Abstract

We present a combined experimental and theoretical study of the effect of pump pulse noise on the growth and statistics of multiorder stimulated Raman scattering in optical fiber. Because of the intensity dependence of stimulated Raman scattering, fluctuations in the detailed temporal structure of the pump pulse amplitude strongly affect the growth and statistics of the Stokes orders, even when dispersive effects are not important. By comparing experimental results with a detailed model including the frequency dependence of the Raman gain and the pump pulse temporal structure, we show that the pump pulse temporal fluctuations play a pivotal role in determining the growth and pulse energy statistics of the Stokes orders.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Emori, K. Tanaka, and S. Namiki, “100-nm-bandwidth flat-gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel wdm laser diode unit,” Electron. Lett. 35, 1355–1356 (1999).
    [CrossRef]
  2. D. V. Gapontsev, S. V. Chernikov, and J. R. Taylor, “Fiber Raman amplifiers for broadband operation at 1.3 μm,” Opt. Commun. 166, 85–88 (1999).
    [CrossRef]
  3. M. Prabhua, N. S. Kim, L. Jianrena, and K.-I. Ueda, “Simultaneous two-color cw Raman fiber laser with maximum output power of 1.05 W/1239 nm and 0.95 W/1484 nm using phosphosilicate fiber,” Opt. Commun. 182, 305–309 (2000).
    [CrossRef]
  4. S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. I. Chang, M. J. Guy, and J. R. Taylor, “Raman fiber laser operating at 1.24 μm,” Electron. Lett. 34, 680–681 (1998).
    [CrossRef]
  5. S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Fiber-optic tunable cw Raman laser operating around 1.3 μm,” Opt. Commun. 182, 403–405 (2000).
    [CrossRef]
  6. G. A. Thomas, B. I. Shraiman, P. F. Glodls, and M. J. Stephens, “Toward the clarity limit in optical fibre,” Nature 404, 262–264 (2000).
    [CrossRef] [PubMed]
  7. G. A. Thomas, D. A. Ackerman, P. R. Pruncnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53, 30–36 (2000).
    [CrossRef]
  8. R. G. Smith, “Optical power handling capacity of low-loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489–2494 (1972).
    [CrossRef] [PubMed]
  9. J. Auyeung and A. Yariv, “Spontaneous and stimulated Raman scattering in long low-loss fibers,” IEEE J. Quantum Electron. 14, 347–352 (1978).
    [CrossRef]
  10. F. R. Barbosa, “Quasi-stationary multiple stimulated Raman generation in the visible using optical fibers,” Appl. Opt. 22, 3859–3863 (1983).
    [CrossRef] [PubMed]
  11. R. H. Stolen, C. Lee, and R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984).
    [CrossRef]
  12. K. X. Liu and E. Garmire, “Understanding the formation of the SRS Stokes spectrum in fused silica fibers,” IEEE J. Quantum Electron. 27, 1022–1030 (1991).
    [CrossRef]
  13. J. Morita and T. Yoshimura, “Analytical characteristics of stimulated Raman scattering in a multimode fiber obtained with an optical time-domain reflectometer,” Appl. Opt. 34, 6136–6143 (1995).
    [CrossRef] [PubMed]
  14. E. A. Kuzin, G. Beltran-Perez, M. A. Basurto-Pensado, R. Rojas-Laguna, J. A. Andrade-Lucio, M. Torres-Cisneros, and E. Alvarado-Mendez, “Stimulated Raman scattering in a fiber with bending loss,” Opt. Commun. 169, 87–91 (1999).
    [CrossRef]
  15. C. Yijiang and A. W. Snyder, “Saturation and depletion effect of Raman scattering in optical fibers,” J. Lightwave Technol. 7, 1109–1116 (1989).
    [CrossRef]
  16. W. P. Urquhart and P. J. R. Laybourn, “Stimulated Raman scattering in optical fibers with nonconstant loss: a multiwavelength model,” Appl. Opt. 25, 2592–2599 (1986).
    [CrossRef]
  17. H.-S. Seo and K. Oh, “Optimization of silica fiber Raman amplifier using the Raman frequency modeling for an arbitrary GeO2 concentration in the core,” Opt. Commun. 181, 145–151 (2000).
    [CrossRef]
  18. R. G. Waarts, A. A. Friesem, E. Lichtman, H. H. Yaffe, and R.-P. Braun, “Nonlinear effects in coherent multichannel transmission through optical fiber,” Proc. IEEE 78, 1344–1368 (1990).
    [CrossRef]
  19. L. Garcia, A. Jalili, Y. Lee, N. Poole, K. Salit, P. Sidereas, C. G. Goedde, and J. R. Thompson, “Effects of pump pulse temporal structure on long-pulse multiorder stimulated Raman scattering in optical fiber,” Opt. Commun. 193, 289–300 (2001).
    [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, Boston, 1995).
  21. C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
    [CrossRef]
  22. L. G. Cohen and C. Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron. 14, 855–859 (1978).
    [CrossRef]
  23. Pei juan Gao, Cao jiang Nie, Tian long Yang, and Hai zheng Su, “Stimulated Raman scattering up to ten orders in an optical fiber,” Appl. Phys. 24, 303–306 (1981).
    [CrossRef]
  24. I. A. Walmsley and M. G. Raymer, “Observation of macroscopic quantum fluctuations in stimulated Raman scattering,” Phys. Rev. Lett. 50, 962–965 (1983).
    [CrossRef]
  25. N. Fabricius, K. Nattermann, and D. von der Linde, “Macroscopic manifestations of quantum fluctuations in transient stimulated Raman scattering,” Phys. Rev. Lett. 52, 113–116 (1984).
    [CrossRef]
  26. M. Lewenstein, “Fluctuations in the nonlinear regime of stimulated Raman scattering,” Z. Phys. B 56, 69–75 (1984).
    [CrossRef]
  27. I. A. Walmsley, M. G. Raymer, T. Sizer II, I. N. Duling III, and J. D. Kafka, “Stabilization of Stokes pulse energies in the nonlinear regime of stimulated Raman scattering,” Opt. Commun. 53, 137–140 (1985).
    [CrossRef]
  28. J. Chang, D. Baiocchi, J. Vas, and J. R. Thompson, “First stokes pulse energy statistics for cascade Raman generation in optical fiber,” Opt. Commun. 139, 227–231 (1997).
    [CrossRef]
  29. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
    [CrossRef]

