Abstract

An AlGaAs waveguide array below the half-bandgap is used to investigate experimentally basic dynamic features of discrete systems. In particular, nonlinear locking of a discrete soliton to its input waveguide was observed for certain input conditions. We also investigated the soliton dynamics as a function of the position of the initial excitation and found that small shifts from the centers of symmetries of the structure could be greatly enhanced. Both effects depend on the geometry of the array and on the beam size.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Barthelemy, S. Maneuf, and C. Froely, “Propagation soliton et auto-confinement de faisceaux laser par nonlinearité optique de Kerr,” Opt. Commun. 55, 201–206 (1985).
    [Crossref]
  2. J. S. Aitchison, Y. Silberberg, A. M. Weiner, D. E. Leaird, M. K. Oliver, J. L. Jackel, E. M. Vogel, and P. W. E. Smith, “Spatial optical solitons in planar glass waveguides,” J. Opt. Soc. Am. B 8, 1290–1295 (1990).
    [Crossref]
  3. D. N. Christodoulides and R. I. Joseph, “Discrete self-focusing in nonlinear arrays of coupled waveguides,” Opt. Lett. 13, 794–796 (1988).
    [Crossref] [PubMed]
  4. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
    [Crossref]
  5. S. Flach and C. R. Willis, “Discrete breathers,” Phys. Rep. 295, 182–264 (1998).
    [Crossref]
  6. W. Krolikowski, U. Trutschel, M. Cronin-Golomb, and C. Schmitt-Hattenberger, “Solitonlike optical switching in a circular fiber array,” Opt. Lett. 19, 320–322 (1994).
    [Crossref] [PubMed]
  7. A. B. Aceves, C. De Angelis, S. Trillo, and S. Wabnitz, “Storage and steering of self-trapped discrete solitons in nonlinear waveguide arrays,” Opt. Lett. 19, 332–334 (1994).
    [Crossref] [PubMed]
  8. A. B. Aceves, C. De Angelis, T. Peschel, R. Muschall, F. Lederer, S. Trillo, and S. Wabnitz, “Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays,” Phys. Rev. E 53, 1172–1189 (1996).
    [Crossref]
  9. R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Dynamics of discrete solitons in optical waveguide arrays,” Phys. Rev. Lett. 83, 2726–2729 (1999).
    [Crossref]
  10. A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991), pp. 519–524.
  11. A. Jones, “Coupling of optical fibers and scattering in fibers,” J. Opt. Soc. Am. B 55, 261–267 (1965).
    [Crossref]
  12. S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, and R. G. Hunsperger, “Channel optical waveguide directional coupler,” Appl. Phys. Lett. 22, 46–48 (1973).
    [Crossref]
  13. H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
    [Crossref] [PubMed]
  14. T. Pertsch, T. Zentgraf, U. Peschel, A. Bräuer, and F. Lederer, “Anomalous refraction and diffraction in discrete optical systems,” Phys. Rev. Lett. 88, 0939011–4 (2002).
    [Crossref]
  15. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self focusing and one-dimensional self modulation of waves in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).
  16. Y. S. Kivshar, “Self-localization in arrays of defocusing waveguides,” Opt. Lett. 18, 1147–1149 (1993).
    [Crossref] [PubMed]
  17. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
    [Crossref]
  18. Y. V. Afanasjev, J. S. Aitchison, and Y. S. Kivshar, “Splitting of high-order spatial solitons under the action of 2-photon absorption,” Opt. Commun. 116, 331–338 (1995).
    [Crossref]
  19. Y. Silberberg, “Solitons and two-photon absorption,” Opt. Lett. 15, 1005–1007 (1990).
    [Crossref] [PubMed]

2002 (1)

T. Pertsch, T. Zentgraf, U. Peschel, A. Bräuer, and F. Lederer, “Anomalous refraction and diffraction in discrete optical systems,” Phys. Rev. Lett. 88, 0939011–4 (2002).
[Crossref]

2000 (1)

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[Crossref] [PubMed]

1999 (1)

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Dynamics of discrete solitons in optical waveguide arrays,” Phys. Rev. Lett. 83, 2726–2729 (1999).
[Crossref]

1998 (2)

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[Crossref]

