian, “Group-delay reconstruction for fiber Bragg gratings in reflection and transmission,” Opt. Lett. 22, 1571–1573 (1997).
    [Crossref]

2002 (3)

F. Ghiringhelli and M. Zervas, “Time delay distribution in Bragg gratings,” Phys. Rev. E 65, 036604 1–13 (2002).
[Crossref]

S. Longhi, M. Marano, P. Laporta, M. Belmonte, and P. Crespi, “Experimental observation of superluminal pulse reflection in a double-Lorentzian photonic band gap,” Phys. Rev. E 65, 045602(R) 1–4 (2002).
[Crossref]

S. Longhi, P. Laporta, M. Belmonte, and E. Recami, “Measurement of superluminal optical tunneling times in double-barrier photonic band gaps,” Phys. Rev. E 65, 046610 1–6 (2002).
[Crossref]

2001 (12)

M. Marano, S. Longhi, P. Laporta, M. Belmonte, and B. Agogliati, “All-optical square-pulse generation and multiplication at 1.5 µm by use of a novel class of fiber Bragg gratings,” Opt. Lett. 26, 1615–1617 (2001).
[Crossref]

P. Petropoulos, M. Ibsen, A. Ellis, and D. Richardson, “Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating,” J. Lightwave Technol. 19, 746–752 (2001).
[Crossref]

P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “A comparative study of the performance of seven- and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings,” J. Lightwave Technol. 19, 1352–1365 (2001).
[Crossref]

G. Lenz, J. Eggleton, C. Madsen, and R. Slusher, “Optical delay lines based on optical filters,” J. Lightwave Technol. 37, 525–532 (2001).

S. Longhi, “Superluminal pulse reflection in asymmetric one-dimensional photonic band gaps,” Phys. Rev. E 64, 03760 1–3 (2001).
[Crossref]

S. Longhi, M. Marano, P. Laporta, and M. Belmonte, “Superluminal optical pulse propagation at 1.5 µm in periodic fiber Bragg gratings,” Phys. Rev. E 64, 055602 (R) 1–4 (2001).
[Crossref]

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37, 165–173 (2001).
[Crossref]

D. Leaird, S. Shen, A. Weiner, A. S. S. Kamei, M. Ishii, and K. Okamoto, “Generation of high-repetition-rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photonics Technol. Lett. 13, 221–223 (2001).
[Crossref]

P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “Phase encoding and decoding of short pulses at 10 Gb/s using superstructured fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 154–156 (2001).
[Crossref]

S. Arahira, Y. Katoh, and Y. Ogawa, “Generation and stabilization of ultrafast optical pulse trains with monolithic mode-locked laser diodes,” Opt. Quantum Electron. 33, 691–707 (2001).
[Crossref]

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 17, 253902 1–4 (2001).

2000 (14)

J. Marangos, “Faster than a speeding photon,” Nature 406, 243–244 (2000).
[Crossref] [PubMed]

L. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref] [PubMed]

E. Recami, F. Fontana, and R. Garavaglia, “Special relativity and superluminal motions: a discussion of some recent experiments,” Int. J. Mod. Phys. A 15, 2793–2812 (2000).
[Crossref]

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. D. L. Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

S. Longhi, M. Marano, P. Laporta, and V. Pruneri, “Multiplication and reshaping of high-repetition-rate optical pulse trains using highly dispersive fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1498–1500 (2000).
[Crossref]

A. Aceves, “Optical gap solitons: past, present and future; theory and experiments,” Chaos 10, 584–589 (2000).
[Crossref]

A. Weiner, “Femtosecond pulse processing,” Opt. Quantum Electron. 32, 473–487 (2000).
[Crossref]

P. Pereira, “Closed formulas for tunneling time in superlattices,” Phys. Rev. Lett. 84, 1772–1775 (2000).
[Crossref]

J. Khurgin, “Light slowing down in moiré-fiber gratings and its implications for nonlinear optics,” Phys. Rev. A 62, 013821 1–4 (2000).
[Crossref]

S. Longhi, M. Marano, P. Laporta, O. Svelto, M. Belmonte, B. Agogliati, L. Arcangeli, V. Pruneri, M. N. Zervas, and M. Ibsen, “40-GHz pulse-train generation at 1.5 µm with a chirped fiber grating as a frequency multiplier,” Opt. Lett. 25, 1481–1483 (2000).
[Crossref]

G. Imeshev, M. Arbore, M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, “Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,” J. Opt. Soc. Am. B 17, 304–318 (2000).
[Crossref]

P. Petropoulos, M. Ibsen, D. Richardson, and M. Zervas, “Generation of a 40-GHz pulse stream by pulse multiplication using a sampled fiber Bragg grating,” Opt. Lett. 25, 521–523 (2000).
[Crossref]

P. Chou, H. Haus, and J. Brennan, “Reconfigurable time-domain spectral shaping of an optical pulse stretched by a fiber Bragg grating,” Opt. Lett. 25, 524–526 (2000).
[Crossref]

L. Poladian, “Simple grating synthesis algorithm,” Opt. Lett. 25, 787–789 (2000).
[Crossref]

1999 (9)

J. Azana and M. Muriel, “Technique for multiplying the repetition rate of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings,” Opt. Lett. 24, 1672–1674 (1999).
[Crossref]

J. Azana and M. Muriel, “Temporal Talbot effect in fiber gratings and its applications,” Appl. Opt. 38, 6700–6704 (1999).
[Crossref]

A. Grunnet-Jepsen, A. Johnson, E. Maniloff, T. Mossberg, M. Munroe, and J. Sweetser, “Demonstration of all-fiber sparse lightwave CDMA based on temporal phase encoding,” IEEE Photon. Technol. Lett. 11, 1283–1285 (1999).
[Crossref]

A. Grunnet-Jepsen, A. Johnson, E. Maniloff, T. Mossberg, M. Munroe, and J. Sweetser, “Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[Crossref]

R. Feced, M. Zervas, and M. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).
[Crossref]

G. Nimtz and W. Heitmann, “Superluminal photonic tunneling and quantum electronics,” Prog. Quantum Electron. 21, 81–108 (1999).
[Crossref]

M. Kash, V. Sautenkov, A. Zibrov, L. Hollber, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]

D. Budker, D. Kimball, S. Rochester, and V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[Crossref]

L. Hau, S. Harris, Z. Dutton, and C. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

1998 (8)

M. Ibsen, M. Durkin, M. Cole, and R. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998).
[Crossref]

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, and K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[Crossref]

Dae-Sik-Kim, T. Khayim, A. Morimoto, and T. Kobayashi, “Ultrashort optical pulse shaping by electrooptic synthesizer,” IEICE Trans. Electron Devices E81, 260–263 (1998).

A. Weiner and A. Kan’an, “Femtosecond pulse shaping for synthesis, processing, and time-to-space conversion of ultrafast optical waveforms,” IEEE J. Sel. Top. Quantum Electron. 4, 317–331 (1998).
[Crossref]

G. I. A. Galvanauskas, D. Harter, M. Arbore, M. Proctor, and M. Fejer, “Engineerable femtosecond pulse shaping by second-harmonic generation with Fourier synthetic quasi-phase-matching gratings,” Opt. Lett. 23, 864–866 (1998).
[Crossref]

S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, and Y. Ogawa, “Repetition-frequency multiplication of mode-locked pulses using fiber dispersion,” J. Lightwave Technol. 16, 405–410 (1998).
[Crossref]

F. Mitschke and A. Morgner, “The temporal Talbot effect,” Opt. Photon. News 9, 45–47 (1998).
[Crossref]

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, “High-repetition-rate optical pulse generation by using chirped optical pulses,” Electron. Lett. 34, 792–793 (1998).
[Crossref]

1997 (12)

R. Chiao and A. Steinberg, “Tunneling times and superluminality,” Prog. Opt. XXXVII, 345–405 (1997).
[Crossref]

P. Balcou and L. Dutriaux, “Dual optical tunneling times in frustrated total internal reflection,” Phys. Rev. Lett. 78, 851–854 (1997).
[Crossref]

R. Leners, P. Emplit, D. Foursa, M. Haelterman, and R. Kashyap, “6.1-GHz dark-soliton generation and propagation by a fiber Bragg grating pulse-shaping technique,” J. Opt. Soc. Am. B 14, 2339–2347 (1997).
[Crossref]

L. Chen, S. Benjamin, P. Smith, J. Sipe, and S. Juma, “Ultrashort pulse propagation in multiple-grating fiber structures,” Opt. Lett. 22, 402–404 (1997).
[Crossref] [PubMed]

L. Poladian, “Group-delay reconstruction for fiber Bragg gratings in reflection and transmission,” Opt. Lett. 22, 1571–1573 (1997).
[Crossref]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]

K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

P. Emplit, M. Haelterman, R. Kashyap, and M. De-Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett. 9, 1122–1124 (1997).
[Crossref]

C. M. D. Sterke, B. Eggleton, and P. Krug, “High-intensity pulse propagation in uniform gratings and grating superstructures,” J. Lightwave Technol. 15, 1494–1502 (1997).
[Crossref]

L. Chen, S. Benjamin, P. Smith, and J. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol. 15, 1503–1512 (1997).
[Crossref]

H. Kurokawa, H. Tsuda, K. Okamato, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[Crossref]

A. Asseh, H. Storoy, B. Sahlgren, and R. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15, 1419–1423 (1997).
[Crossref]

1996 (4)