2001 (1)

L. Garcia, A. Jalili, Y. Lee, N. Poole, K. Salit, P. Sidereas, C. G. Goedde, and J. R. Thompson, “Effects of pump pulse temporal structure on long-pulse multiorder stimulated Raman scattering in optical fiber,” Opt. Commun. 193, 289–300 (2001).
[CrossRef]

2000 (5)

M. Prabhua, N. S. Kim, L. Jianrena, and K.-I. Ueda, “Simultaneous two-color cw Raman fiber laser with maximum output power of 1.05 W/1239 nm and 0.95 W/1484 nm using phosphosilicate fiber,” Opt. Commun. 182, 305–309 (2000).
[CrossRef]

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Fiber-optic tunable cw Raman laser operating around 1.3 μm,” Opt. Commun. 182, 403–405 (2000).
[CrossRef]

G. A. Thomas, B. I. Shraiman, P. F. Glodls, and M. J. Stephens, “Toward the clarity limit in optical fibre,” Nature 404, 262–264 (2000).
[CrossRef] [PubMed]

G. A. Thomas, D. A. Ackerman, P. R. Pruncnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53, 30–36 (2000).
[CrossRef]

H.-S. Seo and K. Oh, “Optimization of silica fiber Raman amplifier using the Raman frequency modeling for an arbitrary GeO2 concentration in the core,” Opt. Commun. 181, 145–151 (2000).
[CrossRef]

1999 (3)

E. A. Kuzin, G. Beltran-Perez, M. A. Basurto-Pensado, R. Rojas-Laguna, J. A. Andrade-Lucio, M. Torres-Cisneros, and E. Alvarado-Mendez, “Stimulated Raman scattering in a fiber with bending loss,” Opt. Commun. 169, 87–91 (1999).
[CrossRef]

Y. Emori, K. Tanaka, and S. Namiki, “100-nm-bandwidth flat-gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel wdm laser diode unit,” Electron. Lett. 35, 1355–1356 (1999).
[CrossRef]

D. V. Gapontsev, S. V. Chernikov, and J. R. Taylor, “Fiber Raman amplifiers for broadband operation at 1.3 μm,” Opt. Commun. 166, 85–88 (1999).
[CrossRef]

1998 (1)

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. I. Chang, M. J. Guy, and J. R. Taylor, “Raman fiber laser operating at 1.24 μm,” Electron. Lett. 34, 680–681 (1998).
[CrossRef]

1997 (1)

J. Chang, D. Baiocchi, J. Vas, and J. R. Thompson, “First stokes pulse energy statistics for cascade Raman generation in optical fiber,” Opt. Commun. 139, 227–231 (1997).
[CrossRef]

1995 (1)

1991 (1)

K. X. Liu and E. Garmire, “Understanding the formation of the SRS Stokes spectrum in fused silica fibers,” IEEE J. Quantum Electron. 27, 1022–1030 (1991).
[CrossRef]

1990 (1)

R. G. Waarts, A. A. Friesem, E. Lichtman, H. H. Yaffe, and R.-P. Braun, “Nonlinear effects in coherent multichannel transmission through optical fiber,” Proc. IEEE 78, 1344–1368 (1990).
[CrossRef]

1989 (2)

C. Yijiang and A. W. Snyder, “Saturation and depletion effect of Raman scattering in optical fibers,” J. Lightwave Technol. 7, 1109–1116 (1989).
[CrossRef]

R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
[CrossRef]

1986 (1)

1985 (1)

I. A. Walmsley, M. G. Raymer, T. Sizer II, I. N. Duling III, and J. D. Kafka, “Stabilization of Stokes pulse energies in the nonlinear regime of stimulated Raman scattering,” Opt. Commun. 53, 137–140 (1985).
[CrossRef]

1984 (3)

N. Fabricius, K. Nattermann, and D. von der Linde, “Macroscopic manifestations of quantum fluctuations in transient stimulated Raman scattering,” Phys. Rev. Lett. 52, 113–116 (1984).
[CrossRef]

M. Lewenstein, “Fluctuations in the nonlinear regime of stimulated Raman scattering,” Z. Phys. B 56, 69–75 (1984).
[CrossRef]

R. H. Stolen, C. Lee, and R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984).
[CrossRef]

1983 (2)

F. R. Barbosa, “Quasi-stationary multiple stimulated Raman generation in the visible using optical fibers,” Appl. Opt. 22, 3859–3863 (1983).
[CrossRef] [PubMed]

I. A. Walmsley and M. G. Raymer, “Observation of macroscopic quantum fluctuations in stimulated Raman scattering,” Phys. Rev. Lett. 50, 962–965 (1983).
[CrossRef]

1981 (1)

Pei juan Gao, Cao jiang Nie, Tian long Yang, and Hai zheng Su, “Stimulated Raman scattering up to ten orders in an optical fiber,” Appl. Phys. 24, 303–306 (1981).
[CrossRef]

1978 (2)

L. G. Cohen and C. Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron. 14, 855–859 (1978).
[CrossRef]

J. Auyeung and A. Yariv, “Spontaneous and stimulated Raman scattering in long low-loss fibers,” IEEE J. Quantum Electron. 14, 347–352 (1978).
[CrossRef]

1976 (1)

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

1972 (1)

Ackerman, D. A.

G. A. Thomas, D. A. Ackerman, P. R. Pruncnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53, 30–36 (2000).
[CrossRef]

Alvarado-Mendez, E.

E. A. Kuzin, G. Beltran-Perez, M. A. Basurto-Pensado, R. Rojas-Laguna, J. A. Andrade-Lucio, M. Torres-Cisneros, and E. Alvarado-Mendez, “Stimulated Raman scattering in a fiber with bending loss,” Opt. Commun. 169, 87–91 (1999).
[CrossRef]

Andrade-Lucio, J. A.

E. A. Kuzin, G. Beltran-Perez, M. A. Basurto-Pensado, R. Rojas-Laguna, J. A. Andrade-Lucio, M. Torres-Cisneros, and E. Alvarado-Mendez, “Stimulated Raman scattering in a fiber with bending loss,” Opt. Commun. 169, 87–91 (1999).
[CrossRef]

Auyeung, J.

J. Auyeung and A. Yariv, “Spontaneous and stimulated Raman scattering in long low-loss fibers,” IEEE J. Quantum Electron. 14, 347–352 (1978).
[CrossRef]

Baiocchi, D.

J. Chang, D. Baiocchi, J. Vas, and J. R. Thompson, “First stokes pulse energy statistics for cascade Raman generation in optical fiber,” Opt. Commun. 139, 227–231 (1997).
[CrossRef]

Barbosa, F. R.

Basurto-Pensado, M. A.

E. A. Kuzin, G. Beltran-Perez, M. A. Basurto-Pensado, R. Rojas-Laguna, J. A. Andrade-Lucio, M. Torres-Cisneros, and E. Alvarado-Mendez, “Stimulated Raman scattering in a fiber with bending loss,” Opt. Commun. 169, 87–91 (1999).
[CrossRef]

Beltran-Perez, G.

E. A. Kuzin, G. Beltran-Perez, M. A. Basurto-Pensado, R. Rojas-Laguna, J. A. Andrade-Lucio, M. Torres-Cisneros, and E. Alvarado-Mendez, “Stimulated Raman scattering in a fiber with bending loss,” Opt. Commun. 169, 87–91 (1999).
[CrossRef]

Braun, R.-P.

R. G. Waarts, A. A. Friesem, E. Lichtman, H. H. Yaffe, and R.-P. Braun, “Nonlinear effects in coherent multichannel transmission through optical fiber,” Proc. IEEE 78, 1344–1368 (1990).
[CrossRef]

Chang, D. I.

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. I. Chang, M. J. Guy, and J. R. Taylor, “Raman fiber laser operating at 1.24 μm,” Electron. Lett. 34, 680–681 (1998).
[CrossRef]

Chang, J.

J. Chang, D. Baiocchi, J. Vas, and J. R. Thompson, “First stokes pulse energy statistics for cascade Raman generation in optical fiber,” Opt. Commun. 139, 227–231 (1997).
[CrossRef]

Chernikov, S. V.