S. Flach and C. R. Willis, “Discrete breathers,” Phys. Rep. 295, 182–264 (1998).
[Crossref]

1997 (1)

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[Crossref]

1996 (1)

A. B. Aceves, C. De Angelis, T. Peschel, R. Muschall, F. Lederer, S. Trillo, and S. Wabnitz, “Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays,” Phys. Rev. E 53, 1172–1189 (1996).
[Crossref]

1995 (1)

Y. V. Afanasjev, J. S. Aitchison, and Y. S. Kivshar, “Splitting of high-order spatial solitons under the action of 2-photon absorption,” Opt. Commun. 116, 331–338 (1995).
[Crossref]

1994 (2)

1993 (1)

1990 (2)

1988 (1)

1985 (1)

A. Barthelemy, S. Maneuf, and C. Froely, “Propagation soliton et auto-confinement de faisceaux laser par nonlinearité optique de Kerr,” Opt. Commun. 55, 201–206 (1985).
[Crossref]

1973 (1)

S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, and R. G. Hunsperger, “Channel optical waveguide directional coupler,” Appl. Phys. Lett. 22, 46–48 (1973).
[Crossref]

1972 (1)

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self focusing and one-dimensional self modulation of waves in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).

1965 (1)

A. Jones, “Coupling of optical fibers and scattering in fibers,” J. Opt. Soc. Am. B 55, 261–267 (1965).
[Crossref]

Aceves, A. B.

A. B. Aceves, C. De Angelis, T. Peschel, R. Muschall, F. Lederer, S. Trillo, and S. Wabnitz, “Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays,” Phys. Rev. E 53, 1172–1189 (1996).
[Crossref]

A. B. Aceves, C. De Angelis, S. Trillo, and S. Wabnitz, “Storage and steering of self-trapped discrete solitons in nonlinear waveguide arrays,” Opt. Lett. 19, 332–334 (1994).
[Crossref] [PubMed]

Afanasjev, Y. V.

Y. V. Afanasjev, J. S. Aitchison, and Y. S. Kivshar, “Splitting of high-order spatial solitons under the action of 2-photon absorption,” Opt. Commun. 116, 331–338 (1995).
[Crossref]

Aitchison, J. S.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[Crossref] [PubMed]

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Dynamics of discrete solitons in optical waveguide arrays,” Phys. Rev. Lett. 83, 2726–2729 (1999).
[Crossref]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[Crossref]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[Crossref]

Y. V. Afanasjev, J. S. Aitchison, and Y. S. Kivshar, “Splitting of high-order spatial solitons under the action of 2-photon absorption,” Opt. Commun. 116, 331–338 (1995).
[Crossref]

J. S. Aitchison, Y. Silberberg, A. M. Weiner, D. E. Leaird, M. K. Oliver, J. L. Jackel, E. M. Vogel, and P. W. E. Smith, “Spatial optical solitons in planar glass waveguides,” J. Opt. Soc. Am. B 8, 1290–1295 (1990).
[Crossref]

Barthelemy, A.

A. Barthelemy, S. Maneuf, and C. Froely, “Propagation soliton et auto-confinement de faisceaux laser par nonlinearité optique de Kerr,” Opt. Commun. 55, 201–206 (1985).
[Crossref]

Boyd, A.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[Crossref]

Bräuer, A.

T. Pertsch, T. Zentgraf, U. Peschel, A. Bräuer, and F. Lederer, “Anomalous refraction and diffraction in discrete optical systems,” Phys. Rev. Lett. 88, 0939011–4 (2002).
[Crossref]

Christodoulides, D. N.

Cronin-Golomb, M.

De Angelis, C.

A. B. Aceves, C. De Angelis, T. Peschel, R. Muschall, F. Lederer, S. Trillo, and S. Wabnitz, “Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays,” Phys. Rev. E 53, 1172–1189 (1996).
[Crossref]

A. B. Aceves, C. De Angelis, S. Trillo, and S. Wabnitz, “Storage and steering of self-trapped discrete solitons in nonlinear waveguide arrays,” Opt. Lett. 19, 332–334 (1994).
[Crossref] [PubMed]

Eisenberg, H. S.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[Crossref] [PubMed]

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Dynamics of discrete solitons in optical waveguide arrays,” Phys. Rev. Lett. 83, 2726–2729 (1999).
[Crossref]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[Crossref]

Flach, S.

S. Flach and C. R. Willis, “Discrete breathers,” Phys. Rep. 295, 182–264 (1998).
[Crossref]

Froely, C.

A. Barthelemy, S. Maneuf, and C. Froely, “Propagation soliton et auto-confinement de faisceaux laser par nonlinearité optique de Kerr,” Opt. Commun. 55, 201–206 (1985).
[Crossref]

Garmire, E.

S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, and R. G. Hunsperger, “Channel optical waveguide directional coupler,” Appl. Phys. Lett. 22, 46–48 (1973).
[Crossref]

Garvin, H. L.

S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, and R. G. Hunsperger, “Channel optical waveguide directional coupler,” Appl. Phys. Lett. 22, 46–48 (1973).
[Crossref]

Hunsperger, R. G.

S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, and R. G. Hunsperger, “Channel optical waveguide directional coupler,” Appl. Phys. Lett. 22, 46–48 (1973).
[Crossref]

Hutchings, D. C.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[Crossref]

Jackel, J. L.

Jones, A.

A. Jones, “Coupling of optical fibers and scattering in fibers,” J. Opt. Soc. Am. B 55, 261–267 (1965).
[Crossref]

Joseph, R. I.

Kang, J. U.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[Crossref]

Kivshar, Y. S.

Y. V. Afanasjev, J. S. Aitchison, and Y. S. Kivshar, “Splitting of high-order spatial solitons under the action of 2-photon absorption,” Opt. Commun. 116, 331–338 (1995).
[Crossref]

Y. S. Kivshar, “Self-localization in arrays of defocusing waveguides,” Opt. Lett. 18, 1147–1149 (1993).
[Crossref] [PubMed]

Krolikowski, W.

Leaird, D. E.

Lederer, F.

T. Pertsch, T. Zentgraf, U. Peschel, A. Bräuer, and F. Lederer, “Anomalous refraction and diffraction in discrete optical systems,” Phys. Rev. Lett. 88, 0939011–4 (2002).
[Crossref]

A. B. Aceves, C. De Angelis, T. Peschel, R. Muschall, F. Lederer, S. Trillo, and S. Wabnitz, “Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays,” Phys. Rev. E 53, 1172–1189 (1996).
[Crossref]

Maneuf, S.

A. Barthelemy, S. Maneuf, and C. Froely, “Propagation soliton et auto-confinement de faisceaux laser par nonlinearité optique de Kerr,” Opt. Commun. 55, 201–206 (1985).
[Crossref]

Morandotti, R.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[Crossref] [PubMed]

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Dynamics of discrete solitons in optical waveguide arrays,” Phys. Rev. Lett. 83, 2726–2729 (1999).
[Crossref]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[Crossref]

Muschall, R.

A. B. Aceves, C. De Angelis, T. Peschel, R. Muschall, F. Lederer, S. Trillo, and S. Wabnitz, “Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays,” Phys. Rev. E 53, 1172–1189 (1996).
[Crossref]

Oliver, M. K.

Pertsch, T.

T. Pertsch, T. Zentgraf, U. Peschel, A. Bräuer, and F. Lederer, “Anomalous refraction and diffraction in discrete optical systems,” Phys. Rev. Lett. 88, 0939011–4 (2002).
[Crossref]

Peschel, T.

A. B. Aceves, C. De Angelis, T. Peschel, R. Muschall, F. Lederer, S. Trillo, and S. Wabnitz, “Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays,” Phys. Rev. E 53, 1172–1189 (1996).
[Crossref]

Peschel, U.

T. Pertsch, T. Zentgraf, U. Peschel, A. Bräuer, and F. Lederer, “Anomalous refraction and diffraction in discrete optical systems,” Phys. Rev. Lett. 88, 0939011–4 (2002).
[Crossref]

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Dynamics of discrete solitons in optical waveguide arrays,” Phys. Rev. Lett. 83, 2726–2729 (1999).
[Crossref]

Schmitt-Hattenberger, C.

Shabat, A. B.

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self focusing and one-dimensional self modulation of waves in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).