E. Peral, J. Capmany, and J. Marti, “Iterative solution to the Gel’Fand–Levitan–Marchenko coupled equations and application to synthesis of fiber gratings,” IEEE J. Quantum Electron. 32, 2078–2084 (1996).
[Crossref]

M. Scalora, R. J. Flynn, S. B. Reinhardth, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, J. P. Dowling, and R. P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[Crossref]

L. Poladian, “Resonance mode expansions and exact solutions for nonuniform gratings,” Phys. Rev. E 54, 2963–2975 (1996).
[Crossref]

M. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43, 2139–2164 (1996).
[Crossref]

1995 (3)

W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning technique,” Opt. Lett. 20, 2051–2053 (1995).
[Crossref] [PubMed]

A. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
[Crossref]

M. Scalora, J. P. Dowling, A. S. Manka, C. M. Bowden, and J. W. Haus, “Pulse propagation near highly reflective surfaces: applications to photonic bandgap structures and the question of superluminal tunneling times,” Phys. Rev. A 52, 726–734 (1995).
[Crossref] [PubMed]

1994 (5)

C. Spielmann, R. Szipocs, A. Stingl, and F. Krausz, “Tunneling of optical pulses through photonic bandgaps,” Phys. Rev. Lett. 73, 2308–2311 (1994).
[Crossref] [PubMed]

A. M. Steinberg and R. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49, 2071–2075 (1994).
[Crossref] [PubMed]

C. Hillegas, J. Tull, D. Goswami, D. Strickland, and W. Warren, “Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses,” Opt. Lett. 19, 737–739 (1994).
[Crossref] [PubMed]

J. Sipe, L. Poladian, and C. de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A 11, 1307–1320 (1994).
[Crossref]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibers,” Electron. Lett. 30, 1620–1622 (1994).
[Crossref]

1993 (2)

A. M. Steinberg, P. Kwiat, and R. Chiao, “Measurement of the single-photon tunneling time,” Phys. Rev. Lett. 71, 708–711 (1993).
[Crossref] [PubMed]

A. Enders and G. Nimtz, “Photonic tunneling time experiments,” Phys. Rev. B 47, 9605–9609 (1993).
[Crossref]

1992 (1)

A. Weiner, D. Leaird, J. Patel, and J. Wullert, “Programmable shaping of femtosecond pulses by use of a 128-element liquid-crystal phase modulator,” IEEE J. Quantum Electron. 28, 908–920 (1992).
[Crossref]

1989 (1)

S. Ryu, Y. Horiuchi, and K. Mochizuki, “Novel chromatic dispersion measurement method over continuous gigahertz tuning range,” J. Lightwave Technol. 7, 1177–1180 (1989).
[Crossref]

1985 (1)

1983 (1)

B. Costa, M. Puleo, and E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in single-mode optical fibres using LEDs,” Electron. Lett. 19, 1074–1076 (1983).
[Crossref]

1962 (1)

T. Hartman, “Tunneling of a wave packet,” J. Appl. Phys. 33, 3427–3434 (1962).
[Crossref]

1960 (1)

I. Kay, “The inverse scattering problem when the reflection coefficient is a rational function,” Commun. Pure Appl. Math. 13, 371–393 (1960).
[Crossref]

Aceves, A.

A. Aceves, “Optical gap solitons: past, present and future; theory and experiments,” Chaos 10, 584–589 (2000).
[Crossref]

Agogliati, B.

Arahira, S.

S. Arahira, Y. Katoh, and Y. Ogawa, “Generation and stabilization of ultrafast optical pulse trains with monolithic mode-locked laser diodes,” Opt. Quantum Electron. 33, 691–707 (2001).
[Crossref]

S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, and Y. Ogawa, “Repetition-frequency multiplication of mode-locked pulses using fiber dispersion,” J. Lightwave Technol. 16, 405–410 (1998).
[Crossref]

Arbore, M.

Arcangeli, L.

Asseh, A.

A. Asseh, H. Storoy, B. Sahlgren, and R. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15, 1419–1423 (1997).
[Crossref]

Astratov, V. N.

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. D. L. Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

Azana, J.

Balcou, P.

P. Balcou and L. Dutriaux, “Dual optical tunneling times in frustrated total internal reflection,” Phys. Rev. Lett. 78, 851–854 (1997).
[Crossref]

Barcelos, S.

Behroozi, C.

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

L. Hau, S. Harris, Z. Dutton, and C. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Belanger, P.

G. Curatu, S. LaRochelle, C. Pare, and P. Belanger, “Pulse shaping with a phase-shifted fiber Bragg grating for antisymmetric pulse generation,” in Optical Pulse and Beam Propagation III, Y. B. Bard, ed. Proc. SPIE4271, 213–221 (2001).
[Crossref]

Belmonte, M.

S. Longhi, P. Laporta, M. Belmonte, and E. Recami, “Measurement of superluminal optical tunneling times in double-barrier photonic band gaps,” Phys. Rev. E 65, 046610 1–6 (2002).
[Crossref]

S. Longhi, M. Marano, P. Laporta, M. Belmonte, and P. Crespi, “Experimental observation of superluminal pulse reflection in a double-Lorentzian photonic band gap,” Phys. Rev. E 65, 045602(R) 1–4 (2002).
[Crossref]

S. Longhi, M. Marano, P. Laporta, and M. Belmonte, “Superluminal optical pulse propagation at 1.5 µm in periodic fiber Bragg gratings,” Phys. Rev. E 64, 055602 (R) 1–4 (2001).
[Crossref]

M. Marano, S. Longhi, P. Laporta, M. Belmonte, and B. Agogliati, “All-optical square-pulse generation and multiplication at 1.5 µm by use of a novel class of fiber Bragg gratings,” Opt. Lett. 26, 1615–1617 (2001).
[Crossref]

S. Longhi, M. Marano, P. Laporta, O. Svelto, M. Belmonte, B. Agogliati, L. Arcangeli, V. Pruneri, M. N. Zervas, and M. Ibsen, “40-GHz pulse-train generation at 1.5 µm with a chirped fiber grating as a frequency multiplier,” Opt. Lett. 25, 1481–1483 (2000).
[Crossref]

Bendickson, J. M.

M. Scalora, R. J. Flynn, S. B. Reinhardth, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, J. P. Dowling, and R. P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[Crossref]

Benjamin, S.

L. Chen, S. Benjamin, P. Smith, and J. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol. 15, 1503–1512 (1997).
[Crossref]

L. Chen, S. Benjamin, P. Smith, J. Sipe, and S. Juma, “Ultrashort pulse propagation in multiple-grating fiber structures,” Opt. Lett. 22, 402–404 (1997).
[Crossref] [PubMed]

Berry, M.

M. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43, 2139–2164 (1996).
[Crossref]

Bloemer, M. J.

M. Scalora, R. J. Flynn, S. B. Reinhardth, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, J. P. Dowling, and R. P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[Crossref]

Bowden, C. M.

M. Scalora, R. J. Flynn, S. B. Reinhardth, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, J. P. Dowling, and R. P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[Crossref]

M. Scalora, J. P. Dowling, A. S. Manka, C. M. Bowden, and J. W. Haus, “Pulse propagation near highly reflective surfaces: applications to photonic bandgap structures and the question of superluminal tunneling times,” Phys. Rev. A 52, 726–734 (1995).
[Crossref] [PubMed]

Brennan, J.

Budker, D.

D. Budker, D. Kimball, S. Rochester, and V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[Crossref]

Capmany, J.

E. Peral, J. Capmany, and J. Marti, “Iterative solution to the Gel’Fand–Levitan–Marchenko coupled equations and application to synthesis of fiber gratings,” IEEE J. Quantum Electron. 32, 2078–2084 (1996).
[Crossref]

Chen, L.

L. Chen, S. Benjamin, P. Smith, J. Sipe, and S. Juma, “Ultrashort pulse propagation in multiple-grating fiber structures,” Opt. Lett. 22, 402–404 (1997).
[Crossref] [PubMed]

L. Chen, S. Benjamin, P. Smith, and J. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol. 15, 1503–1512 (1997).
[Crossref]

Chiao, R.

R. Chiao and A. Steinberg, “Tunneling times and superluminality,” Prog. Opt. XXXVII, 345–405 (1997).
[Crossref]

A. M. Steinberg and R. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49, 2071–2075 (1994).
[Crossref] [PubMed]

A. M. Steinberg, P. Kwiat, and R. Chiao, “Measurement of the single-photon tunneling time,” Phys. Rev. Lett. 71, 708–711 (1993).
[Crossref] [PubMed]

Chou, P.

Cole, M.

M. Ibsen, M. Durkin, M. Cole, and R. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998).
[Crossref]

Cole, M. J.

Costa, B.

B. Costa, M. Puleo, and E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in single-mode optical fibres using LEDs,” Electron. Lett. 19, 1074–1076 (1983).
[Crossref]

Crespi, P.

S. Longhi, M. Marano, P. Laporta, M. Belmonte, and P. Crespi, “Experimental observation of superluminal pulse reflection in a double-Lorentzian photonic band gap,” Phys. Rev. E 65, 045602(R) 1–4 (2002).
[Crossref]

Culshaw, I. S.

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. D. L. Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

Curatu, G.

G. Curatu, S. LaRochelle, C. Pare, and P. Belanger, “Pulse shaping with a phase-shifted fiber Bragg grating for antisymmetric pulse generation,” in Optical Pulse and Beam Propagation III, Y. B. Bard, ed. Proc. SPIE4271, 213–221 (2001).
[Crossref]

Dae-Sik-Kim,

Dae-Sik-Kim, T. Khayim, A. Morimoto, and T. Kobayashi, “Ultrashort optical pulse shaping by electrooptic synthesizer,” IEICE Trans. Electron Devices E81, 260–263 (1998).

de Sterke, C.

De-Lathouwer, M.

P. Emplit, M. Haelterman, R. Kashyap, and M. De-Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett. 9, 1122–1124 (1997).
[Crossref]

Dogariu, A.

L. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref] [PubMed]

Dowling, J. P.

M. Scalora, R. J. Flynn, S. B. Reinhardth, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, J. P. Dowling, and R. P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[Crossref]

M. Scalora, J. P. Dowling, A. S. Manka, C. M. Bowden, and J. W. Haus, “Pulse propagation near highly reflective surfaces: applications to photonic bandgap structures and the question of superluminal tunneling times,” Phys. Rev. A 52, 726–734 (1995).
[Crossref] [PubMed]

Durkin, M.

M. Ibsen, M. Durkin, M. Cole, and R. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998).
[Crossref]

Dutriaux, L.

P. Balcou and L. Dutriaux, “Dual optical tunneling times in frustrated total internal reflection,” Phys. Rev. Lett. 78, 851–854 (1997).
[Crossref]

Dutton, Z.

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

L. Hau, S. Harris, Z. Dutton, and C. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Eggleton, B.

C. M. D. Sterke, B. Eggleton, and P. Krug, “High-intensity pulse propagation in uniform gratings and grating superstructures,” J. Lightwave Technol. 15, 1494–1502 (1997).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibers,” Electron. Lett. 30, 1620–1622 (1994).
[Crossref]

Eggleton, J.

G. Lenz, J. Eggleton, C. Madsen, and R. Slusher, “Optical delay lines based on optical filters,” J. Lightwave Technol. 37, 525–532 (2001).

Ellis, A.

Emplit, P.

R. Leners, P. Emplit, D. Foursa, M. Haelterman, and R. Kashyap, “6.1-GHz dark-soliton generation and propagation by a fiber Bragg grating pulse-shaping technique,” J. Opt. Soc. Am. B 14, 2339–2347 (1997).
[Crossref]

P. Emplit, M. Haelterman, R. Kashyap, and M. De-Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett. 9, 1122–1124 (1997).
[Crossref]

Enders, A.

A. Enders and G. Nimtz, “Photonic tunneling time experiments,” Phys. Rev. B 47, 9605–9609 (1993).
[Crossref]

Erdogan, T.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37, 165–173 (2001).
[Crossref]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]

Feced, R.

R. Feced, M. Zervas, and M. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).
[Crossref]

Fejer, M.

Fermann, M.

Flynn, R. J.

M. Scalora, R. J. Flynn, S. B. Reinhardth, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, J. P. Dowling, and R. P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[Crossref]

Fontana, F.

E. Recami, F. Fontana, and R. Garavaglia, “Special relativity and superluminal motions: a discussion of some recent experiments,” Int. J. Mod. Phys. A 15, 2793–2812 (2000).
[Crossref]

Fork, R. L.

M. Scalora, R. J. Flynn, S. B. Reinhardth, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, J. P. Dowling, and R. P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[Crossref]

Foursa, D.

Fry, E.

M. Kash, V. Sautenkov, A. Zibrov, L. Hollber, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]

Galvanauskas, A.

Galvanauskas, G. I. A.

Garavaglia, R.

E. Recami, F. Fontana, and R. Garavaglia, “Special relativity and superluminal motions: a discussion of some recent experiments,” Int. J. Mod. Phys. A 15, 2793–2812 (2000).
[Crossref]

Ghiringhelli, F.

F. Ghiringhelli and M. Zervas, “Time delay distribution in Bragg gratings,” Phys. Rev. E 65, 036604 1–13 (2002).
[Crossref]

Goswami, D.

Grunnet-Jepsen, A.

A. Grunnet-Jepsen, A. Johnson, E. Maniloff, T. Mossberg, M. Munroe, and J. Sweetser, “Demonstration of all-fiber sparse lightwave CDMA based on temporal phase encoding,” IEEE Photon. Technol. Lett. 11, 1283–1285 (1999).
[Crossref]

A. Grunnet-Jepsen, A. Johnson, E. Maniloff, T. Mossberg, M. Munroe, and J. Sweetser, “Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[Crossref]

Haelterman, M.

P. Emplit, M. Haelterman, R. Kashyap, and M. De-Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett. 9, 1122–1124 (1997).
[Crossref]

R. Leners, P. Emplit, D. Foursa, M. Haelterman, and R. Kashyap, “6.1-GHz dark-soliton generation and propagation by a fiber Bragg grating pulse-shaping technique,” J. Opt. Soc. Am. B 14, 2339–2347 (1997).
[Crossref]

Harris, S.

L. Hau, S. Harris, Z. Dutton, and C. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Harter, D.

Hartman, T.

T. Hartman, “Tunneling of a wave packet,” J. Appl. Phys. 33, 3427–3434 (1962).
[Crossref]

Hau, L.

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

L. Hau, S. Harris, Z. Dutton, and C. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Haus, H.

Haus, J. W.

M. Scalora, J. P. Dowling, A. S. Manka, C. M. Bowden, and J. W. Haus, “Pulse propagation near highly reflective surfaces: applications to photonic bandgap structures and the question of superluminal tunneling times,” Phys. Rev. A 52, 726–734 (1995).
[Crossref] [PubMed]

Heitmann, W.

G. Nimtz and W. Heitmann, “Superluminal photonic tunneling and quantum electronics,” Prog. Quantum Electron. 21, 81–108 (1999).
[Crossref]

Hill, K.

K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

Hillegas, C.

Hollber, L.

M. Kash, V. Sautenkov, A. Zibrov, L. Hollber, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]

Horiuchi, Y.

S. Ryu, Y. Horiuchi, and K. Mochizuki, “Novel chromatic dispersion measurement method over continuous gigahertz tuning range,” J. Lightwave Technol. 7, 1177–1180 (1989).
[Crossref]

Ibsen, M.

P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “Phase encoding and decoding of short pulses at 10 Gb/s using superstructured fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 154–156 (2001).
[Crossref]

P. Petropoulos, M. Ibsen, A. Ellis, and D. Richardson, “Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating,” J. Lightwave Technol. 19, 746–752 (2001).
[Crossref]

P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “A comparative study of the performance of seven- and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings,” J. Lightwave Technol. 19, 1352–1365 (2001).
[Crossref]

S. Longhi, M. Marano, P. Laporta, O. Svelto, M. Belmonte, B. Agogliati, L. Arcangeli, V. Pruneri, M. N. Zervas, and M. Ibsen, “40-GHz pulse-train generation at 1.5 µm with a chirped fiber grating as a frequency multiplier,” Opt. Lett. 25, 1481–1483 (2000).
[Crossref]

P. Petropoulos, M. Ibsen, D. Richardson, and M. Zervas, “Generation of a 40-GHz pulse stream by pulse multiplication using a sampled fiber Bragg grating,” Opt. Lett. 25, 521–523 (2000).
[Crossref]

M. Ibsen, M. Durkin, M. Cole, and R. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998).
[Crossref]

P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “A 10 Gbit/s, 160 Gchip/s OCDMA coding: decoding system based on superstructured fiber gratings,” in Optical Fiber Communication Conference, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), postdeadline paper PD9.

Imeshev, G.

Inoue, Y.

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, and K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[Crossref]

H. Kurokawa, H. Tsuda, K. Okamato, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[Crossref]

Ishii, M.

D. Leaird, S. Shen, A. Weiner, A. S. S. Kamei, M. Ishii, and K. Okamoto, “Generation of high-repetition-rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photonics Technol. Lett. 13, 221–223 (2001).
[Crossref]

H. Kurokawa, H. Tsuda, K. Okamato, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[Crossref]

Johnson, A.

A. Grunnet-Jepsen, A. Johnson, E. Maniloff, T. Mossberg, M. Munroe, and J. Sweetser, “Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[Crossref]

A. Grunnet-Jepsen, A. Johnson, E. Maniloff, T. Mossberg, M. Munroe, and J. Sweetser, “Demonstration of all-fiber sparse lightwave CDMA based on temporal phase encoding,” IEEE Photon. Technol. Lett. 11, 1283–1285 (1999).
[Crossref]

Juma, S.

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, London, 1999).

Kamei, A. S. S.

D. Leaird, S. Shen, A. Weiner, A. S. S. Kamei, M. Ishii, and K. Okamoto, “Generation of high-repetition-rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photonics Technol. Lett. 13, 221–223 (2001).
[Crossref]

Kan’an, A.

A. Weiner and A. Kan’an, “Femtosecond pulse shaping for synthesis, processing, and time-to-space conversion of ultrafast optical waveforms,” IEEE J. Sel. Top. Quantum Electron. 4, 317–331 (1998).
[Crossref]

Kash, M.

M. Kash, V. Sautenkov, A. Zibrov, L. Hollber, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]

Kashyap, R.

P. Emplit, M. Haelterman, R. Kashyap, and M. De-Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett. 9, 1122–1124 (1997).
[Crossref]

R. Leners, P. Emplit, D. Foursa, M. Haelterman, and R. Kashyap, “6.1-GHz dark-soliton generation and propagation by a fiber Bragg grating pulse-shaping technique,” J. Opt. Soc. Am. B 14, 2339–2347 (1997).
[Crossref]

Katoh, Y.

S. Arahira, Y. Katoh, and Y. Ogawa, “Generation and stabilization of ultrafast optical pulse trains with monolithic mode-locked laser diodes,” Opt. Quantum Electron. 33, 691–707 (2001).
[Crossref]

Kawanishi, S.

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, “High-repetition-rate optical pulse generation by using chirped optical pulses,” Electron. Lett. 34, 792–793 (1998).
[Crossref]

Kay, I.

I. Kay, “The inverse scattering problem when the reflection coefficient is a rational function,” Commun. Pure Appl. Math. 13, 371–393 (1960).
[Crossref]

Khayim, T.

Dae-Sik-Kim, T. Khayim, A. Morimoto, and T. Kobayashi, “Ultrashort optical pulse shaping by electrooptic synthesizer,” IEICE Trans. Electron Devices E81, 260–263 (1998).

Khurgin, J.

J. Khurgin, “Light slowing down in moiré-fiber gratings and its implications for nonlinear optics,” Phys. Rev. A 62, 013821 1–4 (2000).
[Crossref]

Kimball, D.

D. Budker, D. Kimball, S. Rochester, and V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[Crossref]

Klein, S.

M. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43, 2139–2164 (1996).
[Crossref]

Kobayashi, T.

Dae-Sik-Kim, T. Khayim, A. Morimoto, and T. Kobayashi, “Ultrashort optical pulse shaping by electrooptic synthesizer,” IEICE Trans. Electron Devices E81, 260–263 (1998).

Krauss, T. F.

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. D. L. Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

Krausz, F.

C. Spielmann, R. Szipocs, A. Stingl, and F. Krausz, “Tunneling of optical pulses through photonic bandgaps,” Phys. Rev. Lett. 73, 2308–2311 (1994).
[Crossref] [PubMed]

Krug, P.

C. M. D. Sterke, B. Eggleton, and P. Krug, “High-intensity pulse propagation in uniform gratings and grating superstructures,” J. Lightwave Technol. 15, 1494–1502 (1997).
[Crossref]

Krug, P. A.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibers,” Electron. Lett. 30, 1620–1622 (1994).
[Crossref]

Kunimatsu, D.

Kurokawa, H.

H. Kurokawa, H. Tsuda, K. Okamato, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[Crossref]

Kurokawa, T.

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, and K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[Crossref]

Kutsuzawa, S.

Kuzmich, A.

L. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref] [PubMed]

Kwiat, P.

A. M. Steinberg, P. Kwiat, and R. Chiao, “Measurement of the single-photon tunneling time,” Phys. Rev. Lett. 71, 708–711 (1993).
[Crossref] [PubMed]

Laming, R.

M. Ibsen, M. Durkin, M. Cole, and R. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998).
[Crossref]

Laming, R. I.

Laporta, P.

S. Longhi, P. Laporta, M. Belmonte, and E. Recami, “Measurement of superluminal optical tunneling times in double-barrier photonic band gaps,” Phys. Rev. E 65, 046610 1–6 (2002).
[Crossref]

S. Longhi, M. Marano, P. Laporta, M. Belmonte, and P. Crespi, “Experimental observation of superluminal pulse reflection in a double-Lorentzian photonic band gap,” Phys. Rev. E 65, 045602(R) 1–4 (2002).
[Crossref]

S. Longhi, M. Marano, P. Laporta, and M. Belmonte, “Superluminal optical pulse propagation at 1.5 µm in periodic fiber Bragg gratings,” Phys. Rev. E 64, 055602 (R) 1–4 (2001).
[Crossref]

M. Marano, S. Longhi, P. Laporta, M. Belmonte, and B. Agogliati, “All-optical square-pulse generation and multiplication at 1.5 µm by use of a novel class of fiber Bragg gratings,” Opt. Lett. 26, 1615–1617 (2001).
[Crossref]

S. Longhi, M. Marano, P. Laporta, O. Svelto, M. Belmonte, B. Agogliati, L. Arcangeli, V. Pruneri, M. N. Zervas, and M. Ibsen, “40-GHz pulse-train generation at 1.5 µm with a chirped fiber grating as a frequency multiplier,” Opt. Lett. 25, 1481–1483 (2000).
[Crossref]

S. Longhi, M. Marano, P. Laporta, and V. Pruneri, “Multiplication and reshaping of high-repetition-rate optical pulse trains using highly dispersive fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1498–1500 (2000).
[Crossref]

LaRochelle, S.

G. Curatu, S. LaRochelle, C. Pare, and P. Belanger, “Pulse shaping with a phase-shifted fiber Bragg grating for antisymmetric pulse generation,” in Optical Pulse and Beam Propagation III, Y. B. Bard, ed. Proc. SPIE4271, 213–221 (2001).
[Crossref]

Leaird, D.

D. Leaird, S. Shen, A. Weiner, A. S. S. Kamei, M. Ishii, and K. Okamoto, “Generation of high-repetition-rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photonics Technol. Lett. 13, 221–223 (2001).
[Crossref]

A. Weiner, D. Leaird, J. Patel, and J. Wullert, “Programmable shaping of femtosecond pulses by use of a 128-element liquid-crystal phase modulator,” IEEE J. Quantum Electron. 28, 908–920 (1992).
[Crossref]

Leavitt, R. P.

M. Scalora, R. J. Flynn, S. B. Reinhardth, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, J. P. Dowling, and R. P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[Crossref]

Ledbetter, H. S.

M. Scalora, R. J. Flynn, S. B. Reinhardth, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, J. P. Dowling, and R. P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[Crossref]

Leners, R.

Lenz, G.

G. Lenz, J. Eggleton, C. Madsen, and R. Slusher, “Optical delay lines based on optical filters,” J. Lightwave Technol. 37, 525–532 (2001).

Liu, C.

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

Loh, W. H.

Longhi, S.

S. Longhi, M. Marano, P. Laporta, M. Belmonte, and P. Crespi, “Experimental observation of superluminal pulse reflection in a double-Lorentzian photonic band gap,” Phys. Rev. E 65, 045602(R) 1–4 (2002).
[Crossref]

S. Longhi, P. Laporta, M. Belmonte, and E. Recami, “Measurement of superluminal optical tunneling times in double-barrier photonic band gaps,” Phys. Rev. E 65, 046610 1–6 (2002).
[Crossref]

S. Longhi, “Superluminal pulse reflection in asymmetric one-dimensional photonic band gaps,” Phys. Rev. E 64, 03760 1–3 (2001).
[Crossref]

S. Longhi, M. Marano, P. Laporta, and M. Belmonte, “Superluminal optical pulse propagation at 1.5 µm in periodic fiber Bragg gratings,” Phys. Rev. E 64, 055602 (R) 1–4 (2001).
[Crossref]

M. Marano, S. Longhi, P. Laporta, M. Belmonte, and B. Agogliati, “All-optical square-pulse generation and multiplication at 1.5 µm by use of a novel class of fiber Bragg gratings,” Opt. Lett. 26, 1615–1617 (2001).
[Crossref]

S. Longhi, M. Marano, P. Laporta, O. Svelto, M. Belmonte, B. Agogliati, L. Arcangeli, V. Pruneri, M. N. Zervas, and M. Ibsen, “40-GHz pulse-train generation at 1.5 µm with a chirped fiber grating as a frequency multiplier,” Opt. Lett. 25, 1481–1483 (2000).
[Crossref]

S. Longhi, M. Marano, P. Laporta, and V. Pruneri, “Multiplication and reshaping of high-repetition-rate optical pulse trains using highly dispersive fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1498–1500 (2000).
[Crossref]

Lukin, M.

M. Kash, V. Sautenkov, A. Zibrov, L. Hollber, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]

Madsen, C.

G. Lenz, J. Eggleton, C. Madsen, and R. Slusher, “Optical delay lines based on optical filters,” J. Lightwave Technol. 37, 525–532 (2001).

Maniloff, E.

A. Grunnet-Jepsen, A. Johnson, E. Maniloff, T. Mossberg, M. Munroe, and J. Sweetser, “Demonstration of all-fiber sparse lightwave CDMA based on temporal phase encoding,” IEEE Photon. Technol. Lett. 11, 1283–1285 (1999).
[Crossref]

A. Grunnet-Jepsen, A. Johnson, E. Maniloff, T. Mossberg, M. Munroe, and J. Sweetser, “Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[Crossref]

Manka, A. S.

M. Scalora, J. P. Dowling, A. S. Manka, C. M. Bowden, and J. W. Haus, “Pulse propagation near highly reflective surfaces: applications to photonic bandgap structures and the question of superluminal tunneling times,” Phys. Rev. A 52, 726–734 (1995).
[Crossref] [PubMed]

Marangos, J.

J. Marangos, “Faster than a speeding photon,” Nature 406, 243–244 (2000).
[Crossref] [PubMed]

Marano, M.

S. Longhi, M. Marano, P. Laporta, M. Belmonte, and P. Crespi, “Experimental observation of superluminal pulse reflection in a double-Lorentzian photonic band gap,” Phys. Rev. E 65, 045602(R) 1–4 (2002).
[Crossref]

S. Longhi, M. Marano, P. Laporta, and M. Belmonte, “Superluminal optical pulse propagation at 1.5 µm in periodic fiber Bragg gratings,” Phys. Rev. E 64, 055602 (R) 1–4 (2001).
[Crossref]

M. Marano, S. Longhi, P. Laporta, M. Belmonte, and B. Agogliati, “All-optical square-pulse generation and multiplication at 1.5 µm by use of a novel class of fiber Bragg gratings,” Opt. Lett. 26, 1615–1617 (2001).
[Crossref]

S. Longhi, M. Marano, P. Laporta, O. Svelto, M. Belmonte, B. Agogliati, L. Arcangeli, V. Pruneri, M. N. Zervas, and M. Ibsen, “40-GHz pulse-train generation at 1.5 µm with a chirped fiber grating as a frequency multiplier,” Opt. Lett. 25, 1481–1483 (2000).
[Crossref]

S. Longhi, M. Marano, P. Laporta, and V. Pruneri, “Multiplication and reshaping of high-repetition-rate optical pulse trains using highly dispersive fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1498–1500 (2000).
[Crossref]

Marti, J.

E. Peral, J. Capmany, and J. Marti, “Iterative solution to the Gel’Fand–Levitan–Marchenko coupled equations and application to synthesis of fiber gratings,” IEEE J. Quantum Electron. 32, 2078–2084 (1996).
[Crossref]

Matsui, Y.

Meltz, G.

K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

Mitschke, F.

F. Mitschke and A. Morgner, “The temporal Talbot effect,” Opt. Photon. News 9, 45–47 (1998).
[Crossref]

Mochizuki, K.

S. Ryu, Y. Horiuchi, and K. Mochizuki, “Novel chromatic dispersion measurement method over continuous gigahertz tuning range,” J. Lightwave Technol. 7, 1177–1180 (1989).
[Crossref]

Morgner, A.

F. Mitschke and A. Morgner, “The temporal Talbot effect,” Opt. Photon. News 9, 45–47 (1998).
[Crossref]

Morimoto, A.

Dae-Sik-Kim, T. Khayim, A. Morimoto, and T. Kobayashi, “Ultrashort optical pulse shaping by electrooptic synthesizer,” IEICE Trans. Electron Devices E81, 260–263 (1998).

Mossberg, T.

A. Grunnet-Jepsen, A. Johnson, E. Maniloff, T. Mossberg, M. Munroe, and J. Sweetser, “Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[Crossref]

A. Grunnet-Jepsen, A. Johnson, E. Maniloff, T. Mossberg, M. Munroe, and J. Sweetser, “Demonstration of all-fiber sparse lightwave CDMA based on temporal phase encoding,” IEEE Photon. Technol. Lett. 11, 1283–1285 (1999).
[Crossref]

Munroe, M.

A. Grunnet-Jepsen, A. Johnson, E. Maniloff, T. Mossberg, M. Munroe, and J. Sweetser, “Demonstration of all-fiber sparse lightwave CDMA based on temporal phase encoding,” IEEE Photon. Technol. Lett. 11, 1283–1285 (1999).
[Crossref]

A. Grunnet-Jepsen, A. Johnson, E. Maniloff, T. Mossberg, M. Munroe, and J. Sweetser, “Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[Crossref]

Muriel, M.

Naganuma, K.

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, and K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[Crossref]

H. Kurokawa, H. Tsuda, K. Okamato, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[Crossref]

Nimtz, G.

G. Nimtz and W. Heitmann, “Superluminal photonic tunneling and quantum electronics,” Prog. Quantum Electron. 21, 81–108 (1999).
[Crossref]

A. Enders and G. Nimtz, “Photonic tunneling time experiments,” Phys. Rev. B 47, 9605–9609 (1993).
[Crossref]

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 17, 253902 1–4 (2001).

Ogawa, Y.

S. Arahira, Y. Katoh, and Y. Ogawa, “Generation and stabilization of ultrafast optical pulse trains with monolithic mode-locked laser diodes,” Opt. Quantum Electron. 33, 691–707 (2001).
[Crossref]

S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, and Y. Ogawa, “Repetition-frequency multiplication of mode-locked pulses using fiber dispersion,” J. Lightwave Technol. 16, 405–410 (1998).
[Crossref]

Okamato, K.

H. Kurokawa, H. Tsuda, K. Okamato, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[Crossref]

Okamoto, K.

D. Leaird, S. Shen, A. Weiner, A. S. S. Kamei, M. Ishii, and K. Okamoto, “Generation of high-repetition-rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photonics Technol. Lett. 13, 221–223 (2001).
[Crossref]

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, and K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[Crossref]

Olkhovsky, V.

V. Olkhovsky, E. Recami, and G. Salesi, “Tunneling through two successive barriers and the Hartman (superluminal) effect,” (Los Alamos National Laboratory, Albuquerque, N.Mex., 2000), http://xxx.lanl.gov/abs/quant-ph/0002022 .

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, London, 1999).

Ouellette, F.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibers,” Electron. Lett. 30, 1620–1622 (1994).
[Crossref]

Pare, C.

G. Curatu, S. LaRochelle, C. Pare, and P. Belanger, “Pulse shaping with a phase-shifted fiber Bragg grating for antisymmetric pulse generation,” in Optical Pulse and Beam Propagation III, Y. B. Bard, ed. Proc. SPIE4271, 213–221 (2001).
[Crossref]

Patel, J.

A. Weiner, D. Leaird, J. Patel, and J. Wullert, “Programmable shaping of femtosecond pulses by use of a 128-element liquid-crystal phase modulator,” IEEE J. Quantum Electron. 28, 908–920 (1992).
[Crossref]

Peral, E.

E. Peral, J. Capmany, and J. Marti, “Iterative solution to the Gel’Fand–Levitan–Marchenko coupled equations and application to synthesis of fiber gratings,” IEEE J. Quantum Electron. 32, 2078–2084 (1996).
[Crossref]

Pereira, P.

P. Pereira, “Closed formulas for tunneling time in superlattices,” Phys. Rev. Lett. 84, 1772–1775 (2000).
[Crossref]

Petropoulos, P.

P. Petropoulos, M. Ibsen, A. Ellis, and D. Richardson, “Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating,” J. Lightwave Technol. 19, 746–752 (2001).
[Crossref]

P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “Phase encoding and decoding of short pulses at 10 Gb/s using superstructured fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 154–156 (2001).
[Crossref]

P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “A comparative study of the performance of seven- and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings,” J. Lightwave Technol. 19, 1352–1365 (2001).
[Crossref]

P. Petropoulos, M. Ibsen, D. Richardson, and M. Zervas, “Generation of a 40-GHz pulse stream by pulse multiplication using a sampled fiber Bragg grating,” Opt. Lett. 25, 521–523 (2000).
[Crossref]

P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “A 10 Gbit/s, 160 Gchip/s OCDMA coding: decoding system based on superstructured fiber gratings,” in Optical Fiber Communication Conference, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), postdeadline paper PD9.

Poladian, L.

L. Poladian, “Simple grating synthesis algorithm,” Opt. Lett. 25, 787–789 (2000).
[Crossref]

L. Poladian, “Group-delay reconstruction for fiber Bragg gratings in reflection and transmission,” Opt. Lett. 22, 1571–1573 (1997).
[Crossref]

L. Poladian, “Resonance mode expansions and exact solutions for nonuniform gratings,” Phys. Rev. E 54, 2963–2975 (1996).
[Crossref]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibers,” Electron. Lett. 30, 1620–1622 (1994).
[Crossref]

J. Sipe, L. Poladian, and C. de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A 11, 1307–1320 (1994).
[Crossref]

Proctor, M.

Pruneri, V.

S. Longhi, M. Marano, P. Laporta, O. Svelto, M. Belmonte, B. Agogliati, L. Arcangeli, V. Pruneri, M. N. Zervas, and M. Ibsen, “40-GHz pulse-train generation at 1.5 µm with a chirped fiber grating as a frequency multiplier,” Opt. Lett. 25, 1481–1483 (2000).
[Crossref]

S. Longhi, M. Marano, P. Laporta, and V. Pruneri, “Multiplication and reshaping of high-repetition-rate optical pulse trains using highly dispersive fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1498–1500 (2000).
[Crossref]

Puleo, M.

B. Costa, M. Puleo, and E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in single-mode optical fibres using LEDs,” Electron. Lett. 19, 1074–1076 (1983).
[Crossref]

Recami, E.

S. Longhi, P. Laporta, M. Belmonte, and E. Recami, “Measurement of superluminal optical tunneling times in double-barrier photonic band gaps,” Phys. Rev. E 65, 046610 1–6 (2002).
[Crossref]

E. Recami, F. Fontana, and R. Garavaglia, “Special relativity and superluminal motions: a discussion of some recent experiments,” Int. J. Mod. Phys. A 15, 2793–2812 (2000).
[Crossref]

V. Olkhovsky, E. Recami, and G. Salesi, “Tunneling through two successive barriers and the Hartman (superluminal) effect,” (Los Alamos National Laboratory, Albuquerque, N.Mex., 2000), http://xxx.lanl.gov/abs/quant-ph/0002022 .

Reinhardth, S. B.

M. Scalora, R. J. Flynn, S. B. Reinhardth, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, J. P. Dowling, and R. P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[Crossref]

Richardson, D.

P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “Phase encoding and decoding of short pulses at 10 Gb/s using superstructured fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 154–156 (2001).
[Crossref]

P. Petropoulos, M. Ibsen, A. Ellis, and D. Richardson, “Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating,” J. Lightwave Technol. 19, 746–752 (2001).
[Crossref]

P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “A comparative study of the performance of seven- and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings,” J. Lightwave Technol. 19, 1352–1365 (2001).
[Crossref]

P. Petropoulos, M. Ibsen, D. Richardson, and M. Zervas, “Generation of a 40-GHz pulse stream by pulse multiplication using a sampled fiber Bragg grating,” Opt. Lett. 25, 521–523 (2000).
[Crossref]

P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “A 10 Gbit/s, 160 Gchip/s OCDMA coding: decoding system based on superstructured fiber gratings,” in Optical Fiber Communication Conference, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), postdeadline paper PD9.