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Fiber-optic tunable cw Raman laser operating around 1.3 μm,” Opt. Commun. 182, 403–405 (2000).
[CrossRef]

D. V. Gapontsev, S. V. Chernikov, and J. R. Taylor, “Fiber Raman amplifiers for broadband operation at 1.3 μm,” Opt. Commun. 166, 85–88 (1999).
[CrossRef]

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. I. Chang, M. J. Guy, and J. R. Taylor, “Raman fiber laser operating at 1.24 μm,” Electron. Lett. 34, 680–681 (1998).
[CrossRef]

Cohen, L. G.

L. G. Cohen and C. Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron. 14, 855–859 (1978).
[CrossRef]

Cooper, S. L.

G. A. Thomas, D. A. Ackerman, P. R. Pruncnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53, 30–36 (2000).
[CrossRef]

Duling III, I. N.

I. A. Walmsley, M. G. Raymer, T. Sizer II, I. N. Duling III, and J. D. Kafka, “Stabilization of Stokes pulse energies in the nonlinear regime of stimulated Raman scattering,” Opt. Commun. 53, 137–140 (1985).
[CrossRef]

Emori, Y.

Y. Emori, K. Tanaka, and S. Namiki, “100-nm-bandwidth flat-gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel wdm laser diode unit,” Electron. Lett. 35, 1355–1356 (1999).
[CrossRef]

Fabricius, N.

N. Fabricius, K. Nattermann, and D. von der Linde, “Macroscopic manifestations of quantum fluctuations in transient stimulated Raman scattering,” Phys. Rev. Lett. 52, 113–116 (1984).
[CrossRef]

Friesem, A. A.

R. G. Waarts, A. A. Friesem, E. Lichtman, H. H. Yaffe, and R.-P. Braun, “Nonlinear effects in coherent multichannel transmission through optical fiber,” Proc. IEEE 78, 1344–1368 (1990).
[CrossRef]

Gapontsev, D. V.

D. V. Gapontsev, S. V. Chernikov, and J. R. Taylor, “Fiber Raman amplifiers for broadband operation at 1.3 μm,” Opt. Commun. 166, 85–88 (1999).
[CrossRef]

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. I. Chang, M. J. Guy, and J. R. Taylor, “Raman fiber laser operating at 1.24 μm,” Electron. Lett. 34, 680–681 (1998).
[CrossRef]

Garcia, L.

L. Garcia, A. Jalili, Y. Lee, N. Poole, K. Salit, P. Sidereas, C. G. Goedde, and J. R. Thompson, “Effects of pump pulse temporal structure on long-pulse multiorder stimulated Raman scattering in optical fiber,” Opt. Commun. 193, 289–300 (2001).
[CrossRef]

Garmire, E.

K. X. Liu and E. Garmire, “Understanding the formation of the SRS Stokes spectrum in fused silica fibers,” IEEE J. Quantum Electron. 27, 1022–1030 (1991).
[CrossRef]

Glodls, P. F.

G. A. Thomas, B. I. Shraiman, P. F. Glodls, and M. J. Stephens, “Toward the clarity limit in optical fibre,” Nature 404, 262–264 (2000).
[CrossRef] [PubMed]

Goedde, C. G.

L. Garcia, A. Jalili, Y. Lee, N. Poole, K. Salit, P. Sidereas, C. G. Goedde, and J. R. Thompson, “Effects of pump pulse temporal structure on long-pulse multiorder stimulated Raman scattering in optical fiber,” Opt. Commun. 193, 289–300 (2001).
[CrossRef]

Gordon, J. P.

Guy, M. J.

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. I. Chang, M. J. Guy, and J. R. Taylor, “Raman fiber laser operating at 1.24 μm,” Electron. Lett. 34, 680–681 (1998).
[CrossRef]

Haus, H. A.

Jain, R. K.

Jalili, A.

L. Garcia, A. Jalili, Y. Lee, N. Poole, K. Salit, P. Sidereas, C. G. Goedde, and J. R. Thompson, “Effects of pump pulse temporal structure on long-pulse multiorder stimulated Raman scattering in optical fiber,” Opt. Commun. 193, 289–300 (2001).
[CrossRef]

jiang Nie, Cao

Pei juan Gao, Cao jiang Nie, Tian long Yang, and Hai zheng Su, “Stimulated Raman scattering up to ten orders in an optical fiber,” Appl. Phys. 24, 303–306 (1981).
[CrossRef]

Jianrena, L.

M. Prabhua, N. S. Kim, L. Jianrena, and K.-I. Ueda, “Simultaneous two-color cw Raman fiber laser with maximum output power of 1.05 W/1239 nm and 0.95 W/1484 nm using phosphosilicate fiber,” Opt. Commun. 182, 305–309 (2000).
[CrossRef]

juan Gao, Pei

Pei juan Gao, Cao jiang Nie, Tian long Yang, and Hai zheng Su, “Stimulated Raman scattering up to ten orders in an optical fiber,” Appl. Phys. 24, 303–306 (1981).
[CrossRef]

Kafka, J. D.

I. A. Walmsley, M. G. Raymer, T. Sizer II, I. N. Duling III, and J. D. Kafka, “Stabilization of Stokes pulse energies in the nonlinear regime of stimulated Raman scattering,” Opt. Commun. 53, 137–140 (1985).
[CrossRef]

Kim, N. S.

M. Prabhua, N. S. Kim, L. Jianrena, and K.-I. Ueda, “Simultaneous two-color cw Raman fiber laser with maximum output power of 1.05 W/1239 nm and 0.95 W/1484 nm using phosphosilicate fiber,” Opt. Commun. 182, 305–309 (2000).
[CrossRef]

Kuzin, E. A.

E. A. Kuzin, G. Beltran-Perez, M. A. Basurto-Pensado, R. Rojas-Laguna, J. A. Andrade-Lucio, M. Torres-Cisneros, and E. Alvarado-Mendez, “Stimulated Raman scattering in a fiber with bending loss,” Opt. Commun. 169, 87–91 (1999).
[CrossRef]

Laybourn, P. J. R.

Lee, C.

Lee, Y.

L. Garcia, A. Jalili, Y. Lee, N. Poole, K. Salit, P. Sidereas, C. G. Goedde, and J. R. Thompson, “Effects of pump pulse temporal structure on long-pulse multiorder stimulated Raman scattering in optical fiber,” Opt. Commun. 193, 289–300 (2001).
[CrossRef]

Lewenstein, M.

M. Lewenstein, “Fluctuations in the nonlinear regime of stimulated Raman scattering,” Z. Phys. B 56, 69–75 (1984).
[CrossRef]

Lewis, S. A. E.

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Fiber-optic tunable cw Raman laser operating around 1.3 μm,” Opt. Commun. 182, 403–405 (2000).
[CrossRef]

Lichtman, E.

R. G. Waarts, A. A. Friesem, E. Lichtman, H. H. Yaffe, and R.-P. Braun, “Nonlinear effects in coherent multichannel transmission through optical fiber,” Proc. IEEE 78, 1344–1368 (1990).
[CrossRef]

Lin, C.

L. G. Cohen and C. Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron. 14, 855–859 (1978).
[CrossRef]

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

Liu, K. X.

K. X. Liu and E. Garmire, “Understanding the formation of the SRS Stokes spectrum in fused silica fibers,” IEEE J. Quantum Electron. 27, 1022–1030 (1991).
[CrossRef]

long Yang, Tian

Pei juan Gao, Cao jiang Nie, Tian long Yang, and Hai zheng Su, “Stimulated Raman scattering up to ten orders in an optical fiber,” Appl. Phys. 24, 303–306 (1981).
[CrossRef]

Morita, J.

Namiki, S.

Y. Emori, K. Tanaka, and S. Namiki, “100-nm-bandwidth flat-gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel wdm laser diode unit,” Electron. Lett. 35, 1355–1356 (1999).
[CrossRef]

Nattermann, K.

N. Fabricius, K. Nattermann, and D. von der Linde, “Macroscopic manifestations of quantum fluctuations in transient stimulated Raman scattering,” Phys. Rev. Lett. 52, 113–116 (1984).
[CrossRef]

Oh, K.

H.-S. Seo and K. Oh, “Optimization of silica fiber Raman amplifier using the Raman frequency modeling for an arbitrary GeO2 concentration in the core,” Opt. Commun. 181, 145–151 (2000).
[CrossRef]

Platonov, N. S.

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. I. Chang, M. J. Guy, and J. R. Taylor, “Raman fiber laser operating at 1.24 μm,” Electron. Lett. 34, 680–681 (1998).
[CrossRef]

Poole, N.

L. Garcia, A. Jalili, Y. Lee, N. Poole, K. Salit, P. Sidereas, C. G. Goedde, and J. R. Thompson, “Effects of pump pulse temporal structure on long-pulse multiorder stimulated Raman scattering in optical fiber,” Opt. Commun. 193, 289–300 (2001).
[CrossRef]

Prabhua, M.

M. Prabhua, N. S. Kim, L. Jianrena, and K.-I. Ueda, “Simultaneous two-color cw Raman fiber laser with maximum output power of 1.05 W/1239 nm and 0.95 W/1484 nm using phosphosilicate fiber,” Opt. Commun. 182, 305–309 (2000).
[CrossRef]

Pruncnal, P. R.

G. A. Thomas, D. A. Ackerman, P. R. Pruncnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53, 30–36 (2000).
[CrossRef]

Raymer, M. G.

I. A. Walmsley, M. G. Raymer, T. Sizer II, I. N. Duling III, and J. D. Kafka, “Stabilization of Stokes pulse energies in the nonlinear regime of stimulated Raman scattering,” Opt. Commun. 53, 137–140 (1985).
[CrossRef]

I. A. Walmsley and M. G. Raymer, “Observation of macroscopic quantum fluctuations in stimulated Raman scattering,” Phys. Rev. Lett. 50, 962–965 (1983).
[CrossRef]

Rojas-Laguna, R.

