Abstract

We have carried out a detailed experimental study of the behavior of 200-fs pulses in highly nonlinear photonic crystal fiber to elucidate the mechanisms for supercontinuum generation. To avoid unwanted polarization effects, our experiments were performed using polarization-maintaining fiber. The experimental evidence shows that, as in conventional fibers, Raman scattering leads to the breakup of higher-order solitons, which is accompanied by the generation of radiation at shorter wavelengths than the pump, leading eventually to an ultrabroad supercontinuum.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription