Abstract

A thermal atomic beam from a cesium oven was slowed down by use of the Hoffnagle modified white-light cooling technique. In addition, the atomic beam was collimated by use of a two-dimensional optical molasses that was installed transverse to the atomic-beam direction. The flux of the atomic beam was 2×1010 atoms/s, an increase of a factor of 16 as a result of the collimation. The mean longitudinal velocity was ∼24.4 m/s, and the rms velocity spread of the slowed atomic beam was ∼1 m/s. Compared with other methods, we found that the Hoffnagle method is suitable for the generation of slow atomic beams to be used in an atomic clock, which requires an ultralow magnetic field environment. This atomic beam was deflected by an angle of 30° by a one-dimensional optical molasses to separate it from laser light and high-velocity atoms.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Wineland, W. M. Itano, J. C. Bergquist, and R. G. Hulet, “Laser-cooling limits and single-ion spectroscopy,” Phys. Rev. A 36, 2220–2232 (1987).
    [CrossRef] [PubMed]
  2. A. Witte, Th. Kisters, F. Riehle, and J. Helmcke, “Laser cooling and deflection of a calcium atomic beam,” J. Opt. Soc. Am. B 9, 1030–1037 (1992).
    [CrossRef]
  3. H. R. Thorsheim, Y. Wang, and J. Weiner, “Cold collisions in an atomic beam,” Phys. Rev. A 41, 2873–2876 (1990).
    [CrossRef] [PubMed]
  4. H. S. Lee, S. E. Park, T. Y. Kwon, S. H. Yang, and H. Cho, “Toward a cesium frequency standard based on a continuous slow atomic beam: preliminary results,” IEEE Trans. Instrum. Meas. 50, 531–534 (2001).
    [CrossRef]
  5. G. Dudle, A. Joyet, P. Berthoud, G. Mileti, and P. Thomann, “First results with a cold cesium continuous fountain resonator,” IEEE Trans. Instrum. Meas. 50, 510–514 (2001).
    [CrossRef]
  6. W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, “Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal,” Phys. Rev. Lett. 54, 996–999 (1985).
    [CrossRef] [PubMed]
  7. R. N. Watts and C. E. Wieman, “Manipulating atomic velocities using diode lasers,” Opt. Lett. 11, 291–293 (1986).
    [CrossRef] [PubMed]
  8. J. V. Prodan, W. D. Phillips, and H. Metcalf, “Laser production of a very slow monoenergetic atomic beam,” Phys. Rev. Lett. 49, 1149–1153 (1982).
    [CrossRef]
  9. J. V. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, and J. Dalibard, “Stopping atoms with laser light,” Phys. Rev. Lett. 54, 992–995 (1985).
    [CrossRef] [PubMed]
  10. F. Lison, P. Schuh, D. Haubrich, and D. Meschede, “High-brilliance Zeeman-slowed cesium atomic beam,” Phys. Rev. A 61, 013405 (2000).
    [CrossRef]
  11. T. V. Zueva and V. G. Minogin, “Optimum slowing of atoms by a resonant laser beam,” Pis'ma Zh. Tekh. Fiz. 7, 953–956 (1981).
  12. L. Moi, “Application of a very long cavity laser to atom slowing down and optical pumping,” Opt. Commun. 50, 349–352 (1984).
    [CrossRef]
  13. P. Strohmeier, T. Kersebom, E. Kruger, H. Nolle, and B. Steuter, “Na-atom beam deceleration by a mode-locked laser,” Opt. Commun. 73, 451–454 (1989).
    [CrossRef]
  14. S. Gozzini, E. Mariotti, C. Gabbanini, A. Lucchesini, C. Marinelli, and L. Moi, “Atom cooling by white light,” Appl. Phys. B 54, 428–433 (1992).
    [CrossRef]
  15. Y. Chan and N. D. Bhaskar, “Cooling of cesium atomic beam with light from spectrally broadened diode lasers,” J. Opt. Soc. Am. B 12, 2347–2351 (1995).
    [CrossRef]
  16. S. N. Atutov, F. Bonazzi, R. Calabrese, V. Guidi, P. Lenisa, S. Petruio, E. Mariotti, and L. Moi, “Generation of a frequency comb with a sharp edge of adjustable intensity and frequency,” Opt. Commun. 132, 269–274 (1996).
    [CrossRef]
  17. S. N. Atutov, R. Calabrese, R. Grimm, V. Guidi, I. Lauer, P. Lenisa, V. Luger, E. Mariotti, L. Moi, A. Peters, U. Schramm, and M. Stössel, “White-light laser cooling of a fast stored ion beam,” Phys. Rev. Lett. 80, 2129–2132 (1998).
    [CrossRef]
  18. Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996).
    [CrossRef] [PubMed]
  19. K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. T. M. Walraven, “Two-dimensional magneto-optical trap as a source of slow atoms,” Phys. Rev. A 58, 3891–3895 (1998).
    [CrossRef]
  20. P. Berthoud, E. Fretel, and P. Thomann, “Bright, slow, and continuous beam of laser-cooled cesium atoms,” Phys. Rev. A 60, R4241–R4244 (1999).
    [CrossRef]
  21. J. Hoffnagle, “Proposal for continuous white-light cooling of an atomic beam,” Opt. Lett. 13, 102–104 (1988).
    [CrossRef] [PubMed]
  22. M. Zhu, C. W. Oates, and J. L. Hall, “Continuous high-flux monovelocity atomic beam based on a broadband laser-cooling technique,” Phys. Rev. Lett. 67, 46–49 (1991).
    [CrossRef] [PubMed]
  23. A. S. Parkins and P. Zoller, “Laser cooling of atoms with broadband real Gaussian laser fields,” Phys. Rev. A 45, 6522–6538 (1992).
    [CrossRef] [PubMed]
  24. R. Ohmukai, H. Imajo, K. Hayasaka, U. Tanaka, M. Watanabe, and S. Urabe, “Isotope-selected measurements of the velocity-controlled Yb atomic beam,” Appl. Phys. B 64, 547–551 (1997).
    [CrossRef]
  25. M. Watanabe, R. Ohmukai, U. Tanaka, K. Hayasaka, H. Imajo, and S. Urabe, “Velocity control of a Yb beam by a frequency-doubled mode-locked laser,” J. Opt. Soc. Am. B 13, 2377–2381 (1996).
    [CrossRef]
  26. V. G. Minogin and V. S. Letokhov, Laser Light Pressure on Atoms (Gordon & Breach, New York, 1987).
  27. S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun. 192, 49–55 (2001).
    [CrossRef]
  28. M. A. Joffe, W. Ketterle, A. G. Martin, and D. E. Pritchard, “Transverse cooling and deflection of an atomic beam inside a Zeeman slower,” J. Opt. Soc. Am. B 10, 2257–2262 (1993).
    [CrossRef]
  29. A. Aspect, N. Vansteenkiste, and R. Kaiser, “Preparation of a pure intense beam of metastable helium by laser cooling,” Chem. Phys. 145, 307–315 (1990).
    [CrossRef]
  30. M. D. Hoogerland, J. P. J. Driessen, E. J. D. Vredenbregt, H. J. L. Megens, M. P. Schuwer, H. C. W. Beijerinck, and K. A. H. van Leeuwen, “Bright thermal atomic beams by laser cooling: a 1400-fold gain in beam flux,” Appl. Phys. B 62, 323–327 (1996).
    [CrossRef]
  31. S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Collimation of a beam of caesium atoms by optical molasses, with resulting reduction in longitudinal beam velocity,” Opt. Commun. 192, 47–63 (2001).
    [CrossRef]
  32. A. Witte, Th. Kisters, F. Riehle, and J. Helmcke, “Laser cooling and deflection of a calcium atomic beam,” J. Opt. Soc. Am. B 9, 1030–1037 (1992).
    [CrossRef]
  33. H. S. Moon, J. B. Kim, S. E. Park, H. Cho, T. Y. Kwon, S. H. Yang, and H. S. Lee, “Coherent population transfer by using adiabatic following in a cooled atomic Cs beam,” J. Korean Phys. Soc. 37, 680–684 (2000).

2001 (4)

H. S. Lee, S. E. Park, T. Y. Kwon, S. H. Yang, and H. Cho, “Toward a cesium frequency standard based on a continuous slow atomic beam: preliminary results,” IEEE Trans. Instrum. Meas. 50, 531–534 (2001).
[CrossRef]

G. Dudle, A. Joyet, P. Berthoud, G. Mileti, and P. Thomann, “First results with a cold cesium continuous fountain resonator,” IEEE Trans. Instrum. Meas. 50, 510–514 (2001).
[CrossRef]

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun. 192, 49–55 (2001).
[CrossRef]

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Collimation of a beam of caesium atoms by optical molasses, with resulting reduction in longitudinal beam velocity,” Opt. Commun. 192, 47–63 (2001).
[CrossRef]

2000 (2)

H. S. Moon, J. B. Kim, S. E. Park, H. Cho, T. Y. Kwon, S. H. Yang, and H. S. Lee, “Coherent population transfer by using adiabatic following in a cooled atomic Cs beam,” J. Korean Phys. Soc. 37, 680–684 (2000).

F. Lison, P. Schuh, D. Haubrich, and D. Meschede, “High-brilliance Zeeman-slowed cesium atomic beam,” Phys. Rev. A 61, 013405 (2000).
[CrossRef]

1999 (1)

P. Berthoud, E. Fretel, and P. Thomann, “Bright, slow, and continuous beam of laser-cooled cesium atoms,” Phys. Rev. A 60, R4241–R4244 (1999).
[CrossRef]

1998 (2)

K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. T. M. Walraven, “Two-dimensional magneto-optical trap as a source of slow atoms,” Phys. Rev. A 58, 3891–3895 (1998).
[CrossRef]

S. N. Atutov, R. Calabrese, R. Grimm, V. Guidi, I. Lauer, P. Lenisa, V. Luger, E. Mariotti, L. Moi, A. Peters, U. Schramm, and M. Stössel, “White-light laser cooling of a fast stored ion beam,” Phys. Rev. Lett. 80, 2129–2132 (1998).
[CrossRef]

1997 (1)

R. Ohmukai, H. Imajo, K. Hayasaka, U. Tanaka, M. Watanabe, and S. Urabe, “Isotope-selected measurements of the velocity-controlled Yb atomic beam,” Appl. Phys. B 64, 547–551 (1997).
[CrossRef]

1996 (4)

M. D. Hoogerland, J. P. J. Driessen, E. J. D. Vredenbregt, H. J. L. Megens, M. P. Schuwer, H. C. W. Beijerinck, and K. A. H. van Leeuwen, “Bright thermal atomic beams by laser cooling: a 1400-fold gain in beam flux,” Appl. Phys. B 62, 323–327 (1996).
[CrossRef]

M. Watanabe, R. Ohmukai, U. Tanaka, K. Hayasaka, H. Imajo, and S. Urabe, “Velocity control of a Yb beam by a frequency-doubled mode-locked laser,” J. Opt. Soc. Am. B 13, 2377–2381 (1996).
[CrossRef]

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996).
[CrossRef] [PubMed]

S. N. Atutov, F. Bonazzi, R. Calabrese, V. Guidi, P. Lenisa, S. Petruio, E. Mariotti, and L. Moi, “Generation of a frequency comb with a sharp edge of adjustable intensity and frequency,” Opt. Commun. 132, 269–274 (1996).
[CrossRef]

1995 (1)

1993 (1)

1992 (4)

A. S. Parkins and P. Zoller, “Laser cooling of atoms with broadband real Gaussian laser fields,” Phys. Rev. A 45, 6522–6538 (1992).
[CrossRef] [PubMed]

A. Witte, Th. Kisters, F. Riehle, and J. Helmcke, “Laser cooling and deflection of a calcium atomic beam,” J. Opt. Soc. Am. B 9, 1030–1037 (1992).
[CrossRef]

A. Witte, Th. Kisters, F. Riehle, and J. Helmcke, “Laser cooling and deflection of a calcium atomic beam,” J. Opt. Soc. Am. B 9, 1030–1037 (1992).
[CrossRef]

S. Gozzini, E. Mariotti, C. Gabbanini, A. Lucchesini, C. Marinelli, and L. Moi, “Atom cooling by white light,” Appl. Phys. B 54, 428–433 (1992).
[CrossRef]

1991 (1)

M. Zhu, C. W. Oates, and J. L. Hall, “Continuous high-flux monovelocity atomic beam based on a broadband laser-cooling technique,” Phys. Rev. Lett. 67, 46–49 (1991).
[CrossRef] [PubMed]

1990 (2)

H. R. Thorsheim, Y. Wang, and J. Weiner, “Cold collisions in an atomic beam,” Phys. Rev. A 41, 2873–2876 (1990).
[CrossRef] [PubMed]

A. Aspect, N. Vansteenkiste, and R. Kaiser, “Preparation of a pure intense beam of metastable helium by laser cooling,” Chem. Phys. 145, 307–315 (1990).
[CrossRef]

1989 (1)

P. Strohmeier, T. Kersebom, E. Kruger, H. Nolle, and B. Steuter, “Na-atom beam deceleration by a mode-locked laser,” Opt. Commun. 73, 451–454 (1989).
[CrossRef]

1988 (1)

1987 (1)

D. J. Wineland, W. M. Itano, J. C. Bergquist, and R. G. Hulet, “Laser-cooling limits and single-ion spectroscopy,” Phys. Rev. A 36, 2220–2232 (1987).
[CrossRef] [PubMed]

1986 (1)

1985 (2)

J. V. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, and J. Dalibard, “Stopping atoms with laser light,” Phys. Rev. Lett. 54, 992–995 (1985).
[CrossRef] [PubMed]

W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, “Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal,” Phys. Rev. Lett. 54, 996–999 (1985).
[CrossRef] [PubMed]

1984 (1)

L. Moi, “Application of a very long cavity laser to atom slowing down and optical pumping,” Opt. Commun. 50, 349–352 (1984).
[CrossRef]

1982 (1)

J. V. Prodan, W. D. Phillips, and H. Metcalf, “Laser production of a very slow monoenergetic atomic beam,” Phys. Rev. Lett. 49, 1149–1153 (1982).
[CrossRef]

1981 (1)

T. V. Zueva and V. G. Minogin, “Optimum slowing of atoms by a resonant laser beam,” Pis'ma Zh. Tekh. Fiz. 7, 953–956 (1981).

Anderson, M. H.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996).
[CrossRef] [PubMed]

Aspect, A.

A. Aspect, N. Vansteenkiste, and R. Kaiser, “Preparation of a pure intense beam of metastable helium by laser cooling,” Chem. Phys. 145, 307–315 (1990).
[CrossRef]

Atutov, S. N.

S. N. Atutov, R. Calabrese, R. Grimm, V. Guidi, I. Lauer, P. Lenisa, V. Luger, E. Mariotti, L. Moi, A. Peters, U. Schramm, and M. Stössel, “White-light laser cooling of a fast stored ion beam,” Phys. Rev. Lett. 80, 2129–2132 (1998).
[CrossRef]

S. N. Atutov, F. Bonazzi, R. Calabrese, V. Guidi, P. Lenisa, S. Petruio, E. Mariotti, and L. Moi, “Generation of a frequency comb with a sharp edge of adjustable intensity and frequency,” Opt. Commun. 132, 269–274 (1996).
[CrossRef]

Beijerinck, H. C. W.

M. D. Hoogerland, J. P. J. Driessen, E. J. D. Vredenbregt, H. J. L. Megens, M. P. Schuwer, H. C. W. Beijerinck, and K. A. H. van Leeuwen, “Bright thermal atomic beams by laser cooling: a 1400-fold gain in beam flux,” Appl. Phys. B 62, 323–327 (1996).
[CrossRef]

Bergquist, J. C.

D. J. Wineland, W. M. Itano, J. C. Bergquist, and R. G. Hulet, “Laser-cooling limits and single-ion spectroscopy,” Phys. Rev. A 36, 2220–2232 (1987).
[CrossRef] [PubMed]

Berthoud, P.

G. Dudle, A. Joyet, P. Berthoud, G. Mileti, and P. Thomann, “First results with a cold cesium continuous fountain resonator,” IEEE Trans. Instrum. Meas. 50, 510–514 (2001).
[CrossRef]

P. Berthoud, E. Fretel, and P. Thomann, “Bright, slow, and continuous beam of laser-cooled cesium atoms,” Phys. Rev. A 60, R4241–R4244 (1999).
[CrossRef]

Bhaskar, N. D.

Blatt, R.

W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, “Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal,” Phys. Rev. Lett. 54, 996–999 (1985).
[CrossRef] [PubMed]

Bonazzi, F.

S. N. Atutov, F. Bonazzi, R. Calabrese, V. Guidi, P. Lenisa, S. Petruio, E. Mariotti, and L. Moi, “Generation of a frequency comb with a sharp edge of adjustable intensity and frequency,” Opt. Commun. 132, 269–274 (1996).
[CrossRef]

Calabrese, R.

S. N. Atutov, R. Calabrese, R. Grimm, V. Guidi, I. Lauer, P. Lenisa, V. Luger, E. Mariotti, L. Moi, A. Peters, U. Schramm, and M. Stössel, “White-light laser cooling of a fast stored ion beam,” Phys. Rev. Lett. 80, 2129–2132 (1998).
[CrossRef]

S. N. Atutov, F. Bonazzi, R. Calabrese, V. Guidi, P. Lenisa, S. Petruio, E. Mariotti, and L. Moi, “Generation of a frequency comb with a sharp edge of adjustable intensity and frequency,” Opt. Commun. 132, 269–274 (1996).
[CrossRef]

Chan, Y.

Cho, H.

H. S. Lee, S. E. Park, T. Y. Kwon, S. H. Yang, and H. Cho, “Toward a cesium frequency standard based on a continuous slow atomic beam: preliminary results,” IEEE Trans. Instrum. Meas. 50, 531–534 (2001).
[CrossRef]

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun. 192, 49–55 (2001).
[CrossRef]

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Collimation of a beam of caesium atoms by optical molasses, with resulting reduction in longitudinal beam velocity,” Opt. Commun. 192, 47–63 (2001).
[CrossRef]

H. S. Moon, J. B. Kim, S. E. Park, H. Cho, T. Y. Kwon, S. H. Yang, and H. S. Lee, “Coherent population transfer by using adiabatic following in a cooled atomic Cs beam,” J. Korean Phys. Soc. 37, 680–684 (2000).

Cornell, E. A.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996).
[CrossRef] [PubMed]

Corwin, K. L.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996).
[CrossRef] [PubMed]

Dalibard, J.

J. V. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, and J. Dalibard, “Stopping atoms with laser light,” Phys. Rev. Lett. 54, 992–995 (1985).
[CrossRef] [PubMed]

Dieckmann, K.

K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. T. M. Walraven, “Two-dimensional magneto-optical trap as a source of slow atoms,” Phys. Rev. A 58, 3891–3895 (1998).
[CrossRef]

Driessen, J. P. J.

M. D. Hoogerland, J. P. J. Driessen, E. J. D. Vredenbregt, H. J. L. Megens, M. P. Schuwer, H. C. W. Beijerinck, and K. A. H. van Leeuwen, “Bright thermal atomic beams by laser cooling: a 1400-fold gain in beam flux,” Appl. Phys. B 62, 323–327 (1996).
[CrossRef]

Dudle, G.

G. Dudle, A. Joyet, P. Berthoud, G. Mileti, and P. Thomann, “First results with a cold cesium continuous fountain resonator,” IEEE Trans. Instrum. Meas. 50, 510–514 (2001).
[CrossRef]

Ertmer, W.

W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, “Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal,” Phys. Rev. Lett. 54, 996–999 (1985).
[CrossRef] [PubMed]

Fretel, E.

P. Berthoud, E. Fretel, and P. Thomann, “Bright, slow, and continuous beam of laser-cooled cesium atoms,” Phys. Rev. A 60, R4241–R4244 (1999).
[CrossRef]

Gabbanini, C.

S. Gozzini, E. Mariotti, C. Gabbanini, A. Lucchesini, C. Marinelli, and L. Moi, “Atom cooling by white light,” Appl. Phys. B 54, 428–433 (1992).
[CrossRef]

Gozzini, S.

S. Gozzini, E. Mariotti, C. Gabbanini, A. Lucchesini, C. Marinelli, and L. Moi, “Atom cooling by white light,” Appl. Phys. B 54, 428–433 (1992).
[CrossRef]

Grimm, R.

S. N. Atutov, R. Calabrese, R. Grimm, V. Guidi, I. Lauer, P. Lenisa, V. Luger, E. Mariotti, L. Moi, A. Peters, U. Schramm, and M. Stössel, “White-light laser cooling of a fast stored ion beam,” Phys. Rev. Lett. 80, 2129–2132 (1998).
[CrossRef]

Guidi, V.

S. N. Atutov, R. Calabrese, R. Grimm, V. Guidi, I. Lauer, P. Lenisa, V. Luger, E. Mariotti, L. Moi, A. Peters, U. Schramm, and M. Stössel, “White-light laser cooling of a fast stored ion beam,” Phys. Rev. Lett. 80, 2129–2132 (1998).
[CrossRef]

S. N. Atutov, F. Bonazzi, R. Calabrese, V. Guidi, P. Lenisa, S. Petruio, E. Mariotti, and L. Moi, “Generation of a frequency comb with a sharp edge of adjustable intensity and frequency,” Opt. Commun. 132, 269–274 (1996).
[CrossRef]

Hall, J. L.

M. Zhu, C. W. Oates, and J. L. Hall, “Continuous high-flux monovelocity atomic beam based on a broadband laser-cooling technique,” Phys. Rev. Lett. 67, 46–49 (1991).
[CrossRef] [PubMed]

W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, “Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal,” Phys. Rev. Lett. 54, 996–999 (1985).
[CrossRef] [PubMed]

Haubrich, D.

F. Lison, P. Schuh, D. Haubrich, and D. Meschede, “High-brilliance Zeeman-slowed cesium atomic beam,” Phys. Rev. A 61, 013405 (2000).
[CrossRef]

Hayasaka, K.

R. Ohmukai, H. Imajo, K. Hayasaka, U. Tanaka, M. Watanabe, and S. Urabe, “Isotope-selected measurements of the velocity-controlled Yb atomic beam,” Appl. Phys. B 64, 547–551 (1997).
[CrossRef]

M. Watanabe, R. Ohmukai, U. Tanaka, K. Hayasaka, H. Imajo, and S. Urabe, “Velocity control of a Yb beam by a frequency-doubled mode-locked laser,” J. Opt. Soc. Am. B 13, 2377–2381 (1996).
[CrossRef]

Helmcke, J.

Hoffnagle, J.

Hoogerland, M. D.

M. D. Hoogerland, J. P. J. Driessen, E. J. D. Vredenbregt, H. J. L. Megens, M. P. Schuwer, H. C. W. Beijerinck, and K. A. H. van Leeuwen, “Bright thermal atomic beams by laser cooling: a 1400-fold gain in beam flux,” Appl. Phys. B 62, 323–327 (1996).
[CrossRef]

Hulet, R. G.

D. J. Wineland, W. M. Itano, J. C. Bergquist, and R. G. Hulet, “Laser-cooling limits and single-ion spectroscopy,” Phys. Rev. A 36, 2220–2232 (1987).
[CrossRef] [PubMed]

Imajo, H.

R. Ohmukai, H. Imajo, K. Hayasaka, U. Tanaka, M. Watanabe, and S. Urabe, “Isotope-selected measurements of the velocity-controlled Yb atomic beam,” Appl. Phys. B 64, 547–551 (1997).
[CrossRef]

M. Watanabe, R. Ohmukai, U. Tanaka, K. Hayasaka, H. Imajo, and S. Urabe, “Velocity control of a Yb beam by a frequency-doubled mode-locked laser,” J. Opt. Soc. Am. B 13, 2377–2381 (1996).
[CrossRef]

Itano, W. M.

D. J. Wineland, W. M. Itano, J. C. Bergquist, and R. G. Hulet, “Laser-cooling limits and single-ion spectroscopy,” Phys. Rev. A 36, 2220–2232 (1987).
[CrossRef] [PubMed]

Joffe, M. A.

Joyet, A.

G. Dudle, A. Joyet, P. Berthoud, G. Mileti, and P. Thomann, “First results with a cold cesium continuous fountain resonator,” IEEE Trans. Instrum. Meas. 50, 510–514 (2001).
[CrossRef]

Kaiser, R.

A. Aspect, N. Vansteenkiste, and R. Kaiser, “Preparation of a pure intense beam of metastable helium by laser cooling,” Chem. Phys. 145, 307–315 (1990).
[CrossRef]

Kersebom, T.

P. Strohmeier, T. Kersebom, E. Kruger, H. Nolle, and B. Steuter, “Na-atom beam deceleration by a mode-locked laser,” Opt. Commun. 73, 451–454 (1989).
[CrossRef]

Ketterle, W.

Kim, J. B.

H. S. Moon, J. B. Kim, S. E. Park, H. Cho, T. Y. Kwon, S. H. Yang, and H. S. Lee, “Coherent population transfer by using adiabatic following in a cooled atomic Cs beam,” J. Korean Phys. Soc. 37, 680–684 (2000).

Kisters, Th.

Kruger, E.

P. Strohmeier, T. Kersebom, E. Kruger, H. Nolle, and B. Steuter, “Na-atom beam deceleration by a mode-locked laser,” Opt. Commun. 73, 451–454 (1989).
[CrossRef]

Kwon, T. Y.

H. S. Lee, S. E. Park, T. Y. Kwon, S. H. Yang, and H. Cho, “Toward a cesium frequency standard based on a continuous slow atomic beam: preliminary results,” IEEE Trans. Instrum. Meas. 50, 531–534 (2001).
[CrossRef]

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun. 192, 49–55 (2001).
[CrossRef]

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Collimation of a beam of caesium atoms by optical molasses, with resulting reduction in longitudinal beam velocity,” Opt. Commun. 192, 47–63 (2001).
[CrossRef]

H. S. Moon, J. B. Kim, S. E. Park, H. Cho, T. Y. Kwon, S. H. Yang, and H. S. Lee, “Coherent population transfer by using adiabatic following in a cooled atomic Cs beam,” J. Korean Phys. Soc. 37, 680–684 (2000).

Lauer, I.

S. N. Atutov, R. Calabrese, R. Grimm, V. Guidi, I. Lauer, P. Lenisa, V. Luger, E. Mariotti, L. Moi, A. Peters, U. Schramm, and M. Stössel, “White-light laser cooling of a fast stored ion beam,” Phys. Rev. Lett. 80, 2129–2132 (1998).
[CrossRef]

Lee, H. S.