E. A. Kuzin, G. Beltran-Perez, M. A. Basurto-Pensado, R. Rojas-Laguna, J. A. Andrade-Lucio, M. Torres-Cisneros, and E. Alvarado-Mendez, “Stimulated Raman scattering in a fiber with bending loss,” Opt. Commun. 169, 87–91 (1999).
[CrossRef]

Salit, K.

L. Garcia, A. Jalili, Y. Lee, N. Poole, K. Salit, P. Sidereas, C. G. Goedde, and J. R. Thompson, “Effects of pump pulse temporal structure on long-pulse multiorder stimulated Raman scattering in optical fiber,” Opt. Commun. 193, 289–300 (2001).
[CrossRef]

Seo, H.-S.

H.-S. Seo and K. Oh, “Optimization of silica fiber Raman amplifier using the Raman frequency modeling for an arbitrary GeO2 concentration in the core,” Opt. Commun. 181, 145–151 (2000).
[CrossRef]

Shraiman, B. I.

G. A. Thomas, B. I. Shraiman, P. F. Glodls, and M. J. Stephens, “Toward the clarity limit in optical fibre,” Nature 404, 262–264 (2000).
[CrossRef] [PubMed]

Sidereas, P.

L. Garcia, A. Jalili, Y. Lee, N. Poole, K. Salit, P. Sidereas, C. G. Goedde, and J. R. Thompson, “Effects of pump pulse temporal structure on long-pulse multiorder stimulated Raman scattering in optical fiber,” Opt. Commun. 193, 289–300 (2001).
[CrossRef]

Sizer II, T.

I. A. Walmsley, M. G. Raymer, T. Sizer II, I. N. Duling III, and J. D. Kafka, “Stabilization of Stokes pulse energies in the nonlinear regime of stimulated Raman scattering,” Opt. Commun. 53, 137–140 (1985).
[CrossRef]

Smith, R. G.

Snyder, A. W.

C. Yijiang and A. W. Snyder, “Saturation and depletion effect of Raman scattering in optical fibers,” J. Lightwave Technol. 7, 1109–1116 (1989).
[CrossRef]

Stephens, M. J.

G. A. Thomas, B. I. Shraiman, P. F. Glodls, and M. J. Stephens, “Toward the clarity limit in optical fibre,” Nature 404, 262–264 (2000).
[CrossRef] [PubMed]

Stolen, R. H.

Tanaka, K.

Y. Emori, K. Tanaka, and S. Namiki, “100-nm-bandwidth flat-gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel wdm laser diode unit,” Electron. Lett. 35, 1355–1356 (1999).
[CrossRef]

Taylor, J. R.

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Fiber-optic tunable cw Raman laser operating around 1.3 μm,” Opt. Commun. 182, 403–405 (2000).
[CrossRef]

D. V. Gapontsev, S. V. Chernikov, and J. R. Taylor, “Fiber Raman amplifiers for broadband operation at 1.3 μm,” Opt. Commun. 166, 85–88 (1999).
[CrossRef]

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. I. Chang, M. J. Guy, and J. R. Taylor, “Raman fiber laser operating at 1.24 μm,” Electron. Lett. 34, 680–681 (1998).
[CrossRef]

Thomas, G. A.

G. A. Thomas, B. I. Shraiman, P. F. Glodls, and M. J. Stephens, “Toward the clarity limit in optical fibre,” Nature 404, 262–264 (2000).
[CrossRef] [PubMed]

G. A. Thomas, D. A. Ackerman, P. R. Pruncnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53, 30–36 (2000).
[CrossRef]

Thompson, J. R.

L. Garcia, A. Jalili, Y. Lee, N. Poole, K. Salit, P. Sidereas, C. G. Goedde, and J. R. Thompson, “Effects of pump pulse temporal structure on long-pulse multiorder stimulated Raman scattering in optical fiber,” Opt. Commun. 193, 289–300 (2001).
[CrossRef]

J. Chang, D. Baiocchi, J. Vas, and J. R. Thompson, “First stokes pulse energy statistics for cascade Raman generation in optical fiber,” Opt. Commun. 139, 227–231 (1997).
[CrossRef]

Tomlinson, W. J.

Torres-Cisneros, M.

E. A. Kuzin, G. Beltran-Perez, M. A. Basurto-Pensado, R. Rojas-Laguna, J. A. Andrade-Lucio, M. Torres-Cisneros, and E. Alvarado-Mendez, “Stimulated Raman scattering in a fiber with bending loss,” Opt. Commun. 169, 87–91 (1999).
[CrossRef]

Ueda, K.-I.

M. Prabhua, N. S. Kim, L. Jianrena, and K.-I. Ueda, “Simultaneous two-color cw Raman fiber laser with maximum output power of 1.05 W/1239 nm and 0.95 W/1484 nm using phosphosilicate fiber,” Opt. Commun. 182, 305–309 (2000).
[CrossRef]

Urquhart, W. P.