Rochester, S.

D. Budker, D. Kimball, S. Rochester, and V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[Crossref]

Rostovtsev, Y.

M. Kash, V. Sautenkov, A. Zibrov, L. Hollber, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]

Rue, R. M. D. L.

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. D. L. Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

Ryu, S.

S. Ryu, Y. Horiuchi, and K. Mochizuki, “Novel chromatic dispersion measurement method over continuous gigahertz tuning range,” J. Lightwave Technol. 7, 1177–1180 (1989).
[Crossref]

Sahlgren, B.

A. Asseh, H. Storoy, B. Sahlgren, and R. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15, 1419–1423 (1997).
[Crossref]

Salesi, G.

V. Olkhovsky, E. Recami, and G. Salesi, “Tunneling through two successive barriers and the Hartman (superluminal) effect,” (Los Alamos National Laboratory, Albuquerque, N.Mex., 2000), http://xxx.lanl.gov/abs/quant-ph/0002022 .

Saruwatari, M.

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, “High-repetition-rate optical pulse generation by using chirped optical pulses,” Electron. Lett. 34, 792–793 (1998).
[Crossref]

Sautenkov, V.

M. Kash, V. Sautenkov, A. Zibrov, L. Hollber, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]

Scalora, M.

M. Scalora, R. J. Flynn, S. B. Reinhardth, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, J. P. Dowling, and R. P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[Crossref]

M. Scalora, J. P. Dowling, A. S. Manka, C. M. Bowden, and J. W. Haus, “Pulse propagation near highly reflective surfaces: applications to photonic bandgap structures and the question of superluminal tunneling times,” Phys. Rev. A 52, 726–734 (1995).
[Crossref] [PubMed]

Scully, M.

M. Kash, V. Sautenkov, A. Zibrov, L. Hollber, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]

Shake, I.

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, “High-repetition-rate optical pulse generation by using chirped optical pulses,” Electron. Lett. 34, 792–793 (1998).
[Crossref]

Shen, S.

D. Leaird, S. Shen, A. Weiner, A. S. S. Kamei, M. Ishii, and K. Okamoto, “Generation of high-repetition-rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photonics Technol. Lett. 13, 221–223 (2001).
[Crossref]

Shin, S.-Y.

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 17, 253902 1–4 (2001).

Sipe, J.

Skaar, J.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37, 165–173 (2001).
[Crossref]

Skolnick, M. S.

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. D. L. Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

Slusher, R.

G. Lenz, J. Eggleton, C. Madsen, and R. Slusher, “Optical delay lines based on optical filters,” J. Lightwave Technol. 37, 525–532 (2001).

Smith, P.

L. Chen, S. Benjamin, P. Smith, J. Sipe, and S. Juma, “Ultrashort pulse propagation in multiple-grating fiber structures,” Opt. Lett. 22, 402–404 (1997).
[Crossref] [PubMed]

L. Chen, S. Benjamin, P. Smith, and J. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol. 15, 1503–1512 (1997).
[Crossref]

Song, G.-H.

Spielmann, C.

C. Spielmann, R. Szipocs, A. Stingl, and F. Krausz, “Tunneling of optical pulses through photonic bandgaps,” Phys. Rev. Lett. 73, 2308–2311 (1994).
[Crossref] [PubMed]

Steinberg, A.

R. Chiao and A. Steinberg, “Tunneling times and superluminality,” Prog. Opt. XXXVII, 345–405 (1997).
[Crossref]

Steinberg, A. M.

A. M. Steinberg and R. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49, 2071–2075 (1994).
[Crossref] [PubMed]

A. M. Steinberg, P. Kwiat, and R. Chiao, “Measurement of the single-photon tunneling time,” Phys. Rev. Lett. 71, 708–711 (1993).
[Crossref] [PubMed]

Sterke, C. M. D.

C. M. D. Sterke, B. Eggleton, and P. Krug, “High-intensity pulse propagation in uniform gratings and grating superstructures,” J. Lightwave Technol. 15, 1494–1502 (1997).
[Crossref]

Stevenson, R. M.

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. D. L. Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

Stingl, A.

C. Spielmann, R. Szipocs, A. Stingl, and F. Krausz, “Tunneling of optical pulses through photonic bandgaps,” Phys. Rev. Lett. 73, 2308–2311 (1994).
[Crossref] [PubMed]

Storoy, H.

A. Asseh, H. Storoy, B. Sahlgren, and R. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15, 1419–1423 (1997).
[Crossref]

Strickland, D.

Stubbe, R.

A. Asseh, H. Storoy, B. Sahlgren, and R. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15, 1419–1423 (1997).
[Crossref]

Svelto, O.

Sweetser, J.

A. Grunnet-Jepsen, A. Johnson, E. Maniloff, T. Mossberg, M. Munroe, and J. Sweetser, “Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[Crossref]

A. Grunnet-Jepsen, A. Johnson, E. Maniloff, T. Mossberg, M. Munroe, and J. Sweetser, “Demonstration of all-fiber sparse lightwave CDMA based on temporal phase encoding,” IEEE Photon. Technol. Lett. 11, 1283–1285 (1999).
[Crossref]

Szipocs, R.

C. Spielmann, R. Szipocs, A. Stingl, and F. Krausz, “Tunneling of optical pulses through photonic bandgaps,” Phys. Rev. Lett. 73, 2308–2311 (1994).
[Crossref] [PubMed]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 17, 253902 1–4 (2001).

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 17, 253902 1–4 (2001).

Takara, H.

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, “High-repetition-rate optical pulse generation by using chirped optical pulses,” Electron. Lett. 34, 792–793 (1998).
[Crossref]

Takenouchi, H.

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, and K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[Crossref]

H. Kurokawa, H. Tsuda, K. Okamato, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[Crossref]

Teh, P.

P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “Phase encoding and decoding of short pulses at 10 Gb/s using superstructured fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 154–156 (2001).
[Crossref]

P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “A comparative study of the performance of seven- and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings,” J. Lightwave Technol. 19, 1352–1365 (2001).
[Crossref]

P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “A 10 Gbit/s, 160 Gchip/s OCDMA coding: decoding system based on superstructured fiber gratings,” in Optical Fiber Communication Conference, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), postdeadline paper PD9.

Tocci, M. D.

M. Scalora, R. J. Flynn, S. B. Reinhardth, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, J. P. Dowling, and R. P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[Crossref]

Tsuda, H.

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, and K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[Crossref]

H. Kurokawa, H. Tsuda, K. Okamato, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[Crossref]

Tull, J.

Vezzoni, E.

B. Costa, M. Puleo, and E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in single-mode optical fibres using LEDs,” Electron. Lett. 19, 1074–1076 (1983).
[Crossref]

Wang, L.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37, 165–173 (2001).
[Crossref]

L. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref] [PubMed]

Warren, W.

Weiner, A.

D. Leaird, S. Shen, A. Weiner, A. S. S. Kamei, M. Ishii, and K. Okamoto, “Generation of high-repetition-rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photonics Technol. Lett. 13, 221–223 (2001).
[Crossref]

A. Weiner, “Femtosecond pulse processing,” Opt. Quantum Electron. 32, 473–487 (2000).
[Crossref]

A. Weiner and A. Kan’an, “Femtosecond pulse shaping for synthesis, processing, and time-to-space conversion of ultrafast optical waveforms,” IEEE J. Sel. Top. Quantum Electron. 4, 317–331 (1998).
[Crossref]

A. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
[Crossref]

A. Weiner, D. Leaird, J. Patel, and J. Wullert, “Programmable shaping of femtosecond pulses by use of a 128-element liquid-crystal phase modulator,” IEEE J. Quantum Electron. 28, 908–920 (1992).
[Crossref]

Welch, G.

M. Kash, V. Sautenkov, A. Zibrov, L. Hollber, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]

Whittaker, D. M.

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. D. L. Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

Wullert, J.

A. Weiner, D. Leaird, J. Patel, and J. Wullert, “Programmable shaping of femtosecond pulses by use of a 128-element liquid-crystal phase modulator,” IEEE J. Quantum Electron. 28, 908–920 (1992).
[Crossref]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 17, 253902 1–4 (2001).

Yashchuk, V.

D. Budker, D. Kimball, S. Rochester, and V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[Crossref]

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 17, 253902 1–4 (2001).

Zervas, M.

F. Ghiringhelli and M. Zervas, “Time delay distribution in Bragg gratings,” Phys. Rev. E 65, 036604 1–13 (2002).
[Crossref]

P. Petropoulos, M. Ibsen, D. Richardson, and M. Zervas, “Generation of a 40-GHz pulse stream by pulse multiplication using a sampled fiber Bragg grating,” Opt. Lett. 25, 521–523 (2000).
[Crossref]

R. Feced, M. Zervas, and M. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).
[Crossref]

Zervas, M. N.

Zibrov, A.

M. Kash, V. Sautenkov, A. Zibrov, L. Hollber, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. D. L. Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

Chaos (1)

A. Aceves, “Optical gap solitons: past, present and future; theory and experiments,” Chaos 10, 584–589 (2000).
[Crossref]

Commun. Pure Appl. Math. (1)

I. Kay, “The inverse scattering problem when the reflection coefficient is a rational function,” Commun. Pure Appl. Math. 13, 371–393 (1960).
[Crossref]

Electron. Lett. (6)

B. Costa, M. Puleo, and E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in single-mode optical fibres using LEDs,” Electron. Lett. 19, 1074–1076 (1983).
[Crossref]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibers,” Electron. Lett. 30, 1620–1622 (1994).
[Crossref]

A. Grunnet-Jepsen, A. Johnson, E. Maniloff, T. Mossberg, M. Munroe, and J. Sweetser, “Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[Crossref]

H. Kurokawa, H. Tsuda, K. Okamato, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[Crossref]

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, and K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[Crossref]

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, “High-repetition-rate optical pulse generation by using chirped optical pulses,” Electron. Lett. 34, 792–793 (1998).
[Crossref]

IEEE J. Quantum Electron. (4)

E. Peral, J. Capmany, and J. Marti, “Iterative solution to the Gel’Fand–Levitan–Marchenko coupled equations and application to synthesis of fiber gratings,” IEEE J. Quantum Electron. 32, 2078–2084 (1996).
[Crossref]

R. Feced, M. Zervas, and M. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).
[Crossref]

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37, 165–173 (2001).
[Crossref]

A. Weiner, D. Leaird, J. Patel, and J. Wullert, “Programmable shaping of femtosecond pulses by use of a 128-element liquid-crystal phase modulator,” IEEE J. Quantum Electron. 28, 908–920 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Weiner and A. Kan’an, “Femtosecond pulse shaping for synthesis, processing, and time-to-space conversion of ultrafast optical waveforms,” IEEE J. Sel. Top. Quantum Electron. 4, 317–331 (1998).
[Crossref]

IEEE Photon. Technol. Lett. (5)

P. Emplit, M. Haelterman, R. Kashyap, and M. De-Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett. 9, 1122–1124 (1997).
[Crossref]

A. Grunnet-Jepsen, A. Johnson, E. Maniloff, T. Mossberg, M. Munroe, and J. Sweetser, “Demonstration of all-fiber sparse lightwave CDMA based on temporal phase encoding,” IEEE Photon. Technol. Lett. 11, 1283–1285 (1999).
[Crossref]

P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “Phase encoding and decoding of short pulses at 10 Gb/s using superstructured fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 154–156 (2001).
[Crossref]

S. Longhi, M. Marano, P. Laporta, and V. Pruneri, “Multiplication and reshaping of high-repetition-rate optical pulse trains using highly dispersive fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1498–1500 (2000).
[Crossref]

M. Ibsen, M. Durkin, M. Cole, and R. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. Leaird, S. Shen, A. Weiner, A. S. S. Kamei, M. Ishii, and K. Okamoto, “Generation of high-repetition-rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photonics Technol. Lett. 13, 221–223 (2001).
[Crossref]

IEICE Trans. Electron Devices (1)

Dae-Sik-Kim, T. Khayim, A. Morimoto, and T. Kobayashi, “Ultrashort optical pulse shaping by electrooptic synthesizer,” IEICE Trans. Electron Devices E81, 260–263 (1998).

Int. J. Mod. Phys. A (1)

E. Recami, F. Fontana, and R. Garavaglia, “Special relativity and superluminal motions: a discussion of some recent experiments,” Int. J. Mod. Phys. A 15, 2793–2812 (2000).
[Crossref]

J. Appl. Phys. (1)

T. Hartman, “Tunneling of a wave packet,” J. Appl. Phys. 33, 3427–3434 (1962).
[Crossref]

J. Lightwave Technol. (10)

S. Ryu, Y. Horiuchi, and K. Mochizuki, “Novel chromatic dispersion measurement method over continuous gigahertz tuning range,” J. Lightwave Technol. 7, 1177–1180 (1989).
[Crossref]

G. Lenz, J. Eggleton, C. Madsen, and R. Slusher, “Optical delay lines based on optical filters,” J. Lightwave Technol. 37, 525–532 (2001).

S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, and Y. Ogawa, “Repetition-frequency multiplication of mode-locked pulses using fiber dispersion,” J. Lightwave Technol. 16, 405–410 (1998).
[Crossref]

C. M. D. Sterke, B. Eggleton, and P. Krug, “High-intensity pulse propagation in uniform gratings and grating superstructures,” J. Lightwave Technol. 15, 1494–1502 (1997).
[Crossref]

L. Chen, S. Benjamin, P. Smith, and J. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol. 15, 1503–1512 (1997).
[Crossref]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]

K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

P. Petropoulos, M. Ibsen, A. Ellis, and D. Richardson, “Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating,” J. Lightwave Technol. 19, 746–752 (2001).
[Crossref]

P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “A comparative study of the performance of seven- and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings,” J. Lightwave Technol. 19, 1352–1365 (2001).
[Crossref]

A. Asseh, H. Storoy, B. Sahlgren, and R. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15, 1419–1423 (1997).
[Crossref]

J. Mod. Opt. (1)

M. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43, 2139–2164 (1996).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

Nature (4)

L. Hau, S. Harris, Z. Dutton, and C. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

J. Marangos, “Faster than a speeding photon,” Nature 406, 243–244 (2000).
[Crossref] [PubMed]

L. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref] [PubMed]

Opt. Lett. (11)

L. Poladian, “Simple grating synthesis algorithm,” Opt. Lett. 25, 787–789 (2000).
[Crossref]

S. Longhi, M. Marano, P. Laporta, O. Svelto, M. Belmonte, B. Agogliati, L. Arcangeli, V. Pruneri, M. N. Zervas, and M. Ibsen, “40-GHz pulse-train generation at 1.5 µm with a chirped fiber grating as a frequency multiplier,” Opt. Lett. 25, 1481–1483 (2000).
[Crossref]

J. Azana and M. Muriel, “Technique for multiplying the repetition rate of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings,” Opt. Lett. 24, 1672–1674 (1999).
[Crossref]

P. Chou, H. Haus, and J. Brennan, “Reconfigurable time-domain spectral shaping of an optical pulse stretched by a fiber Bragg grating,” Opt. Lett. 25, 524–526 (2000).
[Crossref]

P. Petropoulos, M. Ibsen, D. Richardson, and M. Zervas, “Generation of a 40-GHz pulse stream by pulse multiplication using a sampled fiber Bragg grating,” Opt. Lett. 25, 521–523 (2000).
[Crossref]

M. Marano, S. Longhi, P. Laporta, M. Belmonte, and B. Agogliati, “All-optical square-pulse generation and multiplication at 1.5 µm by use of a novel class of fiber Bragg gratings,” Opt. Lett. 26, 1615–1617 (2001).
[Crossref]

L. Chen, S. Benjamin, P. Smith, J. Sipe, and S. Juma, “Ultrashort pulse propagation in multiple-grating fiber structures,” Opt. Lett. 22, 402–404 (1997).
[Crossref] [PubMed]

C. Hillegas, J. Tull, D. Goswami, D. Strickland, and W. Warren, “Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses,” Opt. Lett. 19, 737–739 (1994).
[Crossref] [PubMed]

G. I. A. Galvanauskas, D. Harter, M. Arbore, M. Proctor, and M. Fejer, “Engineerable femtosecond pulse shaping by second-harmonic generation with Fourier synthetic quasi-phase-matching gratings,” Opt. Lett. 23, 864–866 (1998).
[Crossref]

W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning technique,” Opt. Lett. 20, 2051–2053 (1995).
[Crossref] [PubMed]

L. Poladian, “Group-delay reconstruction for fiber Bragg gratings in reflection and transmission,” Opt. Lett. 22, 1571–1573 (1997).
[Crossref]

Opt. Photon. News (1)

F. Mitschke and A. Morgner, “The temporal Talbot effect,” Opt. Photon. News 9, 45–47 (1998).
[Crossref]

Opt. Quantum Electron. (2)

S. Arahira, Y. Katoh, and Y. Ogawa, “Generation and stabilization of ultrafast optical pulse trains with monolithic mode-locked laser diodes,” Opt. Quantum Electron. 33, 691–707 (2001).
[Crossref]

A. Weiner, “Femtosecond pulse processing,” Opt. Quantum Electron. 32, 473–487 (2000).
[Crossref]

Phys. Rev. A (3)

A. M. Steinberg and R. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49, 2071–2075 (1994).
[Crossref] [PubMed]

M. Scalora, J. P. Dowling, A. S. Manka, C. M. Bowden, and J. W. Haus, “Pulse propagation near highly reflective surfaces: applications to photonic bandgap structures and the question of superluminal tunneling times,” Phys. Rev. A 52, 726–734 (1995).
[Crossref] [PubMed]

J. Khurgin, “Light slowing down in moiré-fiber gratings and its implications for nonlinear optics,” Phys. Rev. A 62, 013821 1–4 (2000).
[Crossref]

Phys. Rev. B (1)

A. Enders and G. Nimtz, “Photonic tunneling time experiments,” Phys. Rev. B 47, 9605–9609 (1993).
[Crossref]

Phys. Rev. E (7)

M. Scalora, R. J. Flynn, S. B. Reinhardth, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, J. P. Dowling, and R. P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[Crossref]

S. Longhi, “Superluminal pulse reflection in asymmetric one-dimensional photonic band gaps,” Phys. Rev. E 64, 03760 1–3 (2001).
[Crossref]

S. Longhi, M. Marano, P. Laporta, and M. Belmonte, “Superluminal optical pulse propagation at 1.5 µm in periodic fiber Bragg gratings,” Phys. Rev. E 64, 055602 (R) 1–4 (2001).
[Crossref]

F. Ghiringhelli and M. Zervas, “Time delay distribution in Bragg gratings,” Phys. Rev. E 65, 036604 1–13 (2002).
[Crossref]

S. Longhi, M. Marano, P. Laporta, M. Belmonte, and P. Crespi, “Experimental observation of superluminal pulse reflection in a double-Lorentzian photonic band gap,” Phys. Rev. E 65, 045602(R) 1–4 (2002).
[Crossref]

L. Poladian, “Resonance mode expansions and exact solutions for nonuniform gratings,” Phys. Rev. E 54, 2963–2975 (1996).
[Crossref]

S. Longhi, P. Laporta, M. Belmonte, and E. Recami, “Measurement of superluminal optical tunneling times in double-barrier photonic band gaps,” Phys. Rev. E 65, 046610 1–6 (2002).
[Crossref]

Phys. Rev. Lett. (7)

P. Balcou and L. Dutriaux, “Dual optical tunneling times in frustrated total internal reflection,” Phys. Rev. Lett. 78, 851–854 (1997).
[Crossref]

P. Pereira, “Closed formulas for tunneling time in superlattices,” Phys. Rev. Lett. 84, 1772–1775 (2000).
[Crossref]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 17, 253902 1–4 (2001).