H. S. Lee, S. E. Park, T. Y. Kwon, S. H. Yang, and H. Cho, “Toward a cesium frequency standard based on a continuous slow atomic beam: preliminary results,” IEEE Trans. Instrum. Meas. 50, 531–534 (2001).
[CrossRef]

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun. 192, 49–55 (2001).
[CrossRef]

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Collimation of a beam of caesium atoms by optical molasses, with resulting reduction in longitudinal beam velocity,” Opt. Commun. 192, 47–63 (2001).
[CrossRef]

H. S. Moon, J. B. Kim, S. E. Park, H. Cho, T. Y. Kwon, S. H. Yang, and H. S. Lee, “Coherent population transfer by using adiabatic following in a cooled atomic Cs beam,” J. Korean Phys. Soc. 37, 680–684 (2000).

Lenisa, P.

S. N. Atutov, R. Calabrese, R. Grimm, V. Guidi, I. Lauer, P. Lenisa, V. Luger, E. Mariotti, L. Moi, A. Peters, U. Schramm, and M. Stössel, “White-light laser cooling of a fast stored ion beam,” Phys. Rev. Lett. 80, 2129–2132 (1998).
[CrossRef]

S. N. Atutov, F. Bonazzi, R. Calabrese, V. Guidi, P. Lenisa, S. Petruio, E. Mariotti, and L. Moi, “Generation of a frequency comb with a sharp edge of adjustable intensity and frequency,” Opt. Commun. 132, 269–274 (1996).
[CrossRef]

Lison, F.

F. Lison, P. Schuh, D. Haubrich, and D. Meschede, “High-brilliance Zeeman-slowed cesium atomic beam,” Phys. Rev. A 61, 013405 (2000).
[CrossRef]

Lu, Z. T.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996).
[CrossRef] [PubMed]

Lucchesini, A.

S. Gozzini, E. Mariotti, C. Gabbanini, A. Lucchesini, C. Marinelli, and L. Moi, “Atom cooling by white light,” Appl. Phys. B 54, 428–433 (1992).
[CrossRef]

Luger, V.

S. N. Atutov, R. Calabrese, R. Grimm, V. Guidi, I. Lauer, P. Lenisa, V. Luger, E. Mariotti, L. Moi, A. Peters, U. Schramm, and M. Stössel, “White-light laser cooling of a fast stored ion beam,” Phys. Rev. Lett. 80, 2129–2132 (1998).
[CrossRef]

Marinelli, C.

S. Gozzini, E. Mariotti, C. Gabbanini, A. Lucchesini, C. Marinelli, and L. Moi, “Atom cooling by white light,” Appl. Phys. B 54, 428–433 (1992).
[CrossRef]

Mariotti, E.

S. N. Atutov, R. Calabrese, R. Grimm, V. Guidi, I. Lauer, P. Lenisa, V. Luger, E. Mariotti, L. Moi, A. Peters, U. Schramm, and M. Stössel, “White-light laser cooling of a fast stored ion beam,” Phys. Rev. Lett. 80, 2129–2132 (1998).
[CrossRef]

S. N. Atutov, F. Bonazzi, R. Calabrese, V. Guidi, P. Lenisa, S. Petruio, E. Mariotti, and L. Moi, “Generation of a frequency comb with a sharp edge of adjustable intensity and frequency,” Opt. Commun. 132, 269–274 (1996).
[CrossRef]

S. Gozzini, E. Mariotti, C. Gabbanini, A. Lucchesini, C. Marinelli, and L. Moi, “Atom cooling by white light,” Appl. Phys. B 54, 428–433 (1992).
[CrossRef]

Martin, A. G.

Megens, H. J. L.

M. D. Hoogerland, J. P. J. Driessen, E. J. D. Vredenbregt, H. J. L. Megens, M. P. Schuwer, H. C. W. Beijerinck, and K. A. H. van Leeuwen, “Bright thermal atomic beams by laser cooling: a 1400-fold gain in beam flux,” Appl. Phys. B 62, 323–327 (1996).
[CrossRef]

Meschede, D.

F. Lison, P. Schuh, D. Haubrich, and D. Meschede, “High-brilliance Zeeman-slowed cesium atomic beam,” Phys. Rev. A 61, 013405 (2000).
[CrossRef]

Metcalf, H.

J. V. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, and J. Dalibard, “Stopping atoms with laser light,” Phys. Rev. Lett. 54, 992–995 (1985).
[CrossRef] [PubMed]

J. V. Prodan, W. D. Phillips, and H. Metcalf, “Laser production of a very slow monoenergetic atomic beam,” Phys. Rev. Lett. 49, 1149–1153 (1982).
[CrossRef]

Migdall, A.

J. V. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, and J. Dalibard, “Stopping atoms with laser light,” Phys. Rev. Lett. 54, 992–995 (1985).
[CrossRef] [PubMed]

Mileti, G.

G. Dudle, A. Joyet, P. Berthoud, G. Mileti, and P. Thomann, “First results with a cold cesium continuous fountain resonator,” IEEE Trans. Instrum. Meas. 50, 510–514 (2001).
[CrossRef]

Minogin, V. G.

T. V. Zueva and V. G. Minogin, “Optimum slowing of atoms by a resonant laser beam,” Pis'ma Zh. Tekh. Fiz. 7, 953–956 (1981).

Moi, L.

S. N. Atutov, R. Calabrese, R. Grimm, V. Guidi, I. Lauer, P. Lenisa, V. Luger, E. Mariotti, L. Moi, A. Peters, U. Schramm, and M. Stössel, “White-light laser cooling of a fast stored ion beam,” Phys. Rev. Lett. 80, 2129–2132 (1998).
[CrossRef]

S. N. Atutov, F. Bonazzi, R. Calabrese, V. Guidi, P. Lenisa, S. Petruio, E. Mariotti, and L. Moi, “Generation of a frequency comb with a sharp edge of adjustable intensity and frequency,” Opt. Commun. 132, 269–274 (1996).
[CrossRef]

S. Gozzini, E. Mariotti, C. Gabbanini, A. Lucchesini, C. Marinelli, and L. Moi, “Atom cooling by white light,” Appl. Phys. B 54, 428–433 (1992).
[CrossRef]

L. Moi, “Application of a very long cavity laser to atom slowing down and optical pumping,” Opt. Commun. 50, 349–352 (1984).
[CrossRef]

Moon, H. S.

H. S. Moon, J. B. Kim, S. E. Park, H. Cho, T. Y. Kwon, S. H. Yang, and H. S. Lee, “Coherent population transfer by using adiabatic following in a cooled atomic Cs beam,” J. Korean Phys. Soc. 37, 680–684 (2000).

Nolle, H.

P. Strohmeier, T. Kersebom, E. Kruger, H. Nolle, and B. Steuter, “Na-atom beam deceleration by a mode-locked laser,” Opt. Commun. 73, 451–454 (1989).
[CrossRef]

Oates, C. W.

M. Zhu, C. W. Oates, and J. L. Hall, “Continuous high-flux monovelocity atomic beam based on a broadband laser-cooling technique,” Phys. Rev. Lett. 67, 46–49 (1991).
[CrossRef] [PubMed]

Ohmukai, R.

