Abstract

In a harmonically mode-locked laser multiple optical pulses propagate inside the laser cavity. The noise in different pulses inside the laser cavity is in general correlated. Information regarding the sign and magnitude of the noise correlations is contained in the distribution of the spectral weight among the supermode noise peaks that appear in the pulse energy and timing noise spectral densities. We show that the supermode noise spectrum obtained experimentally by measurement of the photodetector current noise spectral density can be used to determine the correlations in the energy and the timing noise of different pulses in the laser cavity. We also present simple models for the timing noise in harmonically mode-locked lasers that demonstrate the relationship between the noise correlations and the supermode noise peaks.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (84)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription