Abstract

Carbon nanotube suspensions are known to display interesting optical limiting properties as a result of the formation of solvent or carbon-vapor bubbles that scatter the laser beam. In this study we present an original experiment that permits direct observation of the changes that occur in the focal zone in carbon nanotube suspensions by using a shadowgraphic experiment coupled with a monochromatic pump–probe experiment. We have observed a clear correlation between the radius of the scattering centers and the evolution in transmittance of the sample. We compared bubble growth in chloroform and water and found good agreement with previously obtained results. We also observed the presence of compression waves, which propagate parallel to the laser beam and can produce secondary cavitation phenomena after reflection on the cell walls.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Nashimoto, R. Pachter, B. W. Wessels, J. Shmulovich, A. K.-Y. Jen, K. Lewis, R. Sutherland, and J. W. Perry, eds., Thin Films for Optical Waveguide Devices and Materials for Optical Limiting, Vol. 597 of MRS Proceedings Series (Materials Research Society, Warrendale, Pa., 1999).
  2. R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4, 189–196 (1999).
    [CrossRef]
  3. J. W. Perry, “Organics and metal-containing reverse saturable absorbers for optical limiters,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC Press, Orlando, Fla., 1997), pp. 813–840.
  4. R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).
  5. B. L. Justus, A. L. Huston, and A. J. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1486 (1993).
    [CrossRef]
  6. K. J. McEwan, P. K. Milsom, and D. B. James, “Nonlinear optical effects in carbon suspensions,” in Nonlinear Optical Liquids for Power Limiting and Imaging, C. M. Lawson, ed., Proc. SPIE3472, 42–52 (1998).
    [CrossRef]
  7. K. M. Nashold and D. P. Walter, “Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions,” J. Opt. Soc. Am. B 12, 1228–1237 (1995).
    [CrossRef]
  8. K. Mansour, M. J. Soileau, and E. W. Van Stryland, “Nonlinear optical properties of carbon-black suspensions (ink),” J. Opt. Soc. Am. B 9, 1100–1109 (1992).
    [CrossRef]
  9. V. Joudrier, P. Bourdon, F. Hache, and C. Flytzanis, “Characterization of nonlinear scattering in colloidal suspensions of silica particles,” Appl. Phys. B 70, 105–109 (2000).
    [CrossRef]
  10. L. Vivien, D. Riehl, E. Anglaret, and F. Hache, “Pump–probe experiments at 1064 nm in singlewall carbon nanotube suspensions,” IEEE J. Quantum Electron. 36, 680–686 (2000).
    [CrossRef]
  11. L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Opt. Nonlin. Phys. Mater. 9, 297–308 (2000).
    [CrossRef]
  12. L. Vivien, D. Riehl, P. Lançon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 26–29 (2001).
    [CrossRef]
  13. L. Vivien, J. F. Delouis, J. A. Delaire, D. Riehl, E. Anglaret, and F. Hache, “Picosecond and nanosecond polychromatic pump–probe studies of bubble growth in carbon nanotube suspensions,” J. Opt. Soc. Am. B 19, 208–214 (2002).
    [CrossRef]
  14. R. C. Hollins, “Optical limiters: spatial, temporal and spectral effects,” Nonlinear Opt. 21, 49–60 (1999).
  15. P. T. Giovanneschi, P. A. Alloncle, D. Dufresne, Ph. Bournot, and M. Autric, “Study of the cavitation induced by a high power laser beam,” in Seventh International Symposium on Gas Flow and Lasers, D. Schuoecker, ed., Proc. SPIE1031, 545–550 (1989).
    [CrossRef]
  16. E. Goedert, R. Becker, A. Clements, and T. Whittaker, “Time-resolved shadowgraphic imaging of the response of dilute suspensions to laser pulses,” J. Opt. Soc. Am. B 15, 1442–1462 (1998).
    [CrossRef]
  17. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
    [CrossRef]
  18. L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier, “Purification procedure of carbon nanotubes,” Synth. Met. 103, 2492–2493 (1999).
    [CrossRef]
  19. S. Rols, R. Almairac, L. Henrard, E. Anglaret, and J. L. Sauvajol, “Diffraction by finite-size crystalline bundles of single wall nanotubes,” Eur. Phys. J.B 10, 263–270 (1999).
    [CrossRef]
  20. L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
    [CrossRef]

2002 (1)

2001 (1)