Vas, J.

J. Chang, D. Baiocchi, J. Vas, and J. R. Thompson, “First stokes pulse energy statistics for cascade Raman generation in optical fiber,” Opt. Commun. 139, 227–231 (1997).
[CrossRef]

von der Linde, D.

N. Fabricius, K. Nattermann, and D. von der Linde, “Macroscopic manifestations of quantum fluctuations in transient stimulated Raman scattering,” Phys. Rev. Lett. 52, 113–116 (1984).
[CrossRef]

Waarts, R. G.

R. G. Waarts, A. A. Friesem, E. Lichtman, H. H. Yaffe, and R.-P. Braun, “Nonlinear effects in coherent multichannel transmission through optical fiber,” Proc. IEEE 78, 1344–1368 (1990).
[CrossRef]

Walmsley, I. A.

I. A. Walmsley, M. G. Raymer, T. Sizer II, I. N. Duling III, and J. D. Kafka, “Stabilization of Stokes pulse energies in the nonlinear regime of stimulated Raman scattering,” Opt. Commun. 53, 137–140 (1985).
[CrossRef]

I. A. Walmsley and M. G. Raymer, “Observation of macroscopic quantum fluctuations in stimulated Raman scattering,” Phys. Rev. Lett. 50, 962–965 (1983).
[CrossRef]

Yaffe, H. H.

R. G. Waarts, A. A. Friesem, E. Lichtman, H. H. Yaffe, and R.-P. Braun, “Nonlinear effects in coherent multichannel transmission through optical fiber,” Proc. IEEE 78, 1344–1368 (1990).
[CrossRef]

Yariv, A.

J. Auyeung and A. Yariv, “Spontaneous and stimulated Raman scattering in long low-loss fibers,” IEEE J. Quantum Electron. 14, 347–352 (1978).
[CrossRef]

Yijiang, C.

C. Yijiang and A. W. Snyder, “Saturation and depletion effect of Raman scattering in optical fibers,” J. Lightwave Technol. 7, 1109–1116 (1989).
[CrossRef]

Yoshimura, T.

zheng Su, Hai

Pei juan Gao, Cao jiang Nie, Tian long Yang, and Hai zheng Su, “Stimulated Raman scattering up to ten orders in an optical fiber,” Appl. Phys. 24, 303–306 (1981).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. (1)

Pei juan Gao, Cao jiang Nie, Tian long Yang, and Hai zheng Su, “Stimulated Raman scattering up to ten orders in an optical fiber,” Appl. Phys. 24, 303–306 (1981).
[CrossRef]

Appl. Phys. Lett. (1)

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

Electron. Lett. (2)

Y. Emori, K. Tanaka, and S. Namiki, “100-nm-bandwidth flat-gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel wdm laser diode unit,” Electron. Lett. 35, 1355–1356 (1999).
[CrossRef]

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. I. Chang, M. J. Guy, and J. R. Taylor, “Raman fiber laser operating at 1.24 μm,” Electron. Lett. 34, 680–681 (1998).
[CrossRef]

IEEE J. Quantum Electron. (3)

J. Auyeung and A. Yariv, “Spontaneous and stimulated Raman scattering in long low-loss fibers,” IEEE J. Quantum Electron. 14, 347–352 (1978).
[CrossRef]

K. X. Liu and E. Garmire, “Understanding the formation of the SRS Stokes spectrum in fused silica fibers,” IEEE J. Quantum Electron. 27, 1022–1030 (1991).
[CrossRef]

L. G. Cohen and C. Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron. 14, 855–859 (1978).
[CrossRef]

J. Lightwave Technol. (1)

C. Yijiang and A. W. Snyder, “Saturation and depletion effect of Raman scattering in optical fibers,” J. Lightwave Technol. 7, 1109–1116 (1989).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (1)

G. A. Thomas, B. I. Shraiman, P. F. Glodls, and M. J. Stephens, “Toward the clarity limit in optical fibre,” Nature 404, 262–264 (2000).
[CrossRef] [PubMed]

Opt. Commun. (8)

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Fiber-optic tunable cw Raman laser operating around 1.3 μm,” Opt. Commun. 182, 403–405 (2000).
[CrossRef]

D. V. Gapontsev, S. V. Chernikov, and J. R. Taylor, “Fiber Raman amplifiers for broadband operation at 1.3 μm,” Opt. Commun. 166, 85–88 (1999).
[CrossRef]

M. Prabhua, N. S. Kim, L. Jianrena, and K.-I. Ueda, “Simultaneous two-color cw Raman fiber laser with maximum output power of 1.05 W/1239 nm and 0.95 W/1484 nm using phosphosilicate fiber,” Opt. Commun. 182, 305–309 (2000).
[CrossRef]

E. A. Kuzin, G. Beltran-Perez, M. A. Basurto-Pensado, R. Rojas-Laguna, J. A. Andrade-Lucio, M. Torres-Cisneros, and E. Alvarado-Mendez, “Stimulated Raman scattering in a fiber with bending loss,” Opt. Commun. 169, 87–91 (1999).
[CrossRef]