Silberberg, Y.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[Crossref] [PubMed]

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Dynamics of discrete solitons in optical waveguide arrays,” Phys. Rev. Lett. 83, 2726–2729 (1999).
[Crossref]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[Crossref]

J. S. Aitchison, Y. Silberberg, A. M. Weiner, D. E. Leaird, M. K. Oliver, J. L. Jackel, E. M. Vogel, and P. W. E. Smith, “Spatial optical solitons in planar glass waveguides,” J. Opt. Soc. Am. B 8, 1290–1295 (1990).
[Crossref]

Y. Silberberg, “Solitons and two-photon absorption,” Opt. Lett. 15, 1005–1007 (1990).
[Crossref] [PubMed]

Smith, P. W. E.

Somekh, S.

S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, and R. G. Hunsperger, “Channel optical waveguide directional coupler,” Appl. Phys. Lett. 22, 46–48 (1973).
[Crossref]

Stegeman, G. I.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[Crossref]

Trillo, S.

A. B. Aceves, C. De Angelis, T. Peschel, R. Muschall, F. Lederer, S. Trillo, and S. Wabnitz, “Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays,” Phys. Rev. E 53, 1172–1189 (1996).
[Crossref]

A. B. Aceves, C. De Angelis, S. Trillo, and S. Wabnitz, “Storage and steering of self-trapped discrete solitons in nonlinear waveguide arrays,” Opt. Lett. 19, 332–334 (1994).
[Crossref] [PubMed]

Trutschel, U.

Villeneuve, A.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[Crossref]

Vogel, E. M.

Wabnitz, S.

A. B. Aceves, C. De Angelis, T. Peschel, R. Muschall, F. Lederer, S. Trillo, and S. Wabnitz, “Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays,” Phys. Rev. E 53, 1172–1189 (1996).
[Crossref]

A. B. Aceves, C. De Angelis, S. Trillo, and S. Wabnitz, “Storage and steering of self-trapped discrete solitons in nonlinear waveguide arrays,” Opt. Lett. 19, 332–334 (1994).
[Crossref] [PubMed]

Weiner, A. M.

Willis, C. R.

S. Flach and C. R. Willis, “Discrete breathers,” Phys. Rep. 295, 182–264 (1998).
[Crossref]

Yariv, A.

S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, and R. G. Hunsperger, “Channel optical waveguide directional coupler,” Appl. Phys. Lett. 22, 46–48 (1973).
[Crossref]

A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991), pp. 519–524.

Zakharov, V. E.

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self focusing and one-dimensional self modulation of waves in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).

Zentgraf, T.

T. Pertsch, T. Zentgraf, U. Peschel, A. Bräuer, and F. Lederer, “Anomalous refraction and diffraction in discrete optical systems,” Phys. Rev. Lett. 88, 0939011–4 (2002).
[Crossref]

Appl. Phys. Lett. (1)

S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, and R. G. Hunsperger, “Channel optical waveguide directional coupler,” Appl. Phys. Lett. 22, 46–48 (1973).
[Crossref]

IEEE J. Quantum Electron. (1)

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

A. Barthelemy, S. Maneuf, and C. Froely, “Propagation soliton et auto-confinement de faisceaux laser par nonlinearité optique de Kerr,” Opt. Commun. 55, 201–206 (1985).
[Crossref]

Y. V. Afanasjev, J. S. Aitchison, and Y. S. Kivshar, “Splitting of high-order spatial solitons under the action of 2-photon absorption,” Opt. Commun. 116, 331–338 (1995).
[Crossref]

Opt. Lett. (5)

Phys. Rep. (1)

S. Flach and C. R. Willis, “Discrete breathers,” Phys. Rep. 295, 182–264 (1998).
[Crossref]

Phys. Rev. E (1)

A. B. Aceves, C. De Angelis, T. Peschel, R. Muschall, F. Lederer, S. Trillo, and S. Wabnitz, “Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays,” Phys. Rev. E 53, 1172–1189 (1996).
[Crossref]

Phys. Rev. Lett. (4)

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Dynamics of discrete solitons in optical waveguide arrays,” Phys. Rev. Lett. 83, 2726–2729 (1999).
[Crossref]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[Crossref]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[Crossref] [PubMed]

T. Pertsch, T. Zentgraf, U. Peschel, A. Bräuer, and F. Lederer, “Anomalous refraction and diffraction in discrete optical systems,” Phys. Rev. Lett. 88, 0939011–4 (2002).
[Crossref]

Sov. Phys. JETP (1)

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self focusing and one-dimensional self modulation of waves in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).