L. Vivien, D. Riehl, P. Lançon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 26–29 (2001).
[CrossRef]

2000 (4)

V. Joudrier, P. Bourdon, F. Hache, and C. Flytzanis, “Characterization of nonlinear scattering in colloidal suspensions of silica particles,” Appl. Phys. B 70, 105–109 (2000).
[CrossRef]

L. Vivien, D. Riehl, E. Anglaret, and F. Hache, “Pump–probe experiments at 1064 nm in singlewall carbon nanotube suspensions,” IEEE J. Quantum Electron. 36, 680–686 (2000).
[CrossRef]

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Opt. Nonlin. Phys. Mater. 9, 297–308 (2000).
[CrossRef]

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

1999 (4)

R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4, 189–196 (1999).
[CrossRef]

R. C. Hollins, “Optical limiters: spatial, temporal and spectral effects,” Nonlinear Opt. 21, 49–60 (1999).

L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier, “Purification procedure of carbon nanotubes,” Synth. Met. 103, 2492–2493 (1999).
[CrossRef]

S. Rols, R. Almairac, L. Henrard, E. Anglaret, and J. L. Sauvajol, “Diffraction by finite-size crystalline bundles of single wall nanotubes,” Eur. Phys. J.B 10, 263–270 (1999).
[CrossRef]

1998 (1)

1997 (1)

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
[CrossRef]

1995 (1)

1993 (1)

B. L. Justus, A. L. Huston, and A. J. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1486 (1993).
[CrossRef]

1992 (1)

Alloncle, P. A.

P. T. Giovanneschi, P. A. Alloncle, D. Dufresne, Ph. Bournot, and M. Autric, “Study of the cavitation induced by a high power laser beam,” in Seventh International Symposium on Gas Flow and Lasers, D. Schuoecker, ed., Proc. SPIE1031, 545–550 (1989).
[CrossRef]

Almairac, R.

S. Rols, R. Almairac, L. Henrard, E. Anglaret, and J. L. Sauvajol, “Diffraction by finite-size crystalline bundles of single wall nanotubes,” Eur. Phys. J.B 10, 263–270 (1999).
[CrossRef]

Andrieux, M.

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

Anglaret, E.

L. Vivien, J. F. Delouis, J. A. Delaire, D. Riehl, E. Anglaret, and F. Hache, “Picosecond and nanosecond polychromatic pump–probe studies of bubble growth in carbon nanotube suspensions,” J. Opt. Soc. Am. B 19, 208–214 (2002).
[CrossRef]

L. Vivien, D. Riehl, P. Lançon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 26–29 (2001).
[CrossRef]

L. Vivien, D. Riehl, E. Anglaret, and F. Hache, “Pump–probe experiments at 1064 nm in singlewall carbon nanotube suspensions,” IEEE J. Quantum Electron. 36, 680–686 (2000).
[CrossRef]

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Opt. Nonlin. Phys. Mater. 9, 297–308 (2000).
[CrossRef]

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

S. Rols, R. Almairac, L. Henrard, E. Anglaret, and J. L. Sauvajol, “Diffraction by finite-size crystalline bundles of single wall nanotubes,” Eur. Phys. J.B 10, 263–270 (1999).
[CrossRef]

Autric, M.

P. T. Giovanneschi, P. A. Alloncle, D. Dufresne, Ph. Bournot, and M. Autric, “Study of the cavitation induced by a high power laser beam,” in Seventh International Symposium on Gas Flow and Lasers, D. Schuoecker, ed., Proc. SPIE1031, 545–550 (1989).
[CrossRef]

Aznar, R.

L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier, “Purification procedure of carbon nanotubes,” Synth. Met. 103, 2492–2493 (1999).
[CrossRef]

Bacou, F.

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

Becker, R.

Bernier, P.

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier, “Purification procedure of carbon nanotubes,” Synth. Met. 103, 2492–2493 (1999).
[CrossRef]

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
[CrossRef]

Bourdon, P.

V. Joudrier, P. Bourdon, F. Hache, and C. Flytzanis, “Characterization of nonlinear scattering in colloidal suspensions of silica particles,” Appl. Phys. B 70, 105–109 (2000).
[CrossRef]

Bournot, Ph.

P. T. Giovanneschi, P. A. Alloncle, D. Dufresne, Ph. Bournot, and M. Autric, “Study of the cavitation induced by a high power laser beam,” in Seventh International Symposium on Gas Flow and Lasers, D. Schuoecker, ed., Proc. SPIE1031, 545–550 (1989).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).