H.-S. Seo and K. Oh, “Optimization of silica fiber Raman amplifier using the Raman frequency modeling for an arbitrary GeO2 concentration in the core,” Opt. Commun. 181, 145–151 (2000).
[CrossRef]

I. A. Walmsley, M. G. Raymer, T. Sizer II, I. N. Duling III, and J. D. Kafka, “Stabilization of Stokes pulse energies in the nonlinear regime of stimulated Raman scattering,” Opt. Commun. 53, 137–140 (1985).
[CrossRef]

J. Chang, D. Baiocchi, J. Vas, and J. R. Thompson, “First stokes pulse energy statistics for cascade Raman generation in optical fiber,” Opt. Commun. 139, 227–231 (1997).
[CrossRef]

L. Garcia, A. Jalili, Y. Lee, N. Poole, K. Salit, P. Sidereas, C. G. Goedde, and J. R. Thompson, “Effects of pump pulse temporal structure on long-pulse multiorder stimulated Raman scattering in optical fiber,” Opt. Commun. 193, 289–300 (2001).
[CrossRef]

Phys. Rev. Lett. (2)

I. A. Walmsley and M. G. Raymer, “Observation of macroscopic quantum fluctuations in stimulated Raman scattering,” Phys. Rev. Lett. 50, 962–965 (1983).
[CrossRef]

N. Fabricius, K. Nattermann, and D. von der Linde, “Macroscopic manifestations of quantum fluctuations in transient stimulated Raman scattering,” Phys. Rev. Lett. 52, 113–116 (1984).
[CrossRef]

Phys. Today (1)

G. A. Thomas, D. A. Ackerman, P. R. Pruncnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53, 30–36 (2000).
[CrossRef]

Proc. IEEE (1)

R. G. Waarts, A. A. Friesem, E. Lichtman, H. H. Yaffe, and R.-P. Braun, “Nonlinear effects in coherent multichannel transmission through optical fiber,” Proc. IEEE 78, 1344–1368 (1990).
[CrossRef]

Z. Phys. B (1)

M. Lewenstein, “Fluctuations in the nonlinear regime of stimulated Raman scattering,” Z. Phys. B 56, 69–75 (1984).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, Boston, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Setup for SRS measurements: PD, photodiode; NDF, neutral density filter; SMPM, single-mode polarization-maintaining fiber.

Fig. 2
Fig. 2

Measured input pump pulse temporal envelopes showing varying degrees of modulation due to mode beating. The curves are offset for clarity. All three pulses have nearly the same total energy.

Fig. 3
Fig. 3

Simulated growth curves for the first three Stokes orders using a purely cw model for SRS, including the frequency dependence of the gain and 256 Stokes modes. Circles, first Stokes order; squares, second Stokes order; triangles, third Stokes order.

Fig. 4
Fig. 4

The growth and saturation of the first four Stokes orders as pump power is increased, in absolute power units. Circles, first Stokes order; squares, second Stokes order; triangles, third Stokes order; diamonds, fourth Stokes order. (a) Whole-pulse measurements. (b) 4-ns temporal-slice measurements.

Fig. 5
Fig. 5

Growth curves for 4-ns temporal slices, scaled as discussed in the text. Circles, first Stokes order; squares, second Stokes order; triangles, third Stokes order; diamonds, fourth Stokes order (measurements only). (a) Measured growth curves. (b) Simulated growth curves.

Fig. 6
Fig. 6

Whole-pulse growth curves, scaled as discussed in the text. Circles, first Stokes order; squares, second Stokes order; triangles, third Stokes order; diamonds, fourth Stokes order (measurements only). (a) Measured growth curves. (b) Simulated growth curves.

Fig. 7
Fig. 7

Growth curves illustrating the effect of pump pulse temporal modulations. Each growth curve was generated by a pump pulse with a distinct amount of modulation: Circles, no modulation; squares, 25% relative modulation; triangles, 50% relative modulation; diamonds, 75% relative modulation.

Fig. 8
Fig. 8

Relative noise in the first Stokes whole-pulse output energy. (a) Experimental measurements. (b) Simulation results.

Fig. 9
Fig. 9

Relative noise in the first Stokes output energy for a 5-ns temporal slice at the peak of the pulse. (a) Experimental measurements. (b) Simulation results.

Tables (1)

Tables Icon

Table 1 Parameter Values as Specified by Manufacturera

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

gij=G0 λ0λi1+ΔΩij-ΔΩmaxΔΩFW/22-1.
dP0dz=-j=1Ng0j(Pj+η0)P0,
dPidz=λ0λi j=1igi-j,i(Pi+ηi-j)Pi-j-λ0λi j=1N-igi,i+j(Pi+j+ηi)Pi.
ηi=ij=1Ngij,i=π(n12-n22) βλi4.

Metrics