R. Ohmukai, H. Imajo, K. Hayasaka, U. Tanaka, M. Watanabe, and S. Urabe, “Isotope-selected measurements of the velocity-controlled Yb atomic beam,” Appl. Phys. B 64, 547–551 (1997).
[CrossRef]

M. Watanabe, R. Ohmukai, U. Tanaka, K. Hayasaka, H. Imajo, and S. Urabe, “Velocity control of a Yb beam by a frequency-doubled mode-locked laser,” J. Opt. Soc. Am. B 13, 2377–2381 (1996).
[CrossRef]

Park, S. E.

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Collimation of a beam of caesium atoms by optical molasses, with resulting reduction in longitudinal beam velocity,” Opt. Commun. 192, 47–63 (2001).
[CrossRef]

H. S. Lee, S. E. Park, T. Y. Kwon, S. H. Yang, and H. Cho, “Toward a cesium frequency standard based on a continuous slow atomic beam: preliminary results,” IEEE Trans. Instrum. Meas. 50, 531–534 (2001).
[CrossRef]

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun. 192, 49–55 (2001).
[CrossRef]

H. S. Moon, J. B. Kim, S. E. Park, H. Cho, T. Y. Kwon, S. H. Yang, and H. S. Lee, “Coherent population transfer by using adiabatic following in a cooled atomic Cs beam,” J. Korean Phys. Soc. 37, 680–684 (2000).

Parkins, A. S.

A. S. Parkins and P. Zoller, “Laser cooling of atoms with broadband real Gaussian laser fields,” Phys. Rev. A 45, 6522–6538 (1992).
[CrossRef] [PubMed]

Peters, A.

S. N. Atutov, R. Calabrese, R. Grimm, V. Guidi, I. Lauer, P. Lenisa, V. Luger, E. Mariotti, L. Moi, A. Peters, U. Schramm, and M. Stössel, “White-light laser cooling of a fast stored ion beam,” Phys. Rev. Lett. 80, 2129–2132 (1998).
[CrossRef]

Petruio, S.

S. N. Atutov, F. Bonazzi, R. Calabrese, V. Guidi, P. Lenisa, S. Petruio, E. Mariotti, and L. Moi, “Generation of a frequency comb with a sharp edge of adjustable intensity and frequency,” Opt. Commun. 132, 269–274 (1996).
[CrossRef]

Phillips, W. D.

J. V. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, and J. Dalibard, “Stopping atoms with laser light,” Phys. Rev. Lett. 54, 992–995 (1985).
[CrossRef] [PubMed]

J. V. Prodan, W. D. Phillips, and H. Metcalf, “Laser production of a very slow monoenergetic atomic beam,” Phys. Rev. Lett. 49, 1149–1153 (1982).
[CrossRef]

Pritchard, D. E.

Prodan, J. V.

J. V. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, and J. Dalibard, “Stopping atoms with laser light,” Phys. Rev. Lett. 54, 992–995 (1985).
[CrossRef] [PubMed]

J. V. Prodan, W. D. Phillips, and H. Metcalf, “Laser production of a very slow monoenergetic atomic beam,” Phys. Rev. Lett. 49, 1149–1153 (1982).
[CrossRef]

Renn, M. J.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996).
[CrossRef] [PubMed]

Riehle, F.

Schramm, U.

S. N. Atutov, R. Calabrese, R. Grimm, V. Guidi, I. Lauer, P. Lenisa, V. Luger, E. Mariotti, L. Moi, A. Peters, U. Schramm, and M. Stössel, “White-light laser cooling of a fast stored ion beam,” Phys. Rev. Lett. 80, 2129–2132 (1998).
[CrossRef]

Schuh, P.

F. Lison, P. Schuh, D. Haubrich, and D. Meschede, “High-brilliance Zeeman-slowed cesium atomic beam,” Phys. Rev. A 61, 013405 (2000).
[CrossRef]

Schuwer, M. P.

M. D. Hoogerland, J. P. J. Driessen, E. J. D. Vredenbregt, H. J. L. Megens, M. P. Schuwer, H. C. W. Beijerinck, and K. A. H. van Leeuwen, “Bright thermal atomic beams by laser cooling: a 1400-fold gain in beam flux,” Appl. Phys. B 62, 323–327 (1996).
[CrossRef]

So, I.

J. V. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, and J. Dalibard, “Stopping atoms with laser light,” Phys. Rev. Lett. 54, 992–995 (1985).
[CrossRef] [PubMed]

Spreeuw, R. J. C.

K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. T. M. Walraven, “Two-dimensional magneto-optical trap as a source of slow atoms,” Phys. Rev. A 58, 3891–3895 (1998).
[CrossRef]

Steuter, B.

P. Strohmeier, T. Kersebom, E. Kruger, H. Nolle, and B. Steuter, “Na-atom beam deceleration by a mode-locked laser,” Opt. Commun. 73, 451–454 (1989).
[CrossRef]

Stössel, M.

S. N. Atutov, R. Calabrese, R. Grimm, V. Guidi, I. Lauer, P. Lenisa, V. Luger, E. Mariotti, L. Moi, A. Peters, U. Schramm, and M. Stössel, “White-light laser cooling of a fast stored ion beam,” Phys. Rev. Lett. 80, 2129–2132 (1998).
[CrossRef]

Strohmeier, P.

P. Strohmeier, T. Kersebom, E. Kruger, H. Nolle, and B. Steuter, “Na-atom beam deceleration by a mode-locked laser,” Opt. Commun. 73, 451–454 (1989).
[CrossRef]

Tanaka, U.

R. Ohmukai, H. Imajo, K. Hayasaka, U. Tanaka, M. Watanabe, and S. Urabe, “Isotope-selected measurements of the velocity-controlled Yb atomic beam,” Appl. Phys. B 64, 547–551 (1997).
[CrossRef]

M. Watanabe, R. Ohmukai, U. Tanaka, K. Hayasaka, H. Imajo, and S. Urabe, “Velocity control of a Yb beam by a frequency-doubled mode-locked laser,” J. Opt. Soc. Am. B 13, 2377–2381 (1996).
[CrossRef]

Thomann, P.

G. Dudle, A. Joyet, P. Berthoud, G. Mileti, and P. Thomann, “First results with a cold cesium continuous fountain resonator,” IEEE Trans. Instrum. Meas. 50, 510–514 (2001).
[CrossRef]

P. Berthoud, E. Fretel, and P. Thomann, “Bright, slow, and continuous beam of laser-cooled cesium atoms,” Phys. Rev. A 60, R4241–R4244 (1999).
[CrossRef]

Thorsheim, H. R.

H. R. Thorsheim, Y. Wang, and J. Weiner, “Cold collisions in an atomic beam,” Phys. Rev. A 41, 2873–2876 (1990).
[CrossRef] [PubMed]

Urabe, S.

R. Ohmukai, H. Imajo, K. Hayasaka, U. Tanaka, M. Watanabe, and S. Urabe, “Isotope-selected measurements of the velocity-controlled Yb atomic beam,” Appl. Phys. B 64, 547–551 (1997).
[CrossRef]

M. Watanabe, R. Ohmukai, U. Tanaka, K. Hayasaka, H. Imajo, and S. Urabe, “Velocity control of a Yb beam by a frequency-doubled mode-locked laser,” J. Opt. Soc. Am. B 13, 2377–2381 (1996).
[CrossRef]

van Leeuwen, K. A. H.

M. D. Hoogerland, J. P. J. Driessen, E. J. D. Vredenbregt, H. J. L. Megens, M. P. Schuwer, H. C. W. Beijerinck, and K. A. H. van Leeuwen, “Bright thermal atomic beams by laser cooling: a 1400-fold gain in beam flux,” Appl. Phys. B 62, 323–327 (1996).
[CrossRef]

Vansteenkiste, N.

A. Aspect, N. Vansteenkiste, and R. Kaiser, “Preparation of a pure intense beam of metastable helium by laser cooling,” Chem. Phys. 145, 307–315 (1990).
[CrossRef]

Vredenbregt, E. J. D.

M. D. Hoogerland, J. P. J. Driessen, E. J. D. Vredenbregt, H. J. L. Megens, M. P. Schuwer, H. C. W. Beijerinck, and K. A. H. van Leeuwen, “Bright thermal atomic beams by laser cooling: a 1400-fold gain in beam flux,” Appl. Phys. B 62, 323–327 (1996).
[CrossRef]

Walraven, J. T. M.

K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. T. M. Walraven, “Two-dimensional magneto-optical trap as a source of slow atoms,” Phys. Rev. A 58, 3891–3895 (1998).
[CrossRef]

Wang, Y.

H. R. Thorsheim, Y. Wang, and J. Weiner, “Cold collisions in an atomic beam,” Phys. Rev. A 41, 2873–2876 (1990).
[CrossRef] [PubMed]

Watanabe, M.

R. Ohmukai, H. Imajo, K. Hayasaka, U. Tanaka, M. Watanabe, and S. Urabe, “Isotope-selected measurements of the velocity-controlled Yb atomic beam,” Appl. Phys. B 64, 547–551 (1997).
[CrossRef]

M. Watanabe, R. Ohmukai, U. Tanaka, K. Hayasaka, H. Imajo, and S. Urabe, “Velocity control of a Yb beam by a frequency-doubled mode-locked laser,” J. Opt. Soc. Am. B 13, 2377–2381 (1996).
[CrossRef]

Watts, R. N.

Weidemüller, M.

K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. T. M. Walraven, “Two-dimensional magneto-optical trap as a source of slow atoms,” Phys. Rev. A 58, 3891–3895 (1998).
[CrossRef]

Weiner, J.

H. R. Thorsheim, Y. Wang, and J. Weiner, “Cold collisions in an atomic beam,” Phys. Rev. A 41, 2873–2876 (1990).
[CrossRef] [PubMed]

Wieman, C. E.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996).
[CrossRef] [PubMed]

R. N. Watts and C. E. Wieman, “Manipulating atomic velocities using diode lasers,” Opt. Lett. 11, 291–293 (1986).
[CrossRef] [PubMed]

Wineland, D. J.

D. J. Wineland, W. M. Itano, J. C. Bergquist, and R. G. Hulet, “Laser-cooling limits and single-ion spectroscopy,” Phys. Rev. A 36, 2220–2232 (1987).
[CrossRef] [PubMed]

Witte, A.

Yang, S. H.

H. S. Lee, S. E. Park, T. Y. Kwon, S. H. Yang, and H. Cho, “Toward a cesium frequency standard based on a continuous slow atomic beam: preliminary results,” IEEE Trans. Instrum. Meas. 50, 531–534 (2001).
[CrossRef]

H. S. Moon, J. B. Kim, S. E. Park, H. Cho, T. Y. Kwon, S. H. Yang, and H. S. Lee, “Coherent population transfer by using adiabatic following in a cooled atomic Cs beam,” J. Korean Phys. Soc. 37, 680–684 (2000).

Zhu, M.

M. Zhu, C. W. Oates, and J. L. Hall, “Continuous high-flux monovelocity atomic beam based on a broadband laser-cooling technique,” Phys. Rev. Lett. 67, 46–49 (1991).
[CrossRef] [PubMed]

W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, “Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal,” Phys. Rev. Lett. 54, 996–999 (1985).
[CrossRef] [PubMed]

Zoller, P.

A. S. Parkins and P. Zoller, “Laser cooling of atoms with broadband real Gaussian laser fields,” Phys. Rev. A 45, 6522–6538 (1992).
[CrossRef] [PubMed]

Zueva, T. V.

T. V. Zueva and V. G. Minogin, “Optimum slowing of atoms by a resonant laser beam,” Pis'ma Zh. Tekh. Fiz. 7, 953–956 (1981).

Appl. Phys. B (3)

S. Gozzini, E. Mariotti, C. Gabbanini, A. Lucchesini, C. Marinelli, and L. Moi, “Atom cooling by white light,” Appl. Phys. B 54, 428–433 (1992).
[CrossRef]

R. Ohmukai, H. Imajo, K. Hayasaka, U. Tanaka, M. Watanabe, and S. Urabe, “Isotope-selected measurements of the velocity-controlled Yb atomic beam,” Appl. Phys. B 64, 547–551 (1997).
[CrossRef]

M. D. Hoogerland, J. P. J. Driessen, E. J. D. Vredenbregt, H. J. L. Megens, M. P. Schuwer, H. C. W. Beijerinck, and K. A. H. van Leeuwen, “Bright thermal atomic beams by laser cooling: a 1400-fold gain in beam flux,” Appl. Phys. B 62, 323–327 (1996).
[CrossRef]

Chem. Phys. (1)

A. Aspect, N. Vansteenkiste, and R. Kaiser, “Preparation of a pure intense beam of metastable helium by laser cooling,” Chem. Phys. 145, 307–315 (1990).
[CrossRef]

IEEE Trans. Instrum. Meas. (2)

H. S. Lee, S. E. Park, T. Y. Kwon, S. H. Yang, and H. Cho, “Toward a cesium frequency standard based on a continuous slow atomic beam: preliminary results,” IEEE Trans. Instrum. Meas. 50, 531–534 (2001).
[CrossRef]

G. Dudle, A. Joyet, P. Berthoud, G. Mileti, and P. Thomann, “First results with a cold cesium continuous fountain resonator,” IEEE Trans. Instrum. Meas. 50, 510–514 (2001).
[CrossRef]

J. Korean Phys. Soc. (1)

H. S. Moon, J. B. Kim, S. E. Park, H. Cho, T. Y. Kwon, S. H. Yang, and H. S. Lee, “Coherent population transfer by using adiabatic following in a cooled atomic Cs beam,” J. Korean Phys. Soc. 37, 680–684 (2000).