Brunet, M.

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

Campillo, A. J.

B. L. Justus, A. L. Huston, and A. J. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1486 (1993).
[CrossRef]

Clements, A.

Delaire, J. A.

Delouis, J. F.

Deniard, P.

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
[CrossRef]

Dufresne, D.

P. T. Giovanneschi, P. A. Alloncle, D. Dufresne, Ph. Bournot, and M. Autric, “Study of the cavitation induced by a high power laser beam,” in Seventh International Symposium on Gas Flow and Lasers, D. Schuoecker, ed., Proc. SPIE1031, 545–550 (1989).
[CrossRef]

Fischer, J. E.

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
[CrossRef]

Flytzanis, C.

V. Joudrier, P. Bourdon, F. Hache, and C. Flytzanis, “Characterization of nonlinear scattering in colloidal suspensions of silica particles,” Appl. Phys. B 70, 105–109 (2000).
[CrossRef]

Giovanneschi, P. T.

P. T. Giovanneschi, P. A. Alloncle, D. Dufresne, Ph. Bournot, and M. Autric, “Study of the cavitation induced by a high power laser beam,” in Seventh International Symposium on Gas Flow and Lasers, D. Schuoecker, ed., Proc. SPIE1031, 545–550 (1989).
[CrossRef]

Goedert, E.

Goze, C.

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier, “Purification procedure of carbon nanotubes,” Synth. Met. 103, 2492–2493 (1999).
[CrossRef]

Hache, F.

L. Vivien, J. F. Delouis, J. A. Delaire, D. Riehl, E. Anglaret, and F. Hache, “Picosecond and nanosecond polychromatic pump–probe studies of bubble growth in carbon nanotube suspensions,” J. Opt. Soc. Am. B 19, 208–214 (2002).
[CrossRef]

L. Vivien, D. Riehl, P. Lançon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 26–29 (2001).
[CrossRef]

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Opt. Nonlin. Phys. Mater. 9, 297–308 (2000).
[CrossRef]

L. Vivien, D. Riehl, E. Anglaret, and F. Hache, “Pump–probe experiments at 1064 nm in singlewall carbon nanotube suspensions,” IEEE J. Quantum Electron. 36, 680–686 (2000).
[CrossRef]

V. Joudrier, P. Bourdon, F. Hache, and C. Flytzanis, “Characterization of nonlinear scattering in colloidal suspensions of silica particles,” Appl. Phys. B 70, 105–109 (2000).
[CrossRef]

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

Henrard, L.

S. Rols, R. Almairac, L. Henrard, E. Anglaret, and J. L. Sauvajol, “Diffraction by finite-size crystalline bundles of single wall nanotubes,” Eur. Phys. J.B 10, 263–270 (1999).
[CrossRef]

Hollins, R. C.

R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4, 189–196 (1999).
[CrossRef]

R. C. Hollins, “Optical limiters: spatial, temporal and spectral effects,” Nonlinear Opt. 21, 49–60 (1999).

Huston, A. L.

B. L. Justus, A. L. Huston, and A. J. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1486 (1993).
[CrossRef]

James, D. B.

K. J. McEwan, P. K. Milsom, and D. B. James, “Nonlinear optical effects in carbon suspensions,” in Nonlinear Optical Liquids for Power Limiting and Imaging, C. M. Lawson, ed., Proc. SPIE3472, 42–52 (1998).
[CrossRef]

Joudrier, V.

V. Joudrier, P. Bourdon, F. Hache, and C. Flytzanis, “Characterization of nonlinear scattering in colloidal suspensions of silica particles,” Appl. Phys. B 70, 105–109 (2000).
[CrossRef]

Journet, C.

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier, “Purification procedure of carbon nanotubes,” Synth. Met. 103, 2492–2493 (1999).
[CrossRef]

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
[CrossRef]

Justus, B. L.

B. L. Justus, A. L. Huston, and A. J. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1486 (1993).
[CrossRef]

Lafonta, F.

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

Lamy de la Chapelle, M.

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
[CrossRef]

Lançon, P.

L. Vivien, D. Riehl, P. Lançon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 26–29 (2001).
[CrossRef]

Lee, R.

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
[CrossRef]

Lefrant, S.

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
[CrossRef]

Loiseau, A.

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
[CrossRef]

Mansour, K.

Maser, W. K.

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
[CrossRef]

McEwan, K. J.

K. J. McEwan, P. K. Milsom, and D. B. James, “Nonlinear optical effects in carbon suspensions,” in Nonlinear Optical Liquids for Power Limiting and Imaging, C. M. Lawson, ed., Proc. SPIE3472, 42–52 (1998).
[CrossRef]

Micholet, V.

L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier, “Purification procedure of carbon nanotubes,” Synth. Met. 103, 2492–2493 (1999).
[CrossRef]

Milsom, P. K.

K. J. McEwan, P. K. Milsom, and D. B. James, “Nonlinear optical effects in carbon suspensions,” in Nonlinear Optical Liquids for Power Limiting and Imaging, C. M. Lawson, ed., Proc. SPIE3472, 42–52 (1998).
[CrossRef]

Nashold, K. M.

Perry, J. W.

J. W. Perry, “Organics and metal-containing reverse saturable absorbers for optical limiters,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC Press, Orlando, Fla., 1997), pp. 813–840.

Riehl, D.

L. Vivien, J. F. Delouis, J. A. Delaire, D. Riehl, E. Anglaret, and F. Hache, “Picosecond and nanosecond polychromatic pump–probe studies of bubble growth in carbon nanotube suspensions,” J. Opt. Soc. Am. B 19, 208–214 (2002).
[CrossRef]

L. Vivien, D. Riehl, P. Lançon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 26–29 (2001).
[CrossRef]

L. Vivien, D. Riehl, E. Anglaret, and F. Hache, “Pump–probe experiments at 1064 nm in singlewall carbon nanotube suspensions,” IEEE J. Quantum Electron. 36, 680–686 (2000).
[CrossRef]

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Opt. Nonlin. Phys. Mater. 9, 297–308 (2000).
[CrossRef]

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

Rols, S.

S. Rols, R. Almairac, L. Henrard, E. Anglaret, and J. L. Sauvajol, “Diffraction by finite-size crystalline bundles of single wall nanotubes,” Eur. Phys. J.B 10, 263–270 (1999).
[CrossRef]

Sauvajol, J. L.

S. Rols, R. Almairac, L. Henrard, E. Anglaret, and J. L. Sauvajol, “Diffraction by finite-size crystalline bundles of single wall nanotubes,” Eur. Phys. J.B 10, 263–270 (1999).
[CrossRef]

Soileau, M. J.

Vaccarini, L.

L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier, “Purification procedure of carbon nanotubes,” Synth. Met. 103, 2492–2493 (1999).
[CrossRef]

Van Stryland, E. W.

Vivien, L.

L. Vivien, J. F. Delouis, J. A. Delaire, D. Riehl, E. Anglaret, and F. Hache, “Picosecond and nanosecond polychromatic pump–probe studies of bubble growth in carbon nanotube suspensions,” J. Opt. Soc. Am. B 19, 208–214 (2002).
[CrossRef]

L. Vivien, D. Riehl, P. Lançon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 26–29 (2001).
[CrossRef]

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Opt. Nonlin. Phys. Mater. 9, 297–308 (2000).
[CrossRef]

L. Vivien, D. Riehl, E. Anglaret, and F. Hache, “Pump–probe experiments at 1064 nm in singlewall carbon nanotube suspensions,” IEEE J. Quantum Electron. 36, 680–686 (2000).
[CrossRef]

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

Walter, D. P.

Whittaker, T.

Appl. Phys. B (1)

V. Joudrier, P. Bourdon, F. Hache, and C. Flytzanis, “Characterization of nonlinear scattering in colloidal suspensions of silica particles,” Appl. Phys. B 70, 105–109 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

B. L. Justus, A. L. Huston, and A. J. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1486 (1993).
[CrossRef]

Curr. Opin. Solid State Mater. Sci. (1)

R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4, 189–196 (1999).
[CrossRef]

Eur. Phys. J.B (1)

S. Rols, R. Almairac, L. Henrard, E. Anglaret, and J. L. Sauvajol, “Diffraction by finite-size crystalline bundles of single wall nanotubes,” Eur. Phys. J.B 10, 263–270 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. Vivien, D. Riehl, E. Anglaret, and F. Hache, “Pump–probe experiments at 1064 nm in singlewall carbon nanotube suspensions,” IEEE J. Quantum Electron. 36, 680–686 (2000).
[CrossRef]

J. Opt. Nonlin. Phys. Mater. (1)

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Opt. Nonlin. Phys. Mater. 9, 297–308 (2000).
[CrossRef]

J. Opt. Soc. Am. B (4)

Nature (1)

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997).
[CrossRef]

Nonlinear Opt. (1)

R. C. Hollins, “Optical limiters: spatial, temporal and spectral effects,” Nonlinear Opt. 21, 49–60 (1999).

Opt. Commun. (1)

L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000).
[CrossRef]

Opt. Lett. (1)

L. Vivien, D. Riehl, P. Lançon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 26–29 (2001).
[CrossRef]

Synth. Met. (1)

L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier, “Purification procedure of carbon nanotubes,” Synth. Met. 103, 2492–2493 (1999).
[CrossRef]

Other (5)

P. T. Giovanneschi, P. A. Alloncle, D. Dufresne, Ph. Bournot, and M. Autric, “Study of the cavitation induced by a high power laser beam,” in Seventh International Symposium on Gas Flow and Lasers, D. Schuoecker, ed., Proc. SPIE1031, 545–550 (1989).
[CrossRef]

J. W. Perry, “Organics and metal-containing reverse saturable absorbers for optical limiters,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC Press, Orlando, Fla., 1997), pp. 813–840.

R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).

K. J. McEwan, P. K. Milsom, and D. B. James, “Nonlinear optical effects in carbon suspensions,” in Nonlinear Optical Liquids for Power Limiting and Imaging, C. M. Lawson, ed., Proc. SPIE3472, 42–52 (1998).
[CrossRef]

K. Nashimoto, R. Pachter, B. W. Wessels, J. Shmulovich, A. K.-Y. Jen, K. Lewis, R. Sutherland, and J. W. Perry, eds., Thin Films for Optical Waveguide Devices and Materials for Optical Limiting, Vol. 597 of MRS Proceedings Series (Materials Research Society, Warrendale, Pa., 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Shadowgraphic experimental setup coupled with a classic pump–probe experiment with a continuous-wave He–Ne laser: Pc’s, polarizer cubes; PT, fast photocathode; PM, photomultiplier; Pv, Ph, vertical and horizontal polarization, respectively; f1, 200-mm focal-length achromatic doublet; s, sample; D1, D2, input and output photodetectors, respectively; Afocal, a focal lens.

Fig. 2
Fig. 2

Illustration of the evolution of solvent vapor bubble growth for carbon nanotube suspensions in chloroform. The images are separated by 500 ns, and image 1 is obtained ∼150 ns after the maximum of the input pump pulse. The input fluence at 532 nm is 9 J/cm2.

Fig. 3
Fig. 3

Evolution of the probe transmittance and the transversal radius of the vapor bubble cloud for carbon nanotube suspensions in chloroform. Zero time corresponds to the maximum of the input pump pulse at 532 nm. The input fluence was 9 J/cm2 at 532 nm.

Fig. 4
Fig. 4

(a) Formation and growth of plasma in carbon nanotube suspensions in chloroform. The input fluence is 50 J/cm2 at 532 nm. The images are separated by 500 ns, and the first image (top left) was obtained ∼150 ns after the maximum of the input pump pulse. (b) Kinetics of plasma growth in carbon nanotube suspensions in chloroform in streak mode acquisition. The input fluence is 26 J/cm2 at 532 nm, and the streak velocity is 100 ns/mm.

Fig. 5
Fig. 5

Comparison of the evolution of the scattering centers for carbon nanotube suspensions in chloroform and in water. The input fluence is 9 J/cm2 at 532 nm, and the pulse duration 13 ns. The images are separated by 500 ns, and image 1 is obtained ∼150 ns after the maximum of the input pump pulse.

Fig. 6
Fig. 6

Dependence on energy of the repartition of the scattering centers for carbon nanotube suspensions in chloroform (from 350 mJ/cm2 to 15 J/cm2) and in water (from 1.5 to 22 J/cm2). The images are separated by 500 ns, and image 1 is obtained ∼150 ns after the maximum of the input pump pulse.

Fig. 7
Fig. 7

Probe beam perturbation of carbon nanotube suspensions in chloroform on a microsecond time scale. The input fluence is 15 J/cm2 at 532 nm.

Fig. 8
Fig. 8

Evolution of scattering centers during the pump pulse from 5 to 150 ns for carbon nanotube suspensions in chloroform. The input fluence is 9 J/cm2 at 1064 nm.

Metrics