Other (1)

A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991), pp. 519–524.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Hamiltonian versus energy for a type A (centered on a guide) and a type B (centered between two guides) solution. The difference marks the PNP, which describes the dynamic properties of the solution. The inset shows the two types of solution for a peak power of approximately 1500 W.

Fig. 2
Fig. 2

Experimental setup and a viewgraph of the sample.

Fig. 3
Fig. 3

Experimentally recorded soliton formation and beam breakup for a 20-µm-wide input beam and different power levels.

Fig. 4
Fig. 4

Simulation of the width of the output field distribution on the basis of a complete model [see Eq. (3)] (white, wide output beam; black, narrow output beam). Depending on the beam size and the input power three different situations can be distinguished: I, linear diffractive spreading; II, formation of a discrete soliton; III, soliton splitting.

Fig. 5
Fig. 5

Power-induced locking of a discrete soliton for a small initial tilt. (a) Field profiles for low (thin curve) and high (thick curve) power. (b) Contour plot of output field profiles versus input peak power (initial tilt, ≈0.15° in AlGaAs; 9-µm beam size).

Fig. 6
Fig. 6

Power-induced locking of a discrete soliton for a large initial tilt. (a) Field profiles for low (thin curve) and high (thick curve) power. (b) Contour plot of output field profiles versus input peak power (initial tilt, ≈0.5° in AlGaAs; 9-µm beam size).

Fig. 7
Fig. 7

Angular steering of a discrete soliton showing output profile versus input angle: (a) single soliton state with a narrow beam (9-µm beam size, ≈1500-W peak power); (b) single soliton state with a wider beam (13-µm beam size, ≈1200-W peak power); (c) soliton breakup for a larger beam (20-µm beam size, ≈2000-W peak power).

Fig. 8
Fig. 8

Output field profiles for an input position on a waveguide (position 0) and between two waveguides (position 3.2 µm or 0.35 waveguide spacing). The soliton moves in the direction opposite the displacement (9-µm beam size, 1500-W peak power, no initial tilt was introduced).

Fig. 9
Fig. 9

Output field profiles versus input position for single soliton states of different widths: (a) 9-µm beam size, 1500-W peak power, (b) 13-µm beam size, 1200-W peak power, (c) 20-µm beam size, 800-W peak power (solid line, input beam centered on a waveguide; dashed line, input beam centered between two waveguides).

Fig. 10
Fig. 10

Simulation of the field propagation based on the DNLS equation [see Eq. (1)] for different input positions (700-W power; 9-µm beam size; dashed line, sample length).

Fig. 11
Fig. 11

Simulation based on the DNLS equation [see Eq. (1)] of the field propagation of a displaced beam for different power levels (9-µm beam size; dashed line, sample length; input position, 0.7 waveguide spacing): (a) 700-W power, (b) 850-W power, (c) 1000-W power.

Fig. 12
Fig. 12

Simulations of the position-dependent steering based on a complete set of equations [see Eq. (3)]. The entire distance between two waveguides was scanned with the input beam, and the maximum displacement of the first momentum of the power distribution is represented in the graph. Bright areas denote high displacement. The horizontal scale shows incoupled power for the beam centered on a waveguide whereas the vertical scale represents the beam width in terms of FWHM of the input beam. The propagation length is 6 mm.

Fig. 13
Fig. 13

Output field profiles versus input position if beam breakup occurs (20-µm beam size, 2000-W peak power).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

idEndz+C(En+1+En-1)+γ|En|2En=0,
P=n|En|2,
H=nC|En-En-1|2-γ2|En|4.
iEnz-D22Ent2+iα12En+γ|En|2En
+iα3|En|4En+C(En+1+En-1)=0,
En(z=0, t)=Pmaxn exp[-2(n-n0)2/W2]1/2×exp[-(n-n0)2/W2-(t-t0)2/T2],
WWb2+Wm22 ln(2)d21/2.

Metrics