J. Opt. Soc. Am. B (5)

Opt. Commun. (5)

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Collimation of a beam of caesium atoms by optical molasses, with resulting reduction in longitudinal beam velocity,” Opt. Commun. 192, 47–63 (2001).
[CrossRef]

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun. 192, 49–55 (2001).
[CrossRef]

S. N. Atutov, F. Bonazzi, R. Calabrese, V. Guidi, P. Lenisa, S. Petruio, E. Mariotti, and L. Moi, “Generation of a frequency comb with a sharp edge of adjustable intensity and frequency,” Opt. Commun. 132, 269–274 (1996).
[CrossRef]

L. Moi, “Application of a very long cavity laser to atom slowing down and optical pumping,” Opt. Commun. 50, 349–352 (1984).
[CrossRef]

P. Strohmeier, T. Kersebom, E. Kruger, H. Nolle, and B. Steuter, “Na-atom beam deceleration by a mode-locked laser,” Opt. Commun. 73, 451–454 (1989).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (6)

A. S. Parkins and P. Zoller, “Laser cooling of atoms with broadband real Gaussian laser fields,” Phys. Rev. A 45, 6522–6538 (1992).
[CrossRef] [PubMed]

H. R. Thorsheim, Y. Wang, and J. Weiner, “Cold collisions in an atomic beam,” Phys. Rev. A 41, 2873–2876 (1990).
[CrossRef] [PubMed]

F. Lison, P. Schuh, D. Haubrich, and D. Meschede, “High-brilliance Zeeman-slowed cesium atomic beam,” Phys. Rev. A 61, 013405 (2000).
[CrossRef]

D. J. Wineland, W. M. Itano, J. C. Bergquist, and R. G. Hulet, “Laser-cooling limits and single-ion spectroscopy,” Phys. Rev. A 36, 2220–2232 (1987).
[CrossRef] [PubMed]

K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. T. M. Walraven, “Two-dimensional magneto-optical trap as a source of slow atoms,” Phys. Rev. A 58, 3891–3895 (1998).
[CrossRef]

P. Berthoud, E. Fretel, and P. Thomann, “Bright, slow, and continuous beam of laser-cooled cesium atoms,” Phys. Rev. A 60, R4241–R4244 (1999).
[CrossRef]

Phys. Rev. Lett. (6)

M. Zhu, C. W. Oates, and J. L. Hall, “Continuous high-flux monovelocity atomic beam based on a broadband laser-cooling technique,” Phys. Rev. Lett. 67, 46–49 (1991).
[CrossRef] [PubMed]

S. N. Atutov, R. Calabrese, R. Grimm, V. Guidi, I. Lauer, P. Lenisa, V. Luger, E. Mariotti, L. Moi, A. Peters, U. Schramm, and M. Stössel, “White-light laser cooling of a fast stored ion beam,” Phys. Rev. Lett. 80, 2129–2132 (1998).
[CrossRef]

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996).
[CrossRef] [PubMed]

W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, “Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal,” Phys. Rev. Lett. 54, 996–999 (1985).
[CrossRef] [PubMed]

J. V. Prodan, W. D. Phillips, and H. Metcalf, “Laser production of a very slow monoenergetic atomic beam,” Phys. Rev. Lett. 49, 1149–1153 (1982).
[CrossRef]

J. V. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, and J. Dalibard, “Stopping atoms with laser light,” Phys. Rev. Lett. 54, 992–995 (1985).
[CrossRef] [PubMed]

Pis'ma Zh. Tekh. Fiz. (1)

T. V. Zueva and V. G. Minogin, “Optimum slowing of atoms by a resonant laser beam,” Pis'ma Zh. Tekh. Fiz. 7, 953–956 (1981).

Other (1)

V. G. Minogin and V. S. Letokhov, Laser Light Pressure on Atoms (Gordon & Breach, New York, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Calculated longitudinal velocity of cesium atoms as a function of propagation distance from a cesium oven when the atoms are decelerated by (a) a monochromatic laser light (δ/2π=-250 MHz,S0=100); (b) a broadband laser light (δw/2π=-250 MHz,ωm/2π=20.5 MHz,β=2.4,S0=100); (c) the improved white-light cooling technique (δw/2π=-150MHz,ωm/2π=20.5 MHz,β=2.4,Sw=100,δa/2π=30 MHz,Sa=5). The right-hand side of each figure shows the light pressure. δ and S indicate the frequency detuning and saturation parameter of the laser used for deceleration, respectively, and subscripts w and a indicate the broadband laser and the acceleration laser, respectively.

Fig. 2
Fig. 2

Schematic diagram of the experimental set-up for the deceleration, collimation, and deflection of cesium atoms. PBS, polarized beam splitter.

Fig. 3
Fig. 3

Schematic diagram of the system that was used to generate laser frequency for deceleration and acceleration of the cesium atoms.

Fig. 4
Fig. 4

Longitudinal velocity distributions of cesium atoms for various conditions of frequency detuning of the deceleration laser. The bars on the curves indicate frequency (velocity) position of deceleration lasers produced by an EOM.

Fig. 5
Fig. 5

Comparison of the longitudinal velocity distributions of cesium atoms decelerated by monochromatic laser cooling, white-light cooling, and the improved white-light cooling methods.

Fig. 6
Fig. 6

Longitudinal velocity distributions of cesium atoms for various frequency detuning conditions of the acceleration laser. The arrows show the positions of the acceleration laser.

Fig. 7
Fig. 7

(a) Longitudinal velocity distributions of cesium atoms as a function of frequency detuning of the collimation laser. (b) Atomic flux of the decelerated cesium atoms as a function of frequency detuning of the collimation laser.

Fig. 8
Fig. 8

Atomic-beam profile of the slowed and collimated cesium atoms.

Fig. 9
Fig. 9

Typical velocity distribution of a slowed atomic beam by means of improved white-light cooling and frequency chirping.

Fig. 10
Fig. 10

Calculated trajectories of atoms with various longitudinal velocities under the influence of the one-dimensional optical molasses (S0=4, δ=-2.4γ).

Fig. 11
Fig. 11

Longitudinal velocity distribution converted from the measured TOF signal. The solid curve represents the Gaussian fit that yields a mean velocity of ∼24.4 m/s and rms velocity spread of ∼1 m/s.

Fig. 12
Fig. 12

(a) Saturated absorption spectrum to monitor the frequency of a probe laser. The fluorescence signals from the deflected atoms as a function of the frequency of the probe laser (b) with and (c) without collimation.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Fs=kγS1+S,
S=S0 γ2(Δω)2+γ2,
E(t)=E0 exp{i[ωLt+β sin(ωmt)]},
E(t)=E0 n=0Jn(β)exp{i[ωL+nωm]t}+E0n=1(-1)nJn(β)exp{i[ωL-nωm]t}.
Fw=kγnSn1+nSn,
Sn(Δωn)=S0n γ2(Δωn)2+γ2,

Metrics