C. Spielmann, R. Szipocs, A. Stingl, and F. Krausz, “Tunneling of optical pulses through photonic bandgaps,” Phys. Rev. Lett. 73, 2308–2311 (1994).
[Crossref] [PubMed]

M. Kash, V. Sautenkov, A. Zibrov, L. Hollber, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]

D. Budker, D. Kimball, S. Rochester, and V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[Crossref]

A. M. Steinberg, P. Kwiat, and R. Chiao, “Measurement of the single-photon tunneling time,” Phys. Rev. Lett. 71, 708–711 (1993).
[Crossref] [PubMed]

Prog. Opt. (1)

R. Chiao and A. Steinberg, “Tunneling times and superluminality,” Prog. Opt. XXXVII, 345–405 (1997).
[Crossref]

Prog. Quantum Electron. (2)

G. Nimtz and W. Heitmann, “Superluminal photonic tunneling and quantum electronics,” Prog. Quantum Electron. 21, 81–108 (1999).
[Crossref]

A. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
[Crossref]

Other (6)

A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, London, 1999).

G. Curatu, S. LaRochelle, C. Pare, and P. Belanger, “Pulse shaping with a phase-shifted fiber Bragg grating for antisymmetric pulse generation,” in Optical Pulse and Beam Propagation III, Y. B. Bard, ed. Proc. SPIE4271, 213–221 (2001).
[Crossref]

P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “A 10 Gbit/s, 160 Gchip/s OCDMA coding: decoding system based on superstructured fiber gratings,” in Optical Fiber Communication Conference, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), postdeadline paper PD9.

M. Ibsen, M. Durkin, M. Cole, M. Zervas, and R. Laming, eds., Recent Advances in Long Dispersion Compensating Fibre Bragg Gratings (Institution of Electrical Engineers, London, UK, 1999).

V. Olkhovsky, E. Recami, and G. Salesi, “Tunneling through two successive barriers and the Hartman (superluminal) effect,” (Los Alamos National Laboratory, Albuquerque, N.Mex., 2000), http://xxx.lanl.gov/abs/quant-ph/0002022 .

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) Schematic of Bragg scattering in a FBG with counterpropagating waves. Boundary conditions for the calculation of spectral coefficients r+, r-, and t for (b) forward and (c) backward incidence.

Fig. 2
Fig. 2

Schematic arrangement of a FBG connected with an optical circulator (OC) for spectral filtering in a reflection configuration.

Fig. 3
Fig. 3

Measured group-delay and reflectivity profiles of the linearly chirped FBGs for (a) M=16 and (b) M=32 multiplication experiments.

Fig. 4
Fig. 4

Typical autocorrelation traces of the 40-GHz multiplied pulse train (solid curve) and of the 2.5-GHz mode-locked pulse train (dotted curve) as measured over the entire 400-ps period of the input signal.

Fig. 5
Fig. 5

Upper diagram: typical space–time intensity diagram of the 40-GHz multiplied pulse train as measured with a streak camera in the synchroscan operating mode. Lower diagram: temporal intensity profile as obtained by space integration of the space–time trace.

Fig. 6
Fig. 6

Typical autocorrelation traces of the 80-GHz multiplied pulse train (solid curve) and of the 2.5-GHz 6-ps Gaussian pulse train (dotted curve).

Fig. 7
Fig. 7

Measured (a) power reflectivity and (b) group-delay profiles of the specially apodized linearly chirped FBG for multiplication and simultaneous squarelike reshaping (solid curves). The target curves are also shown for comparison (dotted curves).

Fig. 8
Fig. 8

(a) Typical oscillographic trace of the multiplied and squared pulse train (solid curve) and of the original mode-locked Gaussian pulse train (dotted curve). (b) Simulated intensity profile of the square pulse (solid curve) obtained from the design parameters of the grating and for an input 8-ps Gaussian pulse (dotted curve).

Fig. 9
Fig. 9

Measured (solid curve) and expected (dotted curve) autocorrelation traces of the multiplied square pulse train. For comparison, the measured autocorrelation trace of the input mode-locked pulse train is also shown (dashed curve).

Fig. 10
Fig. 10

(a) Spectral power transmission and (b) group delay for a periodic 2-cm-long FBG. The solid and the dashed curves refer to the measured and the predicted spectral curves, respectively.

Fig. 11
Fig. 11

(a) Pulse traces corresponding to transmitted pulses for off-resonance (curve 1) and at Bragg resonance (curve 2) tuning conditions. Curve 3 is the pulse trace measured when the pulse spectrum is tuned close to the right-side edge of the FBG. (b) Behavior of the group velocity vg, normalized to the speed of light in vacuum c0, as a function of the power reflectivity R at the bandgap center for a uniform FBG with q0=140 m-1. The solid curve is the theoretical behavior as predicted by the group-delay analysis; the triangles refer to measured traversal velocities for three FBGs.

Fig. 12
Fig. 12

(a) Measured spectral power transmission (upper plot) and group delay (lower plot) for a DB FBG structure corresponding to L=8.5 mm, d=42 mm, h0=0.9×10-4, n0=1.452, and ωB=1.261×1015 rad/s. (b) Off-resonance tunneling time versus the grating separation d. The solid line is the theoretical prediction based on the group-delay calculation; the dots are the experimental points as obtained by time-delay measurements; the dashed curve is the transit time from input (z=0) to output (z=2L+d) planes for a pulse tuned far away from the stop band of the FBG.

Fig. 13
Fig. 13

Principle of superluminal pulse reflection in a FBG. When the peak of the incident pulse enters the grating at input plane z=0, the peak of the reflected pulse has already left the grating in advance and traveled backward the distance 2|ΔL|=-τgc0/n0. The upper and the lower plots on the right-hand side show schematically the spectral power reflectivity and the group delay, respectively, of a DL FBG.

Fig. 14
Fig. 14

(a) Measured spectral power reflectivity of the DL FBG used in the experiment (solid curve) and the corresponding theoretical results (dashed curve). (b) Measured (circles) and predicted (solid curve) group delay versus frequency detuning from Bragg resonance. In the experimental measurements, the group delay for the red-shifted off-resonance pulse (point A in the figure) has been taken equal to zero for reference. Inset: pulse traces recorded on the sampling oscilloscope corresponding to the reflected pulses for tuning conditions A and B.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

ddzu(z, δ)=+iδu(z, δ)+iq(z)v(z, δ),
ddzv(z, δ)=-iδv(z, δ)-iq*(z)u(z, δ).
u(L, δ)v(L, δ)=M(δ)u(0, δ)v(0, δ),
r+(δ)=v(0, δ)u(0, δ)v(L,δ)=0=-M21M22.
M=cosh(ξL)+i δξ sinh(ξL)i q0ξ sinh(ξL)-i q0*ξ sinh(ξL)cosh(ξL)-i δξ sinh(ξL),
r(δ)=iq0* sinh(ξL)ξ cosh(ξL)-iδ sinh(ξL).
q*(z)=-iπ -+r(δ)exp(-i2δz)dδ.
q*(z)=-i 2n0c0r˜(t)|t=2n0z/c0.
r˜(t¯)=i c02n0q*(z¯)+r˜z¯(t¯).
q*(z)=-iπ -+rz(δ)dδ.
Dω=β2d=±T22π NM,
r(δ)=A(δ)expi Dω2 c0δn02expiδ c0Δτ2n0,
sout(t)=s(t) * a(t-Δτ/2),
a(t)=c02πn0 -+A(δ)exp-i c0tn0δdδ
q*(z)=-iπ -+A(δ)×expi Dω2 c0δn02+i c0Δτ2n0δ-i2δzdδ.
q*(z)=-in0c0 2iπDω1/2Aδ=2z-Lc02Dωn02×exp-i n022c02Dω(2z-L)2,
t(δ)=1cosh(ξL)-i δξ sinh(ξL),
τg(δ)=n0Lc0 q02ξ2+δ2 tanh2(ξL)×δ2q02 tanh2(ξL)+1ξL tanh(ξL)-δ2q02,
vgLτg=c0n0 arctanh RR,
T=1-tanh2(2q0L),
τ=τ1+τ2,
τ1=n0c0q0 tanh(2q0L)=n0c0q0(1-T)1/2,
τ2=n0dc0 1cosh(2q0L)=n0dc0 T,
τg(δ)-n0πc0 -  ln[R(δ)]1/2δ dδδ-δ,
r(δ)=iκδ++iγ+iκδ-+iγ,

